1
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
2
|
Moolan-Vadackumchery R, Zhang L, Stüber F. Evaluation of Lipid-Based Transfection in Primary Monocytes Within an Ex Vivo Whole-Blood Model. Biomolecules 2025; 15:391. [PMID: 40149927 PMCID: PMC11939838 DOI: 10.3390/biom15030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Transfection is a fundamental method in biomedical research to study intracellular molecular mechanisms by manipulating target protein expression. Various methods have been developed to deliver nucleic acids into the cells of interest in vitro, with chemical transfection by cationic lipids being the most widely used for RNA interference (RNAi). However, translating these in vitro results into in vivo remains a significant challenge. In this study, we established an ex vivo transfection model using cationic lipids in human whole blood. Three different lipid-based reagents were evaluated regarding toxicity, transfection efficiency, and immunogenicity across leukocyte populations using spectral flow cytometry. CD14+ monocytes were identified as the primary population to be transfected by cationic lipids in whole blood. To assess immunogenicity, the monocyte-specific activation markers CD80 and human leukocyte antigen DR isotype (HLA-DR) were analyzed upon transfection. Our results demonstrated that Lipofectamine RNAiMAX outperforms the other two reagents, showing low toxicity and high transfection efficiency in combination with a minimal potential for monocyte activation. Functional knockdown experiments using siRNA targeting CIITA and the microRNA mir-3972 targeting HLA-DRA showed dose-dependent suppression in HLA-DR expression. This study provides the framework for preliminary testing of RNAi in a physiologically relevant ex vivo model, enabling assessment of key endpoints such as toxicity, transfection efficiency, and immune activation potential of gene delivery systems.
Collapse
Affiliation(s)
- Robin Moolan-Vadackumchery
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Lan Zhang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Frank Stüber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
3
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2025; 33:185-205. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
4
|
Gao R, Hu Y, Yuan Q. ADAMTS12 serves as a novel prognostic biomarker and promotes proliferation and invasion in gastric cancer. Discov Oncol 2024; 15:837. [PMID: 39720953 DOI: 10.1007/s12672-024-01724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) remains a prevalent and aggressive malignancy with a poor prognosis. This study aimed to identify diagnostic and prognostic biomarkers while exploring their potential functions in GC. A total of 598 upregulated and 506 downregulated genes were identified in GC patients. Among these, survival-related differentially expressed genes (DEGs), including ADAMTS12, F5, and VCAN, were highlighted. Pan-cancer analyses revealed their dysregulation across multiple tumor types. A novel prognostic signature, incorporating ADAMTS12 and F5, effectively stratified GC patients into low- and high-risk groups, demonstrating significant differences in overall survival and robust predictive performance. ADAMTS12, strongly associated with advanced clinical stages and poor prognosis, was validated in an independent cohort and exhibited promising diagnostic potential. RT-PCR and western blot analyses confirmed its high expression in GC tissues and cell lines. Functional assays further demonstrated that ADAMTS12 promotes GC cell proliferation and invasion. In summary, this study provides critical insights into the molecular landscape of GC, offering a potential prognostic tool and therapeutic target.
Collapse
Affiliation(s)
- Ruimei Gao
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Yalan Hu
- Department of Anorectal Surgery, Qingdao Eighth People's Hospital, Qingdao, China
| | - Qiuxiang Yuan
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China.
| |
Collapse
|
5
|
Liu Y, Huang Y, He G, Guo C, Dong J, Wu L. Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects. Int J Mol Sci 2024; 25:10166. [PMID: 39337651 PMCID: PMC11432440 DOI: 10.3390/ijms251810166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as leading non-viral carriers for messenger RNA (mRNA) delivery in clinical applications. Overcoming challenges in safe and effective mRNA delivery to target tissues and cells, along with controlling release from the delivery vehicle, remains pivotal in mRNA-based therapies. This review elucidates the structure of LNPs, the mechanism for mRNA delivery, and the targeted delivery of LNPs to various cells and tissues, including leukocytes, T-cells, dendritic cells, Kupffer cells, hepatic endothelial cells, and hepatic and extrahepatic tissues. Here, we discuss the applications of mRNA-LNP vaccines for the prevention of infectious diseases and for the treatment of cancer and various genetic diseases. Although challenges remain in terms of delivery efficiency, specific tissue targeting, toxicity, and storage stability, mRNA-LNP technology holds extensive potential for the treatment of diseases.
Collapse
Affiliation(s)
- Yaping Liu
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Huang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guantao He
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Guo
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
6
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
7
|
Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403:1192-1204. [PMID: 38461842 DOI: 10.1016/s0140-6736(23)02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Coschi CH, Juergens RA. Overcoming Resistance Mechanisms to Immune Checkpoint Inhibitors: Leveraging the Anti-Tumor Immune Response. Curr Oncol 2023; 31:1-23. [PMID: 38275827 PMCID: PMC10814017 DOI: 10.3390/curroncol31010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
As far back as 3000 years ago, the immune system was observed to play a role in mediating tumor regression. Since then, many strategies have been developed to leverage the anti-tumor immune response. However, while many patients respond to ICIs up front some do not, and many of those that do eventually experience tumor progression. Currently, there are several predictive biomarkers of the immune checkpoint inhibitor response; however, no one test appears to be universally predictive and their application varies by disease site. There are many ways in which cancer cells develop primary or acquired resistance to immune checkpoint inhibitors. Efforts to reverse resistance include ways to combat T cell exhaustion, reprogram the tumor microenvironment, increase the availability of tumor neo-antigens, target alternative immune checkpoints, restore a normal/healthy patient gut microbiome, oncolytic viruses and tumor vaccines. The most studied and most promising methods include combining ICIs with therapies targeting alternative immune checkpoints and restoring a normal/healthy patient gut microbiome. This review will discuss T cell-mediated immunity, how this is leveraged by modern immunotherapy to treat cancer and mechanisms of immune checkpoint inhibitor resistance, while highlighting strategies to overcome primary and secondary resistance mechanisms.
Collapse
Affiliation(s)
- Courtney H. Coschi
- Department of Oncology, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - Rosalyn A. Juergens
- Department of Oncology, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
- Escarpment Cancer Research Institute, McMaster University, Hamilton, ON L8V 5C2, Canada
| |
Collapse
|
9
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol 2023; 20:739-754. [PMID: 37587254 DOI: 10.1038/s41571-023-00811-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Harnessing mRNA-lipid nanoparticles (LNPs) to treat patients with cancer has been an ongoing research area that started before these versatile nanoparticles were successfully used as COVID-19 vaccines. Currently, efforts are underway to harness this platform for oncology therapeutics, mainly focusing on cancer vaccines targeting multiple neoantigens or direct intratumoural injections of mRNA-LNPs encoding pro-inflammatory cytokines. In this Review, we describe the opportunities of using mRNA-LNPs in oncology applications and discuss the challenges for successfully translating the findings of preclinical studies of these nanoparticles into the clinic. We critically appraise the potential of various mRNA-LNP targeting and delivery strategies, considering physiological, technological and manufacturing challenges. We explore these approaches in the context of the potential clinical applications best suited to each approach and highlight the obstacles that currently need to be addressed to achieve these applications. Finally, we provide insights from preclinical and clinical studies that are leading to this powerful platform being considered the next frontier in oncology treatment.
Collapse
Affiliation(s)
- Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Nitay Ad-El
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA-based therapeutics: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10492. [PMID: 37206219 PMCID: PMC10189457 DOI: 10.1002/btm2.10492] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA (mRNA) holds great potential in developing immunotherapy, protein replacement, and genome editing. In general, mRNA does not have the risk of being incorporated into the host genome and does not need to enter the nucleus for transfection, and it can be expressed even in nondividing cells. Therefore, mRNA-based therapeutics provide a promising strategy for clinical treatment. However, the efficient and safe delivery of mRNA remains a crucial constraint for the clinical application of mRNA therapeutics. Although the stability and tolerability of mRNA can be enhanced by directly retouching the mRNA structure, there is still an urgent need to improve the delivery of mRNA. Recently, significant progress has been made in nanobiotechnology, providing tools for developing mRNA nanocarriers. Nano-drug delivery system is directly used for loading, protecting, and releasing mRNA in the biological microenvironment and can be used to stimulate the translation of mRNA to develop effective intervention strategies. In the present review, we summarized the concept of emerging nanomaterials for mRNA delivery and the latest progress in enhancing the function of mRNA, primarily focusing on the role of exosomes in mRNA delivery. Moreover, we outlined its clinical applications so far. Finally, the key obstacles of mRNA nanocarriers are emphasized, and promising strategies to overcome these obstacles are proposed. Collectively, nano-design materials exert functions for specific mRNA applications, provide new perception for next-generation nanomaterials, and thus revolution of mRNA technology.
Collapse
Affiliation(s)
- De‐feng Li
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Qi‐song Liu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Mei‐feng Yang
- Department of HematologyYantian District People's HospitalShenzhenGuangdongChina
| | - Hao‐ming Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min‐zheng Zhu
- Department of Gastroenterology and Hepatologythe Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Yuan Zhang
- Department of Medical AdministrationHuizhou Institute of Occupational Diseases Control and PreventionHuizhouGuangdongChina
| | - Jing Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Cheng‐mei Tian
- Department of EmergencyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Jun Yao
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Li‐sheng Wang
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yu‐jie Liang
- Department of Child and Adolescent PsychiatryShenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhenChina
- Affiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
| |
Collapse
|
12
|
Yang Z, Li X, Gan X, Wei M, Wang C, Yang G, Zhao Y, Zhu Z, Wang Z. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnology 2023; 21:119. [PMID: 37020301 PMCID: PMC10075167 DOI: 10.1186/s12951-023-01871-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Sustained release of bioactive BMP2 (bone morphogenetic protein-2) is important for bone regeneration, while the intrinsic short half-life of BMP2 at protein level cannot meet the clinical need. In this study, we aimed to design Bmp2 mRNA-enriched engineered exosomes, which were then loaded into specific hydrogel to achieve sustained release for more efficient and safe bone regeneration. RESULTS Bmp2 mRNA was enriched into exosomes by selective inhibition of translation in donor cells, in which NoBody (non-annotated P-body dissociating polypeptide, a protein that inhibits mRNA translation) and modified engineered BMP2 plasmids were co-transfected. The derived exosomes were named ExoBMP2+NoBody. In vitro experiments confirmed that ExoBMP2+NoBody had higher abundance of Bmp2 mRNA and thus stronger osteogenic induction capacity. When loaded into GelMA hydrogel via ally-L-glycine modified CP05 linker, the exosomes could be slowly released and thus ensure prolonged effect of BMP2 when endocytosed by the recipient cells. In the in vivo calvarial defect model, ExoBMP2+NoBody-loaded GelMA displayed great capacity in promoting bone regeneration. CONCLUSIONS Together, the proposed ExoBMP2+NoBody-loaded GelMA can provide an efficient and innovative strategy for bone regeneration.
Collapse
Affiliation(s)
- Zhujun Yang
- Department of Stomatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xuejian Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, Chengdu, China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chunbao Wang
- College of Chemistry and Bio-Engineering, Yichun University, Yichun, 336000, Jiangxi, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| | - Zhuoli Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, Chengdu, China.
| | - Zhongshan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
13
|
Kwon C, Chung AJ. Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering. LAB ON A CHIP 2023; 23:1758-1767. [PMID: 36727443 DOI: 10.1039/d2lc01115h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the past few years, messenger RNA (mRNA) has emerged as a promising therapeutic agent for the treatment and prevention of various diseases. Clinically, mRNA-based drugs have been used for cancer immunotherapy, infectious diseases, and genomic disorders. To maximize the therapeutic efficacy of mRNA, the exact amount of mRNAs must be delivered to the target locations without degradation; however, traditional delivery modalities, such as lipid carriers and electroporation, are suboptimal because of their high cost, cell-type sensitivity, low scalability, transfection/delivery inconsistency, and/or loss of cell functionality. Therefore, new effective and stable delivery methods are required. Accordingly, we present a novel nonlinear microfluidic cell stretching (μ-cell stretcher) platform that leverages viscoelastic fluids, i.e., methylcellulose (MC) solutions, and cell mechanoporation for highly efficient and robust intracellular mRNA delivery. In the proposed platform, cells suspended in MC solutions with mRNAs were injected into a microchannel where they rapidly passed through a single constriction. Owing to the use of viscoelastic MC solutions, a high shear force was applied to the cells, effectively creating transient nanopores. This feature allows mRNAs to be effectively internalized through generated membrane discontinuities. Using this platform, high delivery efficiency (∼97%), high throughput (∼3.5 × 105 cells per min), cell-type-/cargo-size-insensitive delivery, simple operation (single-step), low analyte consumption, low-cost operation (<$1), and nearly clogging-free operation were demonstrated, demonstrating the high potential of the proposed platform for application in mRNA-based cellular engineering research.
Collapse
Affiliation(s)
- Chan Kwon
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
14
|
Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65:108130. [PMID: 36933868 DOI: 10.1016/j.biotechadv.2023.108130] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
15
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
16
|
Yang T, Xia L, Li G, Zhao J, Li J, Ge J, Yuan Q, Zhang J, He K, Xia Q. Novel bionic inspired nanosystem construction for precise delivery of mRNA. Front Bioeng Biotechnol 2023; 11:1160509. [PMID: 36937761 PMCID: PMC10018395 DOI: 10.3389/fbioe.2023.1160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The intracellular delivery of messenger (m)RNA holds great potential for the discovery and development of vaccines and therapeutics. Yet, in many applications, a major obstacle to clinical translation of mRNA therapy is the lack of efficient strategy to precisely deliver RNA sequence to liver tissues and cells. In this study, we synthesized virus-like mesoporous silica (V-SiO2) nanoparticles for effectively deliver the therapeutic RNA. Then, the cationic polymer polyethylenimine (PEI) was included for the further silica surface modification (V-SiO2-P). Negatively charged mRNA motifs were successfully linked on the surface of V-SiO2 through electrostatic interactions with PEI (m@V-SiO2-P). Finally, the supported lipid bilayer (LB) was completely wrapped on the bionic inspired surface of the nanoparticles (m@V-SiO2-P/LB). Importantly, we found that, compared with traditional liposomes with mRNA loading (m@LNPs), the V-SiO2-P/LB bionic-like morphology effectively enhanced mRNA delivery effect to hepatocytes both in vitro and in vivo, and PEI modification concurrently promoted mRNA binding and intracellular lysosomal escape. Furthermore, m@V-SiO2-P increased the blood circulation time (t1/2 = 7 h) to be much longer than that of the m@LNPs (4.2 h). Understanding intracellular delivery mediated by the V-SiO2-P/LB nanosystem will inspire the next-generation of highly efficient and effective mRNA therapies. In addition, the nanosystem can also be applied to the oral cavity, forehead, face and other orthotopic injections.
Collapse
Affiliation(s)
- Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahao Ge
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jianjun Zhang, ; Kang He, ; Qiang Xia,
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jianjun Zhang, ; Kang He, ; Qiang Xia,
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Jianjun Zhang, ; Kang He, ; Qiang Xia,
| |
Collapse
|
17
|
Kommineni N, Butreddy A, Sainaga Jyothi VG, Angsantikul P. Freeze-drying for the preservation of immunoengineering products. iScience 2022; 25:105127. [PMID: 36267916 PMCID: PMC9576584 DOI: 10.1016/j.isci.2022.105127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immunoengineering technologies harness the power of immune system modulators such as monoclonal antibodies, cytokines, and vaccines to treat myriad diseases. Immunoengineering innovations have showed great promise in various practices including oncology, infectious disease, autoimmune diseases, and transplantation. Despite the countless successes, the majority of immunoengineering products contain active moieties that are prone to instability. The current review aims to feature freeze-drying as a robust and scalable solution to the inherent stability challenges in immunoengineering products by preventing the active moiety from degradation. Furthermore, this review describes the stability issues related to immunoengineering products and the utility of the lyophilization process to preserve the integrity and efficacy of immunoengineering tools ranging from biologics to nanoparticle-based vaccines. The concept of the freeze-drying process is described highlighting the quality by design (QbD) for robust process optimization. Case studies of lyophilized immunoengineering technologies and relevant clinical studies using immunoengineering products are discussed.
Collapse
Affiliation(s)
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Vaskuri G.S. Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | | |
Collapse
|
18
|
Duan X, Lo SY, Lee JCY, Wan JMF, Yu ACH. Sonoporation of Immune Cells: Heterogeneous Impact on Lymphocytes, Monocytes and Granulocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1268-1281. [PMID: 35461725 DOI: 10.1016/j.ultrasmedbio.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Microbubble-mediated ultrasound (MB-US) can be used to realize sonoporation and, in turn, facilitate the transfection of leukocytes in the immune system. Nevertheless, the bio-effects that can be induced by MB-US exposure on leukocytes have not been adequately studied, particularly for different leukocyte lineage subsets with distinct cytological characteristics. Here, we describe how that same set of MB-US exposure conditions would induce heterogeneous bio-effects on the three main leukocyte subsets: lymphocytes, monocytes and granulocytes. MB-US exposure was delivered by applying 1-MHz pulsed ultrasound (0.50-MPa peak negative pressure, 10% duty cycle, 30-s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio); sonoporated and non-viable leukocytes were respectively labeled using calcein and propidium iodide. Flow cytometry was then performed to classify leukocytes into their corresponding subsets and to analyze each subset's post-exposure viability, sonoporation rate, uptake characteristics and morphology. Results revealed that, when subjected to MB-US exposure, granulocytes experienced the highest loss of viability (64.0 ± 11.0%) and the lowest sonoporation rate (6.3 ± 2.5%), despite maintaining their size and granularity. In contrast, lymphocytes exhibited the lowest loss of viability (20.9 ± 7.0%), while monocytes had the highest sonoporation rate (24.1 ± 13.6%). For these two sonoporated leukocyte subsets, their cell size and granularity were found to be reduced. Also, they exhibited graded levels of calcein uptake, whereas sonoporated granulocytes achieved only mild calcein uptake. These heterogeneous bio-effects should be accounted for when using MB-US and sonoporation in immunomodulation applications.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada; School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shun Yu Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jetty C Y Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jennifer M F Wan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
19
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Kim HJ, Seo SK, Park HY. Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. J Control Release 2022; 345:405-416. [PMID: 35314261 DOI: 10.1016/j.jconrel.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The successful translation of mRNA vaccines slows down the spread of viral infectious diseases, which may be accomplished by developing novel chemically modified nucleotides (or nucleosides) and highly efficient, safe mRNA delivery vehicles. Delivery vehicles protect vulnerable antigen mRNA and increase the uptake of mRNA into antigen-presenting cells in the peripheral tissue or lymph nodes. This review introduces essential characteristics of mRNA vaccines (e.g., particle sizes, colloidal stability, surface charges/endosomal escape ability, and ligand conjugation) that may be used to generate high immune responses against foreign antigens. The significance and mechanism of each characteristic are described based on the results obtained from in vitro and in vivo studies. We also discuss the development of next generation delivery vehicles for future mRNA vaccines.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Su Kyoung Seo
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
22
|
Chen Z, Hao W, Gao C, Zhou Y, Zhang C, Zhang J, Wang R, Wang Y, Wang S. A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharm Sin B 2022; 12:3367-3382. [PMID: 35967288 PMCID: PMC9366313 DOI: 10.1016/j.apsb.2022.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
With the development of synthesis technology, modified messenger RNA (mRNA) has emerged as a novel category of therapeutic agents for a broad of diseases. However, effective intracellular delivery of mRNA remains challenging, especially for its sensitivity to enzymatic degradation. Here, we propose a polyphenol-assisted handy delivery strategy for efficient in vivo delivery of IL-10 mRNA. IL-10 mRNA binds to polyphenol ellagic acid through supramolecular binding to yield a negatively charged core, followed by complexing with linear polyetherimide and coating with bilirubin-modified hyaluronic acid to obtain a layer-by-layer nanostructure. The nanostructure specifically up-regulated the level of IL-10, effectively inhibited the expression of inflammatory factors, promoted mucosal repair, protected colonic epithelial cells against apoptosis, and exerted potent therapeutic efficacy in dextran sulfate sodium salt-induced acute and chronic murine models of colitis. The designed delivery system without systemic toxicity has the potential to facilitate the development of a promising platform for mRNA delivery in ulcerative colitis treatment.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
- Corresponding authors. Tel./fax: +853 88228559 (Shengpeng Wang), +853 88224691 (Yitao Wang).
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
- Corresponding authors. Tel./fax: +853 88228559 (Shengpeng Wang), +853 88224691 (Yitao Wang).
| |
Collapse
|
23
|
Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022; 345:494-511. [PMID: 35337940 PMCID: PMC8942439 DOI: 10.1016/j.jconrel.2022.03.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022]
Abstract
Abnormal immune cell functions are commonly related to various diseases, including cancer, autoimmune diseases, and infectious diseases. Messenger RNA (mRNA)-based therapy can regulate the functions of immune cells or assign new functions to immune cells, thereby generating therapeutic immune responses to treat these diseases. However, mRNA is unstable in physiological environments and can hardly enter the cytoplasm of target cells; thus, effective mRNA delivery systems are critical for developing mRNA therapy. The two mRNA vaccines of Pfizer-BioNTech and Moderna have demonstrated that lipid nanoparticles (LNPs) can deliver mRNA into dendritic cells (DCs) to induce immunization against severe acute respiratory syndrome coronavirus 2, which opened the floodgates to the development of mRNA therapy. Apart from DCs, other immune cells are promising targets for mRNA therapy. This review summarized the barriers to mRNA delivery and advances in mRNA delivery for regulating the functions of different immune cells.
Collapse
Affiliation(s)
- Jia Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Meng-Wen Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Xiao-Jiao Du
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
24
|
Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc Natl Acad Sci U S A 2022; 119:2112696119. [PMID: 35131941 PMCID: PMC8851555 DOI: 10.1073/pnas.2112696119] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
This study provides proof-of-principle evidence for intravesical delivery of messenger RNA (mRNA) via a mucoadhesive nanoparticle (NP) strategy and reveals the therapeutic potential of KDM6A in treating bladder cancer metastasis, which remains difficult due to the physiological bladder barriers. The mucoadhesive NPs could protect loaded mRNA, prolong exposure of mRNA in disease sites, and benefit the penetration and effective expression, which all represent challenging hurdles for intravesical delivery of mRNA therapeutics. mRNA local delivery can also avoid potential toxicity issues via systemic delivery and unwanted protein expression throughout the body. We expect this mucoadhesive mRNA nanotechnology can be useful for the effective up-regulation of targeted proteins in bladder tissues in situ for both mechanistic understanding and translational study of bladder-related diseases. Lysine-specific demethylase 6A (KDM6A), also named UTX, is frequently mutated in bladder cancer (BCa). Although known as a tumor suppressor, KDM6A’s therapeutic potential in the metastasis of BCa remains elusive. It also remains difficult to fulfill the effective up-regulation of KDM6A levels in bladder tumor tissues in situ to verify its potential in treating BCa metastasis. Here, we report a mucoadhesive messenger RNA (mRNA) nanoparticle (NP) strategy for the intravesical delivery of KDM6A-mRNA in mice bearing orthotopic Kdm6a-null BCa and show evidence of KDM6A’s therapeutic potential in inhibiting the metastasis of BCa. Through this mucoadhesive mRNA NP strategy, the exposure of KDM6A-mRNA to the in situ BCa tumors can be greatly prolonged for effective expression, and the penetration can be also enhanced by adhering to the bladder for sustained delivery. This mRNA NP strategy is also demonstrated to be effective for combination cancer therapy with other clinically approved drugs (e.g., elemene), which could further enhance therapeutic outcomes. Our findings not only report intravesical delivery of mRNA via a mucoadhesive mRNA NP strategy but also provide the proof-of-concept for the usefulness of these mRNA NPs as tools in both mechanistic understanding and translational study of bladder-related diseases.
Collapse
|
25
|
Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021; 13:2090. [PMID: 34959371 PMCID: PMC8707022 DOI: 10.3390/pharmaceutics13122090] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
The perspective of using messenger RNA (mRNA) as a therapeutic molecule first faced some uncertainties due to concerns about its instability and the feasibility of large-scale production. Today, given technological advances and deeper biomolecular knowledge, these issues have started to be addressed and some strategies are being exploited to overcome the limitations. Thus, the potential of mRNA has become increasingly recognized for the development of new innovative therapeutics, envisioning its application in immunotherapy, regenerative medicine, vaccination, and gene editing. Nonetheless, to fully potentiate mRNA therapeutic application, its efficient production, stabilization and delivery into the target cells are required. In recent years, intensive research has been carried out in this field in order to bring new and effective solutions towards the stabilization and delivery of mRNA. Presently, the therapeutic potential of mRNA is undoubtedly recognized, which was greatly reinforced by the results achieved in the battle against the COVID-19 pandemic, but there are still some issues that need to be improved, which are critically discussed in this review.
Collapse
Affiliation(s)
- Bruno Baptista
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Nabila Laroui
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Chantal Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| |
Collapse
|
26
|
Hassanzadeh P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci 2021; 274:119289. [PMID: 33676931 PMCID: PMC7930743 DOI: 10.1016/j.lfs.2021.119289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 outbreak can impose serious negative impacts on the infrastructures of societies including the healthcare systems. Despite the increasing research efforts, false positive or negative results that may be associated with serologic or even RT-PCR tests, inappropriate or variable immune response, and high rates of mutations in coronavirus may negatively affect virus detection process and effectiveness of the vaccines or drugs in development. Nanotechnology-based research attempts via developing state-of-the-art techniques such as nanomechatronics ones and advanced materials including the sensors for detecting the pathogen loads at very low concentrations or site-specific delivery of therapeutics, and real-time protections against the pandemic outbreaks by nanorobots can provide outstanding biomedical breakthroughs. Considering the unique characteristics of pathogens particularly the newly-emerged ones and avoiding the exaggerated optimism or simplistic views on the prophylactic and therapeutic approaches including the one-size-fits-all ones or presenting multiple medications that may be associated with synergistic toxicities rather than enhanced efficiencies might pave the way towards the development of more appropriate treatment strategies with reduced safety concerns. This paper highlights the significance of nanoplatforms against the viral disorders and their capabilities of genome editing that may facilitate taking more appropriate measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
27
|
Igyártó BZ, Jacobsen S, Ndeupen S. Future considerations for the mRNA-lipid nanoparticle vaccine platform. Curr Opin Virol 2021; 48:65-72. [PMID: 33906124 PMCID: PMC8065267 DOI: 10.1016/j.coviro.2021.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022]
Abstract
Vaccines based on mRNA-containing lipid nanoparticles (LNPs) pioneered by Katalin Karikó and Drew Weissman at the University of Pennsylvania are a promising new vaccine platform used by two of the leading vaccines against coronavirus disease in 2019 (COVID-19). However, there are many questions regarding their mechanism of action in humans that remain unanswered. Here we consider the immunological features of LNP components and off-target effects of the mRNA, both of which could increase the risk of side effects. We suggest ways to mitigate these potential risks by harnessing dendritic cell (DC) biology.
Collapse
Affiliation(s)
- Botond Z Igyártó
- Thomas Jefferson University, Department of Microbiology and Immunology, 233 South 10th Street, Philadelphia, PA 19107, United States.
| | - Sonya Jacobsen
- Thomas Jefferson University, Department of Microbiology and Immunology, 233 South 10th Street, Philadelphia, PA 19107, United States
| | - Sonia Ndeupen
- Thomas Jefferson University, Department of Microbiology and Immunology, 233 South 10th Street, Philadelphia, PA 19107, United States
| |
Collapse
|
28
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
29
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chin Med J (Engl) 2020; 133:2444-2455. [PMID: 32969861 PMCID: PMC7575183 DOI: 10.1097/cm9.0000000000001124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, the research of immune checkpoint inhibitors has made a great breakthrough in lung cancer treatment. Currently, a variety of immune checkpoint inhibitors have been applied into clinical practice, including antibodies targeting the programmed cell death-1, programmed cell death-ligand 1, and cytotoxic T-lymphocyte antigen 4, and so on. However, not all patients can benefit from the treatment. Abnormal antigen presentation, functional gene mutation, tumor microenvironment, and other factors can lead to primary or secondary resistance. In this paper, we reviewed the molecular mechanism of immune checkpoint inhibitor resistance and various combination strategies to overcome resistance, in order to expand the beneficial population and enable precision medicine.
Collapse
|
31
|
Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, Van Hoecke L, Verbeke R, Van Hoeck J, Xiong R, Saelens X, Vandekerckhove B, De Smedt S, Raemdonck K, Braeckmans K. Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. NANO-MICRO LETTERS 2020; 12:185. [PMID: 34138203 PMCID: PMC7770675 DOI: 10.1007/s40820-020-00523-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/22/2020] [Indexed: 05/23/2023]
Abstract
Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Glenn Goetgeluk
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stijn De Munter
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Lien Van Hoecke
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Affiliation(s)
- Yue Wang
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
| | - Chengzhong Yu
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
- Fakultät für Chemie und Molekulartechnik Pädagogische Universität Ostchina Shanghai 200241 P. R. China
| |
Collapse
|
33
|
Xu S, Yang K, Li R, Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int J Mol Sci 2020; 21:E6582. [PMID: 32916818 PMCID: PMC7554980 DOI: 10.3390/ijms21186582] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Messenger ribonucleic acid (mRNA)-based drugs, notably mRNA vaccines, have been widely proven as a promising treatment strategy in immune therapeutics. The extraordinary advantages associated with mRNA vaccines, including their high efficacy, a relatively low severity of side effects, and low attainment costs, have enabled them to become prevalent in pre-clinical and clinical trials against various infectious diseases and cancers. Recent technological advancements have alleviated some issues that hinder mRNA vaccine development, such as low efficiency that exist in both gene translation and in vivo deliveries. mRNA immunogenicity can also be greatly adjusted as a result of upgraded technologies. In this review, we have summarized details regarding the optimization of mRNA vaccines, and the underlying biological mechanisms of this form of vaccines. Applications of mRNA vaccines in some infectious diseases and cancers are introduced. It also includes our prospections for mRNA vaccine applications in diseases caused by bacterial pathogens, such as tuberculosis. At the same time, some suggestions for future mRNA vaccine development about storage methods, safety concerns, and personalized vaccine synthesis can be found in the context.
Collapse
Affiliation(s)
- Shuqin Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
| | - Kunpeng Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
| | - Rose Li
- M.B.B.S., School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
34
|
Wang Y, Yu C. Emerging Concepts of Nanobiotechnology in mRNA Delivery. Angew Chem Int Ed Engl 2020; 59:23374-23385. [PMID: 32400110 DOI: 10.1002/anie.202003545] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Indexed: 12/27/2022]
Abstract
Introducing mRNA into cells has attracted intense interest for diverse applications; however, success requires delivery solutions. Engineered nanomaterials have been applied as mRNA nanocarriers; their functions are designed mainly as delivery vehicles, but rarely in regulation of the protein translation. Recently, progress in nanobiotechnology has shifted the design principle of mRNA nanocarriers from simple delivery tools to translation modulators. Here, we review the emerging concepts of nanomaterials regulating mRNA translation and recent progress in mRNA delivery. Designer nanomaterials providing integrated functions for specific mRNA applications are also reviewed to provide insights for the design of next-generation nanomaterials to revolutionize mRNA technology.
Collapse
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
35
|
Lei S, Zhang X, Men K, Gao Y, Yang X, Wu S, Duan X, Wei Y, Tong R. Efficient Colorectal Cancer Gene Therapy with IL-15 mRNA Nanoformulation. Mol Pharm 2020; 17:3378-3391. [PMID: 32787272 DOI: 10.1021/acs.molpharmaceut.0c00451] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunogene therapy is a novel method for the treatment of colorectal cancer. Cytokine IL-15 has exhibited therapeutic anticancer potential due to its immune-stimulation property. However, conventional IL-15-based cancer gene therapy studies have been performed using the plasmid DNA form, which has potential shortcomings including weak delivery efficiency and backbone effect. In this study, an IL-15 immunogene therapy study for colon cancer using in vitro transcript mRNA is described. A protamine/liposome system (CLPP) is developed to provide efficient condensation and delivery capacity for in vivo mRNA transportation. They demonstrated that the prepared CLPP system could deliver the IL-15-encoding mRNA into C26 cells with high efficacy. The secretory expressed IL-15 cytokine by the C26 cells successfully produced lymphocyte stimulation and triggered anticancer cytotoxicity upon cancer cells in vitro. Local or systemic administration of the CLPP/mIL-15 complex exhibited obvious inhibition effects on multiple C26 murine colon cancer models with inhibition rates of up to 70% in the C26 abdominal cavity metastasis tumor model, 55% in the subcutaneous model, and 69% in the pulmonary metastasis model, demonstrating high efficacy and safety. These results successfully demonstrated the high therapeutic potential of the CLPP/mIL-15 complex for colorectal cancer immunogene therapy.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Sisi Wu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| |
Collapse
|
36
|
Lee K, Kim TS, Seo Y, Kim SY, Lee H. Combined hybrid structure of siRNA tailed IVT mRNA (ChriST mRNA) for enhancing DC maturation and subsequent anticancer T cell immunity. J Control Release 2020; 327:225-234. [PMID: 32791078 DOI: 10.1016/j.jconrel.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
RNA therapeutics have received much attention in the development of anti-cancer therapies. Among them, synthetic mRNA (IVT mRNA) was investigated for cancer immunotherapy due to its abilities to express tumor associated antigens with stimulation of immune responses in dendritic cells (DCs). Despite of its great potential, several hurdles were remained such as insufficient immune stimulation and DC maturation. In this study, we aimed to present a novel IVT mRNA that can simultaneously express tumor associated antigens while suppress STAT3 proteins. Combined functions of siRNA and IVT mRNA were investigated and the hybrid structure of siRNA tailed mRNA (ChriST mRNA) was developed. We prepared the ChriST mRNA by employing polyA tail structures with RNAi sequences at the 3' end of mRNA. Complementary strands were annealed to form duplex siRNA structure to induce STAT3 gene silencing. In addition, a hybrid structure of DNA/RNA was introduced into the ChriST mRNA between polyA tail and RNAi sequences. It was expected that DNA/RNA duplex would be readily cleaved by RNase H in the intracellular environment. After the cleavage, ChriST mRNA was fully functionalized in cells and exhibited enhanced tumor specific DC maturation.
Collapse
Affiliation(s)
- Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea.
| | - Tae-Shin Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
37
|
Resveratrol Enhances mRNA and siRNA Lipid Nanoparticles Primary CLL Cell Transfection. Pharmaceutics 2020; 12:pharmaceutics12060520. [PMID: 32517377 PMCID: PMC7355647 DOI: 10.3390/pharmaceutics12060520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western populations. Therapies such as mRNA and siRNA encapsulated in lipid nanoparticles (LNPs) represent a clinically advanced platform and are utilized for a wide variety of applications. Unfortunately, transfection of RNA into CLL cells remains a formidable challenge and a bottleneck for developing targeted therapies for this disease. Therefore, we aimed to elucidate the barriers to efficient transfection of RNA-encapsulated LNPs into primary CLL cells to advance therapies in the future. To this end, we transfected primary CLL patient samples with mRNA and siRNA payloads encapsulated in an FDA-approved LNP formulation and characterized the transfection. Additionally, we tested the potential of repurposing caffeic acid, curcumin and resveratrol to enhance the transfection of nucleic acids into CLL cells. The results demonstrate that the rapid uptake of LNPs is required for successful transfection. Furthermore, we demonstrate that resveratrol enhances the delivery of both mRNA and siRNA encapsulated in LNPs into primary CLL patient samples, overcoming inter-patient heterogeneity. This study points out the important challenges to consider for efficient RNA therapeutics for CLL patients and advocates the use of resveratrol in combination with RNA lipid nanoparticles to enhance delivery into CLL cells.
Collapse
|
38
|
Zhao P, Hou X, Yan J, Du S, Xue Y, Li W, Xiang G, Dong Y. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater 2020; 5:358-363. [PMID: 32206737 PMCID: PMC7078456 DOI: 10.1016/j.bioactmat.2020.03.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid-like nanoparticles (LLNs) have been extensively explored for messenger RNA (mRNA) delivery in various biomedical applications. However, the long-term storage of these nanoparticles is still a challenge for their clinical translation. In this study, we investigated a series of conditions for the long-term storage of LLNs with encapsulation of mRNA. We evaluated the stability of LLNs with different concentrations of cryoprotectants (sucrose, trehalose or mannitol) under the conditions of freezing or lyophilization processes. Through in vitro and in vivo mRNA delivery studies, we identified the optimal storage condition, and found that the addition with 5% (w/v) sucrose or trehalose to LLNs could remain their mRNA delivery efficiency for at least three months in the liquid nitrogen storage condition.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Wenqing Li
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, United States
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, United States
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, 43210, United States
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
39
|
Veiga N, Diesendruck Y, Peer D. Targeted lipid nanoparticles for RNA therapeutics and immunomodulation in leukocytes. Adv Drug Deliv Rev 2020; 159:364-376. [PMID: 32298783 DOI: 10.1016/j.addr.2020.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Abnormalities in leukocytes' function are associated with many immune related disorders, such as cancer, autoimmunity and susceptibility to infectious diseases. Recent developments in Genome-wide-association-studies give rise to new opportunities for novel therapeutics. RNA-based modalities, that allow a selective genetic manipulation in vivo, are powerful tools for personalized medicine, enabling downregulation or expression of relevant proteins. Yet, RNA-based therapeutics requires a delivery modality to facilitate the stability, uptake and intracellular release of the RNA molecules. The use of lipid nanoparticles as a drug delivery approach improves the payloads' stability, pharmacokinetics, bio-distribution and therapeutic benefit while reducing side effects. Moreover, a wide variety of targeting moieties allow a precise and modular manipulation of gene expression, together with the ability to identify and selectively affect disease-relevant leukocytes-subsets. Altogether, RNA-based therapeutics, targeting leukocytes subsets, is believed to be one of the most promising therapeutic concepts of the near future, addressing pressing issues in cancer and inflammation heterogeneity.
Collapse
|
40
|
Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. CRYSTALS 2019. [DOI: 10.3390/cryst9080411] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modification of CD4+ T cells with exogenous nucleic acids or proteins is a critical step in several research and therapeutic applications, such as HIV studies and cancer immunotherapies. However, efficient cell transfections are not always easily achieved when working with these primary hard-to-transfect cells. While the modification of T cells is typically performed by viral transduction or electroporation, their use is associated with safety issues or cytotoxicity. Vapor nanobubble (VNB) photoporation with sensitizing gold nanoparticles (AuNPs) has recently emerged as a new technology for safe and flexible cell transfections. In this work, we evaluated the potential of VNB photoporation as a novel technique for the intracellular delivery of macromolecules in primary human CD4+ T cells using fluorescent dextrans as model molecules. Our results show that VNB photoporation enables efficient delivery of fluorescent dextrans of 10 kDa in Jurkat (>60% FD10+ cells) as well as in primary human CD4+ T cells (±40% FD10+ cells), with limited cell toxicity (>70% cell viability). We also demonstrated that the technique allows the delivery of dextrans that are up to 500 kDa in Jurkat cells, suggesting its applicability for the delivery of biological macromolecules with a wide range of molecular weights. Altogether, VNB photoporation represents a promising technique for the universal delivery of macromolecules in view of engineering CD4+ T cells for use in a wide variety of research and therapeutic applications.
Collapse
|
41
|
Kon E, Benhar I. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success. Drug Resist Updat 2019; 45:13-29. [DOI: 10.1016/j.drup.2019.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
|