1
|
Murakami T, Kurita H. The distinct properties of high-density lipoprotein nanoparticles as ocular drug delivery vehicles. Nanomedicine (Lond) 2025; 20:925-927. [PMID: 39980459 PMCID: PMC12051531 DOI: 10.1080/17435889.2025.2469489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Tatsuya Murakami
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Haruka Kurita
- Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
| |
Collapse
|
2
|
Piroozmand S, Soheili ZS, Latifi-Navid H, Samiei S, Rezaei-Kanavi M, Behrooz AB, Hosseinkhani S. MiRGD peptideticle targeted delivery of hinge-truncated soluble VEGF receptor 1 fusion protein to the retinal pigment epithelium cell line and newborn mice retina. Int J Biol Macromol 2025; 307:141916. [PMID: 40068751 DOI: 10.1016/j.ijbiomac.2025.141916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Eye-related Angiogenesis and vascular permeability changes lead to retinal vascular disorders. There is an important need to design a novel targeted anti-VEGF drug delivery system to inhibit neovascularization in the retina. The peptide-based carriers are promising for gene therapy due to their flexibility in design, ease of production, structural diversity, low toxicity, and immunogenicity. The hinge-truncated soluble VEGF receptor 1 (htsFLT01) protein, has the ability to bind to both VEGF and PlGF molecules. In the present study, htsFLT01 gene delivery by targeted MiRGD peptide carrier was investigated in the mouse Retinal Pigment Epithelium (mRPE) cell line and mouse model to evaluate the potential of the newly developed peptideticle as an effective therapeutic platform for gene delivery. The characterization results demonstrated that the peptide carrier condensed htsFLT01 DNA, neutralizes its negative charge, and protected it from endonucleases. The size and charge of the nanocomplexes were optimized to effectively target the retina. Based on tube formation assay, migration analyses and intravitreal injection of MiRGD-htsFLT01 nanocomplex into the newborn mice eye, the function of htsFLT01 was investigated. The reduction of tube-like structures in HUVEC cells was notably observed following VEGF neutralization and the findings demonstrated an association between the expression of htsFLT01 and the inhibition of RPE cell migration. The vascular development was inhibited in the deep, intermediate, and superficial capillary plexus layers in the retina. The novel drug MiRGD/htsFLT01 complex, represents a promising potential platform for targeted gene therapy in the eye due to its biocompatibility, likely safety and highly effective function.
Collapse
Affiliation(s)
- Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 1953833511, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mozhgan Rezaei-Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Barzegar Behrooz
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Wu X, Tao W, Lan Z, Tian Y, Zhong Z, Wang J, Li J, Liu X, Zhang X, Wang Y, Wang J, Zhang B, Du Y, Zhang S. pH-Responsive Engineered Exosomes Enhance Endogenous Hyaluronan Production by Reprogramming Chondrocytes for Cartilage Repair. Adv Healthc Mater 2025; 14:e2405126. [PMID: 40042438 DOI: 10.1002/adhm.202405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Indexed: 04/18/2025]
Abstract
Trauma or inflammation-caused cartilage injury leads to joint dysfunction and pain. Exogenous hyaluronic acid (HA) injection is a well-established treatment, but it has a short duration in vivo and requires multiple injections. Here, a new strategy for in situ reprogramming chondrocytes to continuously produce endogenous high molecular weight HA is developed. This involves a pH-responsive engineered exosome decorated with vesicular stomatitis virus glycoprotein (VSV-G) and hyaluronan synthase type 2 (HAS2). Such engineered exosomes successfully deliver HAS2 to the chondrocyte membranes via VSV-G-mediated membrane fusion triggered by low pH, rather than being degraded in lysosomes. This results in the generation of HAS2-chondrocytes, which are characterized to produce high molecular weight HA in vitro and in vivo. With increased endogenous HA, the injected engineered exosomes enhance cartilage regeneration and inhibit osteoarthritis (OA) progression. Notably, one-shot administration of engineered exosomes drastically increases the intra-articular concentration of high molecular weight HA to 145% of the exogenous HA injection group. Importantly, such endogenous HA is sustained for 4 weeks, whereas the injected exogenous HA rapidly decreases within 2 weeks. The findings demonstrate that pH-responsive engineered exosomes capable of generating endogenous HA hold great potential to replace the treatment of multiple injections of exogenous HA for cartilage repair.
Collapse
Affiliation(s)
- Xiaodan Wu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiyong Tao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ziyang Lan
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yaping Tian
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenyu Zhong
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianwei Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xulong Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yifan Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Base of Regulatory Science for Medical Devices, National Medical Production Administration, Wuhan, 430074, China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Zhang
- Department of Orthopedic, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Sports Medicine, Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yingying Du
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Base of Regulatory Science for Medical Devices, National Medical Production Administration, Wuhan, 430074, China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Base of Regulatory Science for Medical Devices, National Medical Production Administration, Wuhan, 430074, China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
4
|
Maity B, Moorthy H, Govindaraju T. Tumor Microenvironment pH-Sensitive Peptidomimetics for Targeted Anticancer Drug Delivery. Biochemistry 2025; 64:1266-1275. [PMID: 40014813 DOI: 10.1021/acs.biochem.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Cell-penetrating peptides (CPPs) are known for their effective intracellular transport of bioactives such as therapeutic proteins, peptides, nucleic acid, and small molecule drugs. However, the excessive cationic charges that promote their membrane permeability result in nonselective delivery and cellular toxicity. In this study, we report a decamer cell-penetrating peptidomimetic, Hkd, designed to selectively deliver anticancer drugs into tumor cells in response to the acidic microenvironment. The pH-sensitive histidine (H) imidazole side chain undergoes protonation in acidic environments, facilitating membrane permeability. The rigid cyclic dipeptide (CDP) core (kd) of Hkd has multiple hydrogen bond donor and acceptor sites, enabling selective interaction-driven cellular uptake. Pharmacokinetic studies revealed the excellent serum stability of Hkd. Cellular uptake studies of Hkd showed improved uptake at a lower pH than physiological pH. Conjugation of Hkd to the anticancer drug camptothecin (Cpt) reduced nonselective drug transport to normal cells while effectively delivering the drug into cancerous cells at the tumor microenvironment pH and retaining the therapeutic potential of the drug. The systematic design of pH-sensitive peptidomimetics offers a viable method to overcome the challenges of stability and selectivity faced by traditional highly cationic CPPs, potentially expanding the application range of this delivery system.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| |
Collapse
|
5
|
Fan X, Jiang K, Zhao Y, Lee BTK, Geng F, Brelen ME, Lu W, Wei G. Peptide-Bound Aflibercept Eye Drops for Treatment of Neovascular Age-Related Macular Degeneration in Nonhuman Primates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410744. [PMID: 39888276 PMCID: PMC11923875 DOI: 10.1002/advs.202410744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Indexed: 02/01/2025]
Abstract
The advent of biomacromolecules antagonizing vascular endothelial growth factor (VEGF) has revolutionized the treatment of neovascular age-related macular degeneration (nAMD). However, frequent intravitreal injections of these biomacromolecules impose an enormous burden on patients and create a massive workload for healthcare providers. This causes patients to abandon therapy, ultimately leading to progressive and irreversible vision loss. In order to address this unmet clinical need, a noninvasive treatment for nAMD is developed. An optimized cell-penetrating peptide derivative, bxyPenetratin (bxyWP), is used to non-covalently complex with the anti-VEGF protein aflibercept (AFL) via reversible hydrophobic interaction. The interaction is crucial for AFL delivery, neither impairing the affinity of AFL to pathological VEGF, nor being interfered by endogenous proteins in tear fluids. AFL/bxyWP eye drops exhibit prolonged retention on the eye and excellent absorption into the posterior ocular segment following topical administration, with significant drug distribution to the retina and choroid. In a laser-induced choroidal neovascularization model on cynomolgus monkeys, AFL/bxyWP eye drops efficiently reduce lesion size and leakage comparable to conventional intravitreal injection of AFL. These results suggest that AFL/bxyWP eye drops are feasible self-administered treatment for neovascular retinal diseases and potentially become a substitute for intravitreal injections.
Collapse
Affiliation(s)
- Xingyan Fan
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
| | - Kuan Jiang
- Eye Institute and Department of OphthalmologyEye and ENT HospitalFudan UniversityShanghai200031China
| | - Yongqian Zhao
- Alephoson Biopharmaceuticals LimitedHong Kong SAR999077China
| | - Benjamin TK Lee
- Alephoson Biopharmaceuticals LimitedHong Kong SAR999077China
| | - Feiyang Geng
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
| | - Marten E Brelen
- Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong Kong SAR999077China
| | - Weiyue Lu
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
- Quzhou Fudan InstituteQuzhou324003China
| | - Gang Wei
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
- Quzhou Fudan InstituteQuzhou324003China
- Shanghai Engineering Research Center of ImmunoTherapeuticsShanghai201203China
| |
Collapse
|
6
|
Catalina-Hernandez E, Aguilella-Arzo M, Peralvarez-Marin A, Lopez-Martin M. Computational Insights into Membrane Disruption by Cell-Penetrating Peptides. J Chem Inf Model 2025; 65:1549-1559. [PMID: 39823544 PMCID: PMC11815844 DOI: 10.1021/acs.jcim.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
Cell-penetrating peptides (CPPs) can translocate into cells without inducing cytotoxicity. The internalization process implies several steps at different time scales ranging from microseconds to minutes. We combine adaptive Steered Molecular Dynamics (aSMD) with conventional Molecular Dynamics (cMD) to observe nonequilibrium and equilibrium states to study the early mechanisms of peptide-bilayer interaction leading to CPPs internalization. We define three membrane compositions representing bilayer sections, neutral lipids (i.e., upper leaflet), neutral lipids with cholesterol (i.e., hydrophobic core), and neutral/negatively charged lipids with cholesterol (i.e., lower leaflet) to study the energy barriers and disruption mechanisms of Arg9, MAP, and TP2, representing cationic, amphiphilic, and hydrophobic CPPs, respectively. Cholesterol and negatively charged lipids increase the energetic barriers for the peptide-bilayer crossing. TP2 interacts with the bilayer by hydrophobic insertion, while Arg9 disrupts the bilayer by forming transient or stable pores. MAP has shown both behaviors. Collectively, these findings underscore the significance of innovative computational approaches in studying membrane-disruptive peptides and, more specifically, in harnessing their potential for cell penetration.
Collapse
Affiliation(s)
- Eric Catalina-Hernandez
- Unit
of Biophysics, Department of Biochemistry and Molecular Biology, Facultat
de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del
Vallès, Catalonia, Spain
- Institute
of Neurosciences, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Marcel Aguilella-Arzo
- Laboratory
of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellon, Spain
| | - Alex Peralvarez-Marin
- Unit
of Biophysics, Department of Biochemistry and Molecular Biology, Facultat
de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del
Vallès, Catalonia, Spain
- Institute
of Neurosciences, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Mario Lopez-Martin
- Unit
of Biophysics, Department of Biochemistry and Molecular Biology, Facultat
de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del
Vallès, Catalonia, Spain
- Institute
of Neurosciences, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
7
|
Xu S, Li J, Long K, Wang W. Reactive Oxygen Species Responsive Supramolecular Prodrug Eyedrops for the Treatment of Choroidal Neovascularization. NANO LETTERS 2024; 24:14584-14593. [PMID: 39466057 DOI: 10.1021/acs.nanolett.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Choroidal neovascularization (CNV) represents a hallmark of neovascular fundus diseases, including age-related macular degeneration and diabetic retinopathy. Traditional eyedrops have encountered formidable challenges in treating CNV, primarily due to their extremely poor intraocular bioavailability and potential adverse off-target effects. Herein, an ocular-permeable supramolecular prodrug eyedrop (Di-DAS/P-PCD) has been developed for the on-demand delivery of antiangiogenic agents in the oxidative microenvironment of CNV. The eyedrop nanoformulation is composed of cell-penetrating peptide-modified PEGylated cyclodextrin (P-PCD) and reactive oxygen species (ROS)-sensitive antiangiogenic dasatinib prodrug Di-DAS. In a laser-induced CNV mouse model, daily instillation of Di-DAS/P-PCD has achieved remarkable penetration into the choroid and significantly suppressed CNV growth while exhibiting a good biocompatibility profile. Our results highlight the potential of the supramolecular prodrug eyedrops as a versatile approach for the targeted treatment of CNV and other neovascular eye disorders.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Jia Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Sadeghi L, Bolhassani A, Mohit E, Baesi K, Aghasadeghi MR, Milani A, Agi E. Engineered ClearColi™-derived outer membrane vesicles as functional carriers for development of HIV-1 therapeutic vaccine candidate. Microb Pathog 2024; 193:106749. [PMID: 38879140 DOI: 10.1016/j.micpath.2024.106749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Bacteria-derived outer membrane vesicles (OMVs) can be engineered to incorporate foreign antigens. This study explored the potential of ClearColi™-derived OMVs as a natural adjuvant and a carrier (recombinant OMVs or rOMVs) for development of an innovative therapeutic vaccine candidate harboring HIV-1 Nef and Nef-Tat antigens. Herein, the rOMVs containing CytolysinA (ClyA)-Nef and ClyA-Nef-Tat fusion proteins were isolated from ClearColi™ strain. The presence of Nef and Nef-Tat proteins on their surface (rOMVNef and rOMVNef-Tat) was confirmed by western blotting after proteinase K treatment. Immune responses induced by Nef and Nef-Tat proteins emulsified with Montanide® ISA720 or mixed with OMVs, and also rOMVNef and rOMVNef-Tat were investigated in BALB/c mice. Additionally, the potency of splenocytes exposed to single-cycle replicable (SCR) HIV-1 virions was assessed for the secretion of cytokines in vitro. Our findings showed that the rOMVs as an antigen carrier (rOMVNef and rOMVNef-Tat) induced higher levels of IgG2a, IFN-γ and granzyme B compared to OMVs as an adjuvant (Nef + OMV and Nef-Tat + OMV), and also Montanide® ISA720 (Nef + Montanide and Nef-Tat + Montanide). Moreover, IFN-γ level in splenocytes isolated from mice immunized with rOMVNef-Tat was higher than other regimens after exposure to SCR virions. Generally, ClearColi™-derived rOMVs can serve as potent carriers for developing effective vaccines against HIV-1 infection.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
9
|
Rohira H, Shankar S, Yadav S, Srivastava PP, Minocha S, Vaddavalli PK, Shah SG, Chugh A. RiTe conjugate mediated corneal collagen crosslinking, a novel therapeutic intervention for keratoconus - in vitro and in vivo study. Int J Pharm 2024; 656:124092. [PMID: 38583820 DOI: 10.1016/j.ijpharm.2024.124092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Corneal collagen crosslinking (CXL) is an effective method to halt the disease progression of keratoconus, a progressive corneal dystrophy leading to cone shaped cornea. Despite the efficacy of standard protocol, the concerning step of this procedure is epithelial debridement performed to facilitate the entry of riboflavin drug. Riboflavin, a key molecule in CXL protocol, is a sparsely permeable hydrophilic drug in corneal tissues. The present study has employed cell penetrating peptide (CPP), Tat2, to enhance the penetration of riboflavin molecule, and thereby improve currently followed CXL protocol. This study demonstrates approximately two-fold enhanced uptake of CPP riboflavin conjugate, Tat2riboflavin-5'Phosphate (RiTe conjugate), both in vitro and in vivo. Two different CXL protocols (Epi ON and Epi OFF) have been introduced and implemented in rabbit corneas using RiTe conjugate in the present study. The standard and RiTe conjugate mediated CXL procedures exhibited an equivalent extent of crosslinking in both the methods. Reduced keratocyte loss and no endothelial damage in RiTe conjugate mediated CXL further ascertains the safety of the proposed CXL protocols. Therefore, RiTe conjugate mediated CXL protocols present as potential alternatives to the standard keratoconus treatment in providing equally effective, less invasive and patient compliant treatment modality.
Collapse
Affiliation(s)
- Harsha Rohira
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujithra Shankar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shikha Yadav
- National Institute of Biologicals, NOIDA, Uttar Pradesh 201309, India
| | - Priyanka P Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Sushmita G Shah
- Dr C M Shah Memorial Charitable Trust - Netra Mandir, Madona Colony Road, Borivali West, Mumbai, Maharashtra 400092, India.
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
11
|
Chen Y, Ye Z, Chen H, Li Z. Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment. Int J Nanomedicine 2024; 19:4021-4040. [PMID: 38736657 PMCID: PMC11086653 DOI: 10.2147/ijn.s463679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zi Ye
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
13
|
Toffoletto N, Salema-Oom M, Nicoli S, Pescina S, González-Fernández FM, Pinto CA, Saraiva JA, Alves de Matos AP, Vivero-Lopez M, Huete-Toral F, Carracedo G, Saramago B, Serro AP. Dexamethasone phosphate and penetratin co-eluting contact lenses: a strategy to enhance ocular drug permeability. Int J Pharm 2024; 650:123685. [PMID: 38072146 DOI: 10.1016/j.ijpharm.2023.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Contact lenses (CLs) have been suggested as drug delivery platforms capable of increasing the drug residence time on the cornea and therefore its bioavailability. However, when targeting the posterior segment of the eye, the drug released from CLs still encounters the barrier effect of the ocular tissues, which considerably reduces the efficacy of administration. This work aims at the development of CLs able to simultaneously deliver an anti-inflammatory drug (dexamethasone sodium phosphate) and a cell-penetrating peptide (penetratin), the latter acting as a drug carrier across the tissues. Hydroxyethyl methacrylate (HEMA)-based hydrogels were functionalized with acrylic acid (AAc) and/or aminopropyl methacrylamide (APMA) to serve as CL materials with increased affinity for the drug and peptide. APMA-functionalized hydrogels sustained the dual release for 8 h, which is compatible with the wearing time of daily CLs. Hydrogels demonstrated suitable light transmittance, swelling capacity and in vitro biocompatibility. The anti-inflammatory activity of the drug was not compromised by the presence of the peptide nor by sterilization. The ocular distribution of the drug after 6 h of CL wearing was evaluated in vivo in rabbits and revealed that the amount of drug in the cornea and aqueous humor significantly increased when the drug was co-delivered with penetratin.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Felipe M González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| |
Collapse
|
14
|
Zhou J, Cai Y, Li T, Zhou H, Dong H, Wu X, Li Z, Wang W, Yuan D, Li Y, Shi J. Aflibercept Loaded Eye-Drop Hydrogel Mediated with Cell-Penetrating Peptide for Corneal Neovascularization Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302765. [PMID: 37679056 DOI: 10.1002/smll.202302765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Corneal neovascularization (CoNV) is a major cause of visual impairment worldwide. Currently, available treatment options have limited efficacy and are associated with adverse effects due to biological barriers and clearance mechanisms. To address this challenge, a novel topical delivery system is developed-Gel 2_1&Eylea-an aflibercept-loaded eye-drop hydrogel mediated with cell-penetrating peptide 1. Gel 2_1&Eylea demonstrates superior membrane permeability, increased stability, and prolonged drug retention time on the ocular surface, and thus may improve drug efficacy. In a rabbit CoNV model, Gel 2_1&Eylea significantly reduces the density of neovascularization with no adverse effects on normal corneoscleral limbal vessels, demonstrating high efficacy and biocompatibility. This work identifies a promising treatment for CoNV which has the potential to benefit other ocular neovascular diseases.
Collapse
Affiliation(s)
- Jianan Zhou
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huilei Dong
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Xia Wu
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, Guangdong, 518116, China
| | - Zenghui Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Wenjie Wang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
15
|
Morofuji R, Kudo K, Honda T, Kinugasa S, Matsuo T, Okabe K. Enhancing Corneal Drug Penetration Using Penetratin for Ophthalmic Suspensions. Biol Pharm Bull 2024; 47:1033-1042. [PMID: 38797668 DOI: 10.1248/bpb.b24-00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.
Collapse
Affiliation(s)
- Ryo Morofuji
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Kazuhiro Kudo
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Takahiro Honda
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Shino Kinugasa
- Division of Materials Science, Nara Institute of Science and Technology
| | - Takamasa Matsuo
- Division of Materials Science, Nara Institute of Science and Technology
| | - Komei Okabe
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| |
Collapse
|
16
|
Boddu SH, Acharya D, Hala V, Jani H, Pande S, Patel C, Shahwan M, Jwala R, Ranch KM. An Update on Strategies to Deliver Protein and Peptide Drugs to the Eye. ACS OMEGA 2023; 8:35470-35498. [PMID: 37810716 PMCID: PMC10552503 DOI: 10.1021/acsomega.3c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.
Collapse
Affiliation(s)
- Sai H.
S. Boddu
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Devarshi Acharya
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Vivek Hala
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Harshil Jani
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
| | - Sonal Pande
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Chirag Patel
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Moyad Shahwan
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Renukuntla Jwala
- School
of
Pharmacy, The University of Texas at El
Paso, 1101 N Campbell
St., El Paso, Texas 79902, United States
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, 27240, United States
| | - Ketan M. Ranch
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
17
|
Hsueh HT, Chou RT, Rai U, Kolodziejski P, Liyanage W, Pejavar J, Mozzer A, Davison C, Appell MB, Kim YC, Leo KT, Kwon H, Sista M, Anders NM, Hemingway A, Rompicharla SVK, Pitha I, Zack DJ, Hanes J, Cummings MP, Ensign LM. Engineered peptide-drug conjugate provides sustained protection of retinal ganglion cells with topical administration in rats. J Control Release 2023; 362:371-380. [PMID: 37657693 PMCID: PMC10591956 DOI: 10.1016/j.jconrel.2023.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.
Collapse
Affiliation(s)
- Henry T Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Usha Rai
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Mozzer
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charlotte Davison
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Yoo Chun Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirby T Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - HyeYoung Kwon
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Maanasa Sista
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Avelina Hemingway
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Yang C, Nguyen DD, Lai J. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302174. [PMID: 37430140 PMCID: PMC10502830 DOI: 10.1002/advs.202302174] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness-controlled ceria nanocages (SRCNs) and poly(l-histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on-demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly(l-histidine) coating amount can endow the SRCNs with an ≈24-fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single-dose nanoformulation can efficaciously reduce corneal wound areas (19-fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post-administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Collapse
Affiliation(s)
- Chia‐Jung Yang
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Duc Dung Nguyen
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Jui‐Yang Lai
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, LinkouTaoyuan33305Taiwan
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
- Research Center for Chinese Herbal MedicineCollege of Human EcologyChang Gung University of Science and TechnologyTaoyuan33303Taiwan
| |
Collapse
|
19
|
Zeng Y, Shen M, Singhal A, Sevink GJA, Crone N, Boyle AL, Kros A. Enhanced Liposomal Drug Delivery Via Membrane Fusion Triggered by Dimeric Coiled-Coil Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301133. [PMID: 37199140 DOI: 10.1002/smll.202301133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Indexed: 05/19/2023]
Abstract
An ideal nanomedicine system improves the therapeutic efficacy of drugs. However, most nanomedicines enter cells via endosomal/lysosomal pathways and only a small fraction of the cargo enters the cytosol inducing therapeutic effects. To circumvent this inefficiency, alternative approaches are desired. Inspired by fusion machinery found in nature, synthetic lipidated peptide pair E4/K4 is used to induce membrane fusion previously. Peptide K4 interacts specifically with E4, and it has a lipid membrane affinity and resulting in membrane remodeling. To design efficient fusogens with multiple interactions, dimeric K4 variants are synthesized to improve fusion with E4-modified liposomes and cells. The secondary structure and self-assembly of dimers are studied; the parallel PK4 dimer forms temperature-dependent higher-order assemblies, while linear K4 dimers form tetramer-like homodimers. The structures and membrane interactions of PK4 are supported by molecular dynamics simulations. Upon addition of E4, PK4 induced the strongest coiled-coil interaction resulting in a higher liposomal delivery compared to linear dimers and monomer. Using a wide spectrum of endocytosis inhibitors, membrane fusion is found to be the main cellular uptake pathway. Doxorubicin delivery results in efficient cellular uptake and concomitant antitumor efficacy. These findings aid the development of efficient delivery systems of drugs into cells using liposome-cell fusion strategies.
Collapse
Affiliation(s)
- Ye Zeng
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Mengjie Shen
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Ankush Singhal
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Geert Jan Agur Sevink
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Niek Crone
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Aimee L Boyle
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
20
|
Abdelhamid HN. An introductory review on advanced multifunctional materials. Heliyon 2023; 9:e18060. [PMID: 37496901 PMCID: PMC10366438 DOI: 10.1016/j.heliyon.2023.e18060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
This review summarizes the applications of some of the advanced materials. It included the synthesis of several nanoparticles such as metal oxide nanoparticles (e.g., Fe3O4, ZnO, ZrOSO4, MoO3-x, CuO, AgFeO2, Co3O4, CeO2, SiO2, and CuFeO2); metal hydroxide nanosheets (e.g., Zn5(OH)8(NO3)2·2H2O, Zn(OH)(NO3)·H2O, and Zn5(OH)8(NO3)2); metallic nanoparticles (Ag, Au, Pd, and Pt); carbon-based nanomaterials (graphene, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and carbon dots (CDs)); biopolymers (cellulose, nanocellulose, TEMPO-oxidized cellulose nanofibers (TOCNFs), and chitosan); organic polymers (e.g. covalent-organic frameworks (COFs)); and hybrid materials (e.g. metal-organic frameworks (MOFs)). Most of these materials were applied in several fields such as environmental-based technologies (e.g., water remediation, air purification, gas storage), energy (production of hydrogen, dimethyl ether, solar cells, and supercapacitors), and biomedical sectors (sensing, biosensing, cancer therapy, and drug delivery). They can be used as efficient adsorbents and catalysts to remove emerging contaminants e.g., inorganic (i.e., heavy metals) and organic (e.g., dyes, antibiotics, pesticides, and oils in water via adsorption. They can be also used as catalysts for catalytic degradation reactions such as redox reactions of pollutants. They can be used as filters for air purification by capturing carbon dioxide (CO2) and volatile organic compounds (VOCs). They can be used for hydrogen production via water splitting, alcohol oxidation, and hydrolysis of NaBH4. Nanomedicine for some of these materials was also included being an effective agent as an antibacterial, nanocarrier for drug delivery, and probe for biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Chemistry Department-Faculty of Science, Assiut University, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
21
|
Huang X, Zhang L, Fu Y, Zhang M, Yang Q, Peng J. Rethinking the potential and necessity of drug delivery systems in neovascular age-related macular degeneration therapy. Front Bioeng Biotechnol 2023; 11:1199922. [PMID: 37288355 PMCID: PMC10242387 DOI: 10.3389/fbioe.2023.1199922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is the predominant threat to human vision and ultimately results in blindness. With the increase in the aging population, it has become a more crucial issue to human health. AMD is a multifactorial disease with the unique feature of uncontrollable angiogenesis during initiation and progression. Although increasing evidence indicates that AMD is largely hereditary, the predominant efficient treatment is antiangiogenesis, which mainly involves VEGF and HIF-α as therapeutic targets. The repeated administration of this treatment over the long term, generally through intravitreal injection, has called for the introduction of long-term drug delivery systems, which are expected to be achieved by biomaterials. However, the clinical results of the port delivery system indicate that the optimization of medical devices toward prolonging the activities of therapeutic biologics in AMD therapy seems more promising. These results indicate that we should rethink the possibility and potential of biomaterials as drug delivery systems in achieving long-term, sustained inhibition of angiogenesis in AMD therapy. In this review, the etiology, categorization, risk factors, pathogenesis, and current clinical treatments of AMD are briefly introduced. Next, the development status of long-term drug delivery systems is discussed, and the drawbacks and shortages of these systems are emphasized. By comprehensively considering the pathological aspect and the recent application of drug delivery systems in AMD therapy, we hope to find a better solution for the further development of long-term therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Xi Huang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Fu
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meixia Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jinrong Peng
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Li Z, Yu H, Liu C, Wang C, Zeng X, Yan J, Sun Y. Efficiency co-delivery of ellagic acid and oxygen by a non-invasive liposome for ameliorating diabetic retinopathy. Int J Pharm 2023; 641:122987. [PMID: 37207860 DOI: 10.1016/j.ijpharm.2023.122987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Diabetic retinopathy (DR) is one of the serious complications of diabetes, which has become the fourth leading cause of vision loss worldwide. Current treatment of DR relies on intravitreal injections of antiangiogenic agents, which has made considerable achievements in reducing visual impairment. However, long-term invasive injections require advanced technology and can lead to poor patient compliance as well as the incidence of ocular complications including bleeding, endophthalmitis, retinal detachment and others. Hence, we developed non-invasive liposomes (EA-Hb/TAT&isoDGR-Lipo) for efficiency co-delivery of ellagic acid and oxygen, which can be administered intravenously or by eye drops. Among that, ellagic acid (EA), as an aldose reductase inhibitor, could remove excessive reactive oxygen species (ROS) induced by high glucose for preventing retinal cell apoptosis, as well as reduce retinal angiogenesis through the blockage of VEGFR2 signaling pathway; carried oxygen could ameliorate DR hypoxia, and further enhanced the anti-neovascularization efficacy. Our results showed that EA-Hb/TAT&isoDGR-Lipo not only effectively protected retinal cells from high glucose-induced damage, but also inhibited VEGF-induced vascular endothelial cells migration, invasion, and tube formation in vitro. In addition, in a hypoxic cell model, EA-Hb/TAT&isoDGR-Lipo could reverse retinal cell hypoxia, thereby reducing the expression of VEGF. Significantly, after being administered as an injection or eye drops, EA-Hb/TAT&isoDGR-Lipo obviously ameliorated the structure (central retinal thickness and retinal vascular network) of retina by eliminating ROS and down-regulating the expression of GFAP, HIF-1α, VEGF and p-VEGFR2 in a DR mouse model. In summary, EA-Hb/TAT&isoDGR-Lipo holds great potentials in improvement of DR, which provides a novel approach for the treatment of DR.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
23
|
Fan X, Jiang K, Geng F, Lu W, Wei G. Ocular therapies with biomacromolecules: From local injection to eyedrop and emerging noninvasive delivery strategies. Adv Drug Deliv Rev 2023; 197:114864. [PMID: 37156266 DOI: 10.1016/j.addr.2023.114864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The last two decades have witnessed a continuously increasing number of biomacromolecules approved for the treatment of ocular diseases. The eye possesses multiple protective mechanisms to resist the invasion of exogenous substances, but meanwhile these physiological defense systems also act as strong barriers, impeding absorption of most biomacromolecules into the eye. As a result, local injections play predominant roles for posterior ocular delivery of biomacromolecules in clinical practice. To achieve safe and convenient application of biomacromolecules, alternative strategies to realize noninvasive intraocular delivery are necessary. Various nanocarriers, novel penetration enhancers and physical strategies have been explored to facilitate delivery of biomacromolecules to both anterior and posterior ocular segments but still suffered difficulties in clinical translation. This review compares the anatomical and physiological characteristics of the eyes from those frequently adopted experimental species and profiles the well-established animal models of ocular diseases. We also summarize the ophthalmic biomacromolecules launched on the market and put emphasis on emerging noninvasive intraocular delivery strategies of peptides, proteins and genes.
Collapse
Affiliation(s)
- Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200030, P.R. China
| | - Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, PR China.
| |
Collapse
|
24
|
Hsueh HT, Chou RT, Rai U, Liyanage W, Kim YC, Appell MB, Pejavar J, Leo KT, Davison C, Kolodziejski P, Mozzer A, Kwon H, Sista M, Anders NM, Hemingway A, Rompicharla SVK, Edwards M, Pitha I, Hanes J, Cummings MP, Ensign LM. Machine learning-driven multifunctional peptide engineering for sustained ocular drug delivery. Nat Commun 2023; 14:2509. [PMID: 37130851 PMCID: PMC10154330 DOI: 10.1038/s41467-023-38056-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.
Collapse
Affiliation(s)
- Henry T Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Usha Rai
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoo Chun Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kirby T Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charlotte Davison
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Mozzer
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - HyeYoung Kwon
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Maanasa Sista
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Avelina Hemingway
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia Edwards
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Yan AL, Du SW, Palczewski K. Genome editing, a superior therapy for inherited retinal diseases. Vision Res 2023; 206:108192. [PMID: 36804635 PMCID: PMC10460145 DOI: 10.1016/j.visres.2023.108192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/17/2023]
Abstract
Gene augmentation and genome editing are promising strategies for the treatment of monogenic inherited retinal diseases. Although gene augmentation treatments are commercially available for inherited retinal diseases, there are many shortcomings that need to be addressed, like progressive retinal degeneration and diminishing efficacy over time. Innovative CRISPR-Cas9-based genome editing technologies have broadened the proportion of treatable genetic disorders and can greatly improve or complement treatment outcomes from gene augmentation. Progress in this relatively new field involves the development of therapeutics including gene disruption, ablate-and-replace strategies, and precision gene correction techniques, such as base editing and prime editing. By making direct edits to endogenous DNA, genome editing theoretically guarantees permanent gene correction and long-lasting treatment effects. Improvements to delivery modalities aimed at limiting persistent gene editor activity have displayed an improved safety profile and minimal off-target editing. Continued progress to advance precise gene correction and associated delivery strategies will establish genome editing as the preferred treatment for genetic retinal disorders. This commentary describes the applications, strengths, and drawbacks of conventional gene augmentation approaches, recent advances in precise genome editing in the retina, and promising preclinical strategies to facilitate the use of robust genome editing therapies in human patients.
Collapse
Affiliation(s)
- Alexander L Yan
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Program in Neuroscience, Amherst College, Amherst, MA 01002, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Rohira H, Arora A, Kaur P, Chugh A. Peptide cargo administration: current state and applications. Appl Microbiol Biotechnol 2023; 107:3153-3181. [PMID: 37052636 PMCID: PMC10099029 DOI: 10.1007/s00253-023-12512-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Effective delivery of drug molecules to the target site is a challenging task. In the last decade, several innovations in the drug delivery system (DDS) have tremendously improved the therapeutic efficacy of drug molecules. Among various DDS, cell-penetrating peptides (CPPs) based DDS have gathered notable attention owing to their safety, efficacy, selectivity, specificity, and ease of synthesis. CPPs are emerging as an efficient and effective pharmaceutical nanocarriers-based platforms for successful management of various important human health disorders. Failure of several current chemotherapeutic strategies is attributed to low solubility, reduced bioavailability, and off-target delivery of several anti-cancer drugs. Similarly, development of therapeutics for vision-threatening disorders is challenged by the anatomical as well as physiological complexity of the eye. Such therapeutic challenges in cancer and ocular disease management can be overcome by developing cell-penetrating peptide (CPP) based peptide drug conjugates (PDCs). CPPs can be used to deliver various types of cargo molecules including nucleic acids, small molecules, and peptides/proteinaceous agents. In this review, we have briefly introduced CPPs and the linker strategies employed for the development of PDCs. Furthermore, recent studies employing CPP-based PDCs for cancer and ocular disease management have been discussed in detail highlighting their significance over conventional DDS. Later sections of the review are focused on the current status of clinical trials and future implications of CPP-based PDCs in vaccine development. KEY POINTS: • Cell-penetrating peptides (CPPs) can deliver a variety of cargo macromolecules via covalent and non-covalent conjugation. • CPP-based peptide drug conjugates (PDCs) can overcome drawbacks of conventional drug delivery methods such as biocompatibility, solubility, stability, and specificity. • Various PDCs are in clinical trial phase for cancer and ocular therapeutics.
Collapse
Affiliation(s)
- Harsha Rohira
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Genohelex Care Pvt. Ltd, ASPIRE BioNEST, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Aditi Arora
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Prasanjeet Kaur
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
27
|
Nhàn NTT, Maidana DE, Yamada KH. Ocular Delivery of Therapeutic Agents by Cell-Penetrating Peptides. Cells 2023; 12:1071. [PMID: 37048144 PMCID: PMC10093283 DOI: 10.3390/cells12071071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides with the ability to translocate through the cell membrane to facilitate their cellular uptake. CPPs can be used as drug-delivery systems for molecules that are difficult to uptake. Ocular drug delivery is challenging due to the structural and physiological complexity of the eye. CPPs may be tailored to overcome this challenge, facilitating cellular uptake and delivery to the targeted area. Retinal diseases occur at the posterior pole of the eye; thus, intravitreal injections are needed to deliver drugs at an effective concentration in situ. However, frequent injections have risks of causing vision-threatening complications. Recent investigations have focused on developing long-acting drugs and drug delivery systems to reduce the frequency of injections. In fact, conjugation with CPP could deliver FDA-approved drugs to the back of the eye, as seen by topical application in animal models. This review summarizes recent advances in CPPs, protein/peptide-based drugs for eye diseases, and the use of CPPs for drug delivery based on systematic searches in PubMed and clinical trials. We highlight targeted therapies and explore the potential of CPPs and peptide-based drugs for eye diseases.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Daniel E. Maidana
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kaori H. Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
28
|
Nishida S, Takashima Y, Udagawa R, Ibaraki H, Seta Y, Ishihara H. A Multifunctional Hybrid Nanocarrier for Non-Invasive siRNA Delivery to the Retina. Pharmaceutics 2023; 15:pharmaceutics15020611. [PMID: 36839933 PMCID: PMC9962392 DOI: 10.3390/pharmaceutics15020611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Drug therapy for retinal diseases (e.g., age-related macular degeneration, the leading cause of blindness) is generally performed by invasive intravitreal injection because of poor drug delivery caused by the blood-retinal barrier (BRB). This study aimed to develop a nanocarrier for the non-invasive delivery of small interfering RNA (siRNA) to the posterior segment of the eye (i.e., the retina) by eyedrops. To this end, we prepared a hybrid nanocarrier based on a multifunctional peptide and liposomes, and the composition was optimized. A cytoplasm-responsive stearylated peptide (STR-CH2R4H2C) was used as the multifunctional peptide because of its superior ability to enhance the complexation, cell permeation, and intracellular dynamics of siRNA. By adding STR-CH2R4H2C to the surface of liposomes, intracellular uptake increased regardless of the liposome surface charge. The STR-CH2R4H2C-modified cationic nanocarrier demonstrated significant siRNA transfection efficiency with no cytotoxicity, enhanced siRNA release from endosomes, and effectively suppressed vascular endothelial growth factor expression in rat retinal pigment epithelium cells. The 2.0 mol% STR-CH2R4H2C-modified cationic nanocarrier enhanced intraocular migration into the retina after instillation into rat eyes.
Collapse
|
29
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
30
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
31
|
Nguyen DD, Luo LJ, Yang CJ, Lai JY. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS NANO 2023; 17:168-183. [PMID: 36524981 DOI: 10.1021/acsnano.2c05824] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of therapeutics for effective treatments of retinal diseases is significantly constrained by various biological barriers. We herein report a nanomedicine strategy to develop nanotherapeutics featured with not only high retinal permeability but also sustained bioactive delivery. Specifically, the nanotherapeutics are rationally designed via aminolysis of resveratrol-encapsulated polycaprolactone nanoparticles (R@PCL NPs), followed by the formation of amide linkages with carboxyl-terminated transacting activator of transcription cell penetrating peptide (T) and metformin (M). The R@PCL-T/M NP nanotherapeutics are demonstrated in vitro to possess persistent drug release profiles, good ocular biocompatibility, and potent bioactive activities for targeting prevailing risk factors associated with retinal diseases. In vivo studies indicate that single-dose intravitreal administration of the R@PCL-T/M NPs can effectively improve retinal permeability (∼15-fold increase), prevent loss of endogenous antioxidants, and suppress the growth of abnormal vessels in the retina with macular degeneration for 56 days. This high treatment efficacy can be ascribed to the enhanced retinal permeability of the nanotherapeutics in conjunction with the sustained pharmacological activity of the dual drugs (R and M) in the retinal pigment epithelial region. These findings show a great promise for the development of pharmacological nanoformulations capable of targeting the retina and thereby treating complex posterior segment diseases with improved efficacies.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Jyuan Luo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
32
|
Morofuji R, Enomoto H, Honda T, Oyama Y, Ishida R, Kudo K, Okabe K. Exploring Cell-Penetrating Peptides as Penetration Enhancers in Eye Drop Formulations Using a Reconstructed Human Corneal Epithelial Model. Biol Pharm Bull 2023; 46:1720-1730. [PMID: 38044130 DOI: 10.1248/bpb.b23-00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ocular tissues function as biological barriers that hinder drug delivery, depending on the target tissue and route of administration, and must be overcome to achieve the desired therapeutic effect. Penetration enhancers have long been investigated to improve corneal drug penetration via eye drop instillation; however, further development is warranted owing to potential safety concerns. In the present study, we focused on cell-penetrating peptides (CPPs) as a penetration enhancer to address the requirements and explored CPP candidates suitable for corneal drug delivery. Using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24 as an alternative to animal testing that is expected to have higher reproducibility than extracted eyeballs and octa-arginine (R8) as a representative model CPP with simple structure, we investigated the enhancement of 6-carboxyfluorescein (6-FAM) uptake by fluorescence imaging and the potential of eye irritation by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also, surface plasmon resonance (SPR) evaluated the interaction between R8 and model compounds, suggesting that the stronger interaction could facilitate the corneal uptake of compounds. A comparative screening study of corneal uptake using various CPPs showed that the CPPs other than R8 also have the potential to enhance the corneal uptake of 6-FAM. In particular, penetratin (PNT) showed stronger fluorescence intensity. Through these findings, this manuscript provides beneficial information for the development of a novel corneal penetration enhancer with CPPs. In the future, it is expected that the basic findings with R8 will be verified to be applicable to other CPPs for development as penetration enhancers for eye drop formulation.
Collapse
Affiliation(s)
- Ryo Morofuji
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Hiroshi Enomoto
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Takahiro Honda
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Yuki Oyama
- Division of Materials Science, Nara Institute of Science and Technology
| | - Reiji Ishida
- Division of Materials Science, Nara Institute of Science and Technology
| | - Kazuhiro Kudo
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Komei Okabe
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| |
Collapse
|
33
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Nguyen Le NM, Zsák S, Le-Vinh B, Friedl JD, Kali G, Knoll P, Seitter HW, Koschak A, Bernkop-Schnürch A. Charge-Converting Nanoemulsions as Promising Retinal Drug and Gene Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44981-44991. [PMID: 36125912 PMCID: PMC9542710 DOI: 10.1021/acsami.2c11649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 05/31/2023]
Abstract
AIM This study aimed to develop phosphatase-responsive ζ potential converting nanocarriers utilizing polyphosphate-coated cell-penetrating peptide (CPP)-decorated nanoemulsions (NEs) as a novel gene delivery system to retinal cells. METHODS Poly-l-lysine (PLL) was first conjugated with oleylamine (OA) only at its carboxylic end to form the amphiphilic PLL-oleylamine (PLOA) conjugate. Afterward, NEs were loaded with PLOA prior to being coated with tripolyphosphate (TPP) to generate PLOA/TPP NEs. A plasmid containing a reporter gene for green fluorescent protein plasmid (pGFP) was complexed with cationic surfactants forming hydrophobic ion pairs that were loaded in the oily core of NEs. Phosphate removal, ζ potential conversion, and cytotoxicity of the system were evaluated. Cellular uptake and transfection efficiency were investigated in 661W photoreceptor-like cells via microscopic analysis, fluorescence spectroscopy, and flow cytometry. RESULTS Dephosphorylation of PLOA/TPP NEs triggered by alkaline phosphatase (ALP) resulted in the exposure of positive amine groups on the surface of NE droplets and a notable conversion of the ζ potential from -22.4 to +8.5 mV. Cellular uptake of PLOA/TPP NEs performed on 661W photoreceptor-like cells showed a 3-fold increase compared to control NEs. Furthermore, PLOA/TPP NEs also showed low cytotoxicity and high transfection efficacy with ∼50% of cells transfected. CONCLUSIONS Polyphosphate-coated CPP-decorated NEs triggered by ALP could be a promising nanosystem to efficiently deliver drugs and genetic materials to photoreceptor-like cells and other retinal cells for potential treatments of retinal diseases.
Collapse
Affiliation(s)
- Nguyet-Minh Nguyen Le
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sarah Zsák
- Center
for Chemistry and Biomedicine, Department of Pharmacology and Toxicology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Bao Le-Vinh
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hartwig Wolfram Seitter
- Center
for Chemistry and Biomedicine, Department of Pharmacology and Toxicology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Alexandra Koschak
- Center
for Chemistry and Biomedicine, Department of Pharmacology and Toxicology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
35
|
Wang K, Rong G, Gao Y, Wang M, Sun J, Sun H, Liao X, Wang Y, Li Q, Gao W, Cheng Y. Fluorous-Tagged Peptide Nanoparticles Ameliorate Acute Lung Injury via Lysosomal Stabilization and Inflammation Inhibition in Pulmonary Macrophages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203432. [PMID: 36069247 DOI: 10.1002/smll.202203432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome that currently has no effective therapeutic interventions. Pulmonary macrophages play a principal role in the initiation and progression of the overwhelming inflammation in ALI/ARDS. Here, a type of fluorous-tagged bioactive peptide nanoparticle termed CFF13F is developed, which can be efficiently internalized by macrophages and suppress the excessive expression of cytokines and the overproduction of reactive oxygen species (ROS) triggered by lipopolysaccharide (LPS). The cytoprotective effect of CFF13F may be attributed to the lysosomal-stabilization property and regulation of the antioxidative system. Moreover, intratracheal pretreatment with CFF13F can effectively reduce local and systematic inflammation, and ameliorate pulmonary damage in an LPS-induced ALI murine model. The therapeutic efficacy of CFF13F is affected by the administration routes, and the local intratracheal injection is found to be the optimal choice for ALI treatment, with preferred biodistribution profiles. The present study provides solid evidence of the potent immunomodulatory bioactivity of the fluorous-tagged peptide nanoparticles CFF13F in vitro and in vivo, and sheds light on the development of novel efficient nanodrugs for ALI/ARDS.
Collapse
Affiliation(s)
- Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, P. R. China
| | - Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Jiaxing Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - He Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Yuanyuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
36
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
37
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
38
|
Attia SA, MacKay JA. Protein and polypeptide mediated delivery to the eye. Adv Drug Deliv Rev 2022; 188:114441. [PMID: 35817213 PMCID: PMC10049092 DOI: 10.1016/j.addr.2022.114441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022]
Abstract
Hybrid or recombinant protein-polymers, peptide-based biomaterials, and antibody-targeted therapeutics are widely explored for various ocular conditions and vision correction. They have been noted for their potential biocompatibility, potency, adaptability, and opportunities for sustained drug delivery. Unique to peptide and protein therapeutics, their production by cellular translation allows their precise modification through genetic engineering. To a greater extent than drug delivery to other systems, delivery to the eye can benefit from the combination of locally-targeted administration and protein-based specificity. Consequently, a range of delivery platforms and administration methods have been exploited to address the ocular delivery of peptide and protein biomaterials. This review discusses a sample of preclinical and clinical opportunities for peptide-based drug delivery to the eye.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
39
|
Thomas CN, Alfahad N, Capewell N, Cowley J, Hickman E, Fernandez A, Harrison N, Qureshi OS, Bennett N, Barnes NM, Dick AD, Chu CJ, Liu X, Denniston AK, Vendrell M, Hill LJ. Triazole-derivatized near-infrared cyanine dyes enable local functional fluorescent imaging of ocular inflammation. Biosens Bioelectron 2022; 216:114623. [PMID: 36029662 DOI: 10.1016/j.bios.2022.114623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 μM, whereas TNC-3 was only detectable at 100 μM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 μM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 μM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Nada Alfahad
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Nicholas Capewell
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jamie Cowley
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Eleanor Hickman
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antonio Fernandez
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia, Spain; Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Neale Harrison
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Omar S Qureshi
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Naomi Bennett
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicholas M Barnes
- Neuropharmacology Research Group, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Colin J Chu
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK
| | - Alastair K Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK; Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
40
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
41
|
Stonex T, Salmon JH, Adler KB, Gilger BC. Peptide Inhibitors of MARCKS Suppress Endotoxin Induced Uveitis in Rats. J Ocul Pharmacol Ther 2022; 38:223-231. [PMID: 35385320 PMCID: PMC9048183 DOI: 10.1089/jop.2021.0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Purpose: To determine if inhibition of Myristoylated Alanine Rich C Kinase Substrate (MARCKS) protein, using novel MARCKS inhibitor peptides, will reduce the severity of endotoxin-induced uveitis (EIU) in rats. Methods: EIU was induced in Lewis rats using subcutaneous administration of lipopolysaccharide. In the first phase of the study, 3 different novel MARCKS inhibitor peptides that mimic the N-terminal region of MARCKS (BIO-11006, or lower molecular weight analogs BIO-91201 or BIO-91202; Biomarck Pharmaceuticals, Ltd., Newtown, PA) were administered intravitreally (IVT) at 50 and 100 μM. In the second phase, BIO-91201 was administered IVT at 10, 50, and 100 μM and topically at the 100 μM concentration. The efficacy of MARCKS inhibitor peptides was assessed by clinical examination using slit lamp biomicroscopy, optical coherence tomography (OCT) anterior chamber cell counts, histopathology, and aqueous humor cytokine analysis. Results: Clinical scores were significantly reduced 24 h following uveitis induction in the first phase of the study in the following treatment groups: BIO-11006 50 μM IVT and 100 μM IVT, BIO-91201 50 μM IVT, and BIO-91202 100 μM IVT (P < 0.05). OCT anterior chamber cell counts were significantly reduced in the first phase of the study in all treatment groups (P < 0.001). OCT anterior chamber cell counts and histopathology scores were significantly reduced in the second phase of the study in the BIO-91201 50 μM IVT group (P < 0.05). No effect was seen with topical administration. Conclusion: MARCKS inhibitor peptides were effective in reducing the severity of ocular inflammation and cellular influx in EIU.
Collapse
Affiliation(s)
- Tara Stonex
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jacklyn H. Salmon
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth B. Adler
- Department of Molecular Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Brian C. Gilger
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Topical instillation of cell-penetrating peptide-conjugated melphalan blocks metastases of retinoblastoma. Biomaterials 2022; 284:121493. [DOI: 10.1016/j.biomaterials.2022.121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/23/2022]
|
43
|
Oh KK, Adnan M, Cho DH. Uncovering a Hub Signaling Pathway of Antimicrobial-Antifungal-Anticancer Peptides’ Axis on Short Cationic Peptides via Network Pharmacology Study. Int J Mol Sci 2022; 23:ijms23042055. [PMID: 35216171 PMCID: PMC8875113 DOI: 10.3390/ijms23042055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Short cationic peptides (SCPs) with therapeutic efficacy of antimicrobial peptides (AMPs), antifungal peptides (AFPs), and anticancer peptides (ACPs) are known as an enhancement of the host defense system. Here, we investigated the uppermost peptide(s), hub signaling pathway(s), and their associated target(s) through network pharmacology. Firstly, we selected SCPs with positive amino acid residues on N- and C- terminals under 500 Dalton via RStudio. Secondly, the overlapping targets between the bacteria-responsive targets (TTD and OMIM) and AMPs’ targets were visualized by VENNY 2.1. Thirdly, the overlapping targets between AFPs’ targets and fungal-responsive targets were exhibited by VENNY 2.1. Fourthly, the overlapping targets between cancer-related targets (TTD and OMIM) and fungal-responsive targets were displayed by VENNY 2.1. Finally, a molecular docking study (MDS) was carried out to discover the most potent peptides on a hub signaling pathway. A total of 1833 SCPs were identified, and AMPs’, AFPs’, and ACPs’ filtration suggested that 197 peptides (30 targets), 81 peptides (6 targets), and 59 peptides (4 targets) were connected, respectively. The AMPs―AFPs―ACPs’ axis indicated that 27 peptides (2 targets) were associated. Each hub signaling pathway for the enhancement of the host defense system was “Inactivation of Rap1 signaling pathway on AMPs”, “Activation of Notch signaling pathway on AMPs―AFPs’ axis”, and “Inactivation of HIF-1 signaling pathway on AMPs―AFPs―ACPs’ axis”. The most potent peptides were assessed via MDS; finally, HPIK on STAT3 and HVTK on NOS2 and on HIF-1 signaling pathway were the most stable complexes. Furthermore, the two peptides had better affinity scores than standard inhibitors (Stattic, 1400 W). Overall, the most potent SCPs for the human defense system were HPIK on STAT3 and HVTK on NOS2, which might inactivate the HIF-1 signaling pathway.
Collapse
|
44
|
How liposomes pave the way for ocular drug delivery after topical administration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Chen SY, Xu XX, Li X, Yi NB, Li SZ, Xiang XC, Cheng DB, Sun T. Recent advances in the intracellular delivery of macromolecule therapeutics. Biomater Sci 2022; 10:6642-6655. [DOI: 10.1039/d2bm01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the uptake pathway of intracellular delivery vehicles for macromolecule therapeutics, and provides in-depth discussions and prospects about intracellular delivery of macromolecule therapeutics.
Collapse
Affiliation(s)
- Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Shi-Zhuo Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xing-Cheng Xiang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
46
|
Bhatt M, Shende P. Modulated approaches for strategic transportation of proteins and peptides via ocular route. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Zhang DY, Zheng Z, Zhao H, Wang HY, Ding F, Li HB, Pan YC, Guo DS. Structurally screening calixarenes as peptide transport activators. Chem Commun (Camb) 2021; 57:12627-12630. [PMID: 34761762 DOI: 10.1039/d1cc05414g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calixarenes are reportedly excellent activators that can remarkably improve the transport efficiencies of cell penetrating peptides. We employed eight calixarenes to systematically study the influence of structure on activation efficiency, which revealed that the scaffold, head group, and alkyl chain are all significant factors for activation efficiency by affecting affinities with the peptide and membrane.
Collapse
Affiliation(s)
- De-Yi Zhang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.
| | - Zhe Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China. .,School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221000, Jiangsu, P. R. China
| | - Hong Zhao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.
| | - Huan-Yu Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.
| | - Fei Ding
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
48
|
Cha HJ, Lee H, Yeo EJ, Yeo HJ, Choi YJ, Sohn EJ, Kim DW, Park SJ, Lee SH, Lee S, Choi SY. Utilization of an Intracellular Calcium Mobilization Assay for the Screening of Transduced FK506-Binding Proteins. Assay Drug Dev Technol 2021; 19:442-452. [PMID: 34415786 DOI: 10.1089/adt.2021.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FK506-binding proteins (FKBPs) belong to the immunophilin family and are linked to various disease states, including the inflammatory response. The inhibition of cytokine and chemokine expression in addition to positive effects of FKBPs on corneal inflammation in animal models suggests that they may be used for ophthalmic delivery in the treatment of dry eye disease. To pass the effective barriers protecting eye tissues, testing the transduction domains of FKBPs is essential. However, monitoring their transduction efficiencies is not a simple task. The quantitative measurement of FKBP interactions was performed using a cell model with a specific G protein-coupled receptor, as FKBPs had been known to act at the inositol 1,4,5-trisphosphate receptor (IP3R) leading to the inhibition of intracellular calcium mobilization. Because of its luminescence amplitude and stability, human urotensin II receptor was expressed in aequorin parental cells to measure the action of selected FKBPs. This luminescence-based functional assay platform exhibited a high signal-to-background ratio of more than 100 and a Z' factor at 0.6204. As expected, changes in the sequence of the transduction domain affected the function of the FKBPs. The intracellular calcium mobilization assay with selected FKBPs represented a robust and reliable platform to screen initial candidates. Although the precise nature of the control that FKBPs exert on the IP3R is uncertain, this approach can be used to develop innovative anti-inflammatory treatments for dry eye disease by optimizing protein transduction domain sequences.
Collapse
Affiliation(s)
- Hyun Ju Cha
- R&D Center, Lumieye Genetics Co., Ltd., Seoul, Korea
| | - Hyunjin Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Soo Jung Park
- R&D Center, Lumieye Genetics Co., Ltd., Seoul, Korea
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| |
Collapse
|
49
|
Wróblewska KB, Jadach B, Muszalska-Kolos I. Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. Int J Pharm 2021; 607:121012. [PMID: 34400274 DOI: 10.1016/j.ijpharm.2021.121012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Due to the very low bioavailability of drugs administered to the surface of the eyeball, issues related to the formulation of an ophthalmic drug pose a technological challenge. The essence of an ophthalmic drug is the selection of an appropriate active substance (API), but also auxiliary substances that determine the desired drug quality and API availability. The ophthalmic drug is not only classic eye drops. Therefore, on the basis of the literature data, the properties and application of auxiliary substances increasing the pharmaceutical availability of API, improving the penetration of API into the eye structures and modifying the viscosity of eye drops were characterized. The possibility of chemical modification of API and the use of prodrugs in ophthalmic drug forms was also noted. Taking into account the progress in the field of ophthalmic drug formulation, the use of multi-compartment systems (lipid particles, nanoparticles, microparticles, liposomes, niosomes, dendrimers) and modern ophthalmic drug delivery systems (inserts, implants, microneedles, contact lenses, ionophoretic systems) have been indicated. Examples of solutions already used by manufacturers, as well as those in the phase of laboratory or clinical trials, were indicated.
Collapse
Affiliation(s)
- Katarzyna B Wróblewska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
50
|
Li M, Feng S, Xing H, Sun Y. Dexmedetomidine and levobupivacaine co-loaded, transcriptional transactivator peptide modified nanostructured lipid carriers or lipid-polymer hybrid nanoparticles, which performed better for local anesthetic therapy? Drug Deliv 2021; 27:1452-1460. [PMID: 33100057 PMCID: PMC7594749 DOI: 10.1080/10717544.2020.1831105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Local anesthetics (LAs) have been widely applied in clinic for regional anesthesia, postoperative analgesia, and management of acute and chronic pain. Nanostructured lipid carriers (NLCs) and lipid–polymer hybrid nanoparticles (LPNs) are reported as good choices for LA therapy. Transactivated transcriptional activator (TAT) was reported as a modifier for the topical delivery of drugs. In the present study, TAT modified, levobupivacaine (LEV) and dexmedetomidine (DEX) co-delivered NLCs (TAT-LEV&DEX-NLCs, T-L&D-N) and LPNs (TAT-LEV&DEX-LPNs, T-L&D-L) were designed and compared for the LA therapy. T-L&D-L exhibited better efficiency in improving the skin permeation, analgesic time, and pain control intensity than T-L&D-N both in vitro and in vivo. On the other side, T-L&D-N also improved the therapeutic effect of drugs to a large extent. These two systems both exhibited superiority in some respects. TAT modified LPNs are more promising platform for the long-term local anesthesia.
Collapse
Affiliation(s)
- Min Li
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Shuo Feng
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingui Sun
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| |
Collapse
|