1
|
Celem E, Tarakci Z. Investigation of the use of fruit pomace and glycerol in the encapsulation of Lactobacillus acidophilus (THT 030101) in pullulan-based electrospun nanofibers. Carbohydr Polym 2025; 356:123341. [PMID: 40049941 DOI: 10.1016/j.carbpol.2025.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
Pomace, which contains valuable components such as dietary fiber, is the most important by-product of the fruit juice industry. Since orange and kiwi are the most widely cultivated fruits globally and in our region, respectively, this study aimed to utilise soluble dietary fiber-rich aqueous extracts of the pomace of these fruits (OWE and KWE, respectively) for nano-encapsulation of Lactobacillus acidophilus cells in electrospun pullulan nanofibers. Additionally, the objective was to encapsulate glycerol, a cryoprotectant, in conjunction with the cells. It was found that the viscosity of the pullulan polymer solution decreased significantly and the conductivity increased significantly with the addition of KWE/OWE, and therefore the diameters of the nanofibers formed were significantly smaller (81-170 nm, P < 0.05). The study found that the survival rates of L. acidophilus cells were significantly higher (97 % and 93.78 %, respectively; P < 0.05) in the encapsulation using KWE/OWE in combination with pullulan. However, the addition of glycerol had no significant effect on cell viability. In conclusion, it has been determined that OWE and KWE have positive effects on the production of pullulan-based nanofibers and the encapsulation of L. acidophilus cells by electrospinning technique; that the L. acidophilus and glycerol can be encapsulated together in electrospun nanofibers.
Collapse
Affiliation(s)
- Ersin Celem
- Food Technology, Department of Food Processing, Ulubey Vocational College, Ordu University, Ulubey, Ordu 52850, Turkey.
| | - Zekai Tarakci
- Department of Food Engineering, Faculty of Agriculture, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
2
|
Wang L, Sun Y, Li S, Wang K, Liu Y, Cai R, Yue T, Yuan Y, Wang J, Wang Z. Encapsulation of Enterococcus faecium in hyaluronic acid/gelatin/sodium alginate/protamine improves cell viability and stability. Int J Biol Macromol 2025; 309:142948. [PMID: 40210037 DOI: 10.1016/j.ijbiomac.2025.142948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Probiotics offer significant health benefits, but their survival is often compromised by harsh conditions during food processing. The primary objective of this study was to enhance the viability and stability of Enterococcus faecium 20,420 (Ef-20,420) through physical extrusion and complex coacervation in a composite of hyaluronic acid (HA), gelatin (GL), sodium alginate (SA), and protamine sulfate (PS). The cell viability of Ef-20,420 before and after encapsulation was 8.51 ± 0.09 log CFU/mL and 8.36 ± 0.07 log CFU/mL, respectively, which remained generally stable. The final product can be stored at 4 °C for up to 12 months. The composite microcapsules were determined to be formed by hydrogen bond and electrostatic interaction through different characterization methods. After exposure to SGF, the composite microcapsules showed a viable cell count reduction of only 1.37 ± 0.13 log CFU/mL. With the addition of PS, the sustained release time of the bacteria in SIF was extended by 60 min. Following high-temperature treatment at 80 ± 0.5 °C for 3 min, the protective effect of the composite microcapsules maintaining a viable cell count at 6.58 ± 0.19 log CFU/mL. After 25 days of storage at 4 ± 0.2 °C, the bacterial count in the composite microcapsules decreased from 8.50 ± 0.04 to 7.10 ± 0.12 log CFU/mL. Additionally, the composite microcapsules increased the transmembrane resistance of Caco-2 cells. Therefore, these findings offered new insights for the development of functional probiotic foods.
Collapse
Affiliation(s)
- Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yuqing Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yue Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junjun Wang
- Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Wang X, Lv W, Zhai C, Gao Y, Chu C, Chen J, Yue Y, Li B. Preparation and characterization of multilayered microcapsules of Lactobacillus rhamnosus encapsulated with sodium alginate, hyaluronic acid and carrageenan and their protective effects on the retina. Int J Biol Macromol 2025; 305:141104. [PMID: 39956226 DOI: 10.1016/j.ijbiomac.2025.141104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
To improve the activity of probiotics during oral delivery and to investigate the protective effects on the retina. In this study, multilayer microcapsules encapsulating Lactobacillus rhamnosus YBT20 (YBT20) were prepared using sodium alginate, carrageenan and hyaluronic acid. Then it was characterized by determining the encapsulation rate, particle size distribution and zeta potential, and the results showed that the encapsulation rate of YBT20 by microcapsules was 68.51 % ~ 93.73 %, and the particle size distribution was between 100 and 1000 nm. Meanwhile, the storage stability and antioxidant properties of YBT20 were increased by 38.09 % and 37.01 %, respectively. Furthermore, the in vitro digestion simulation showed that the microcapsules could effectively improve the cell viability of YBT20 in saliva, gastric juice and intestinal juice, and the maximum release rate of YBT20 was 82.0 %. Lastly, the protective effect of microcapsule preparation on retinal damage induced by high-fat diet and blue light was evaluated in SD female rats. The results showed that microcapsule preparation can improve the oxidative damage of retinal pigment epithelium (RPE) in rats, and inhibit IL-6, IL-8, IL-1β and TNF-α. This study provides valuable theoretical information for effective delivery of probiotics and retinal protection.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Wenqing Lv
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Chunyi Zhai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yiting Gao
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Changzhen Chu
- Heilongjiang Ubayt dairy group co., LTD, Harbin 150030, China
| | - Jing Chen
- Heilongjiang Ubayt dairy group co., LTD, Harbin 150030, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Zhong H, Jiang J, Hussain M, Zhang H, Chen L, Guan R. The Encapsulation Strategies for Targeted Delivery of Probiotics in Preventing and Treating Colorectal Cancer: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500304. [PMID: 40192333 PMCID: PMC12079478 DOI: 10.1002/advs.202500304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Indexed: 05/16/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. It is associated with imbalanced gut microbiota. Probiotics can help restore this balance, potentially reducing the risk of CRC. However, the hostile environment and constant changes in the gastrointestinal tract pose significant challenges to the efficient delivery of probiotics to the colon. Traditional delivery methods are often insufficient due to their low viability and lack of targeting. To address these challenges, researchers are increasingly focusing on innovative encapsulation technologies. One such approach is single-cell encapsulation, which involves applying nanocoatings to individual probiotic cells. This technique can improve their resistance to the harsh gastrointestinal environment, enhance mucosal adhesion, and facilitate targeted release, thereby increasing the effectiveness of probiotic delivery. This article reviews the latest developments in probiotic encapsulation methods for targeted CRC treatment, emphasizing the potential benefits of emerging single-cell encapsulation techniques. It also analyzes and compares the advantages and disadvantages of current encapsulation technologies. Furthermore, it elucidates the underlying mechanisms through which probiotics can prevent and treat CRC, evaluates the efficacy and safety of probiotics in CRC treatment and adjuvant therapy, and discusses future directions and potential challenges in the targeted delivery of probiotics for CRC treatment and prevention.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Jin Jiang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Muhammad Hussain
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
- Moganshan Institute ZJUTKangqianDeqing313200China
| | - Haoxuan Zhang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Ling Chen
- Sanya Branch of Hainan Academy of Inspection and TestingSan Ya572011China
| | - Rongfa Guan
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
- Moganshan Institute ZJUTKangqianDeqing313200China
| |
Collapse
|
5
|
Yang T, Li H, Yu R, Yu X, Li Y, Duan Z, Yang J, Tao G, Huang A, Shi Y. Lactoferrin-alginate-pectin composite hydrogel: Enhancing Lactobacillus plantarum B072 survival, density and biofilm formation. Int J Biol Macromol 2025; 308:141983. [PMID: 40081688 DOI: 10.1016/j.ijbiomac.2025.141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This research established a novel ternary composite hydrogel matrix composed of lactoferrin (Lf), sodium alginate (SA), and high ester pectin (HEP) for encapsulation Lactobacillus plantarum B072. The synergy of these components creates a robust, stable, and protective environment for the encapsulation of L. plantarum B072. The hydrogel beads exhibited high a encapsulation efficiency of 76.43 %, excellent mechanical strength, and thermal stability, while promoting biofilm formation, significantly increasing bacterial density to 9.57 log CFU/mL, and enhancing acid resistance, thereby providing an effective physical barrier against gastrointestinal stress. Hydrogen bonds and electrostatic repulsion play a critical role in maintaining the compact structure of the hydrogel, while hydrogen bonds and hydrophobic interactions further enhance its structural stability. Molecular docking analysis demonstrated that Lf-SA forms stable complexes with HEP by binding to specific active sites, including LEU-708, GLY-342, ARG-268, LEU-266, ARG-361, ASN-349, LEU-404, MET-622, and PRO-153. In simulated gastrointestinal digestion, the encapsulated L. plantarum B072 achieved a survival of 7.42 log CFU/mL, outperforming free bacteria. This work provides a new strategy for the development of probiotic delivery systems and the improvement of product stability.
Collapse
Affiliation(s)
- Tingting Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; Yunnan College of Modern Coffee Industry, Kunming 650201, Yunnan, China
| | - Rongxian Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaoyan Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yi Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zuyan Duan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiarui Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guanhua Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
6
|
Chen M, Bie L. Intratumoral microbiota for hepatocellular carcinoma: from preclinical mechanisms to clinical cancer treatment. Cancer Cell Int 2025; 25:152. [PMID: 40247312 PMCID: PMC12007317 DOI: 10.1186/s12935-025-03745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Intratumoral microbiota has been found to be a crucial component of hepatocellular carcinoma (HCC). Due to insufficient recognition, technical limitations, and low biomass of intratumoral microbiota, it is poorly understood. Intratumoral microbiota exhibit significant diversity in HCC tissues. It is involved in the development of HCC through several mechanisms, such as remodeling the immunosuppressive microenvironment, metabolic reprogramming, and genetic alterations. Moreover, intratumoral microbiota is associated with the metastasis of HCC cells. Herein, we reviewed the history of intratumoral microbiota, applied biotechnology to depict the signatures of intratumoral microbiota, investigated the potential sources of intratumoral microbiota, and assessed their functions, mechanisms, and heterogeneity. Furthermore, in this review, we summarized the development of therapeutics that can be used in the treatment of HCC and proposed future perspectives for research in this field.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Wuhan, 430030, Hubei, China
| |
Collapse
|
7
|
Liu X, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Bacterial viability retention in probiotic foods: a review. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 40215221 DOI: 10.1080/10408398.2025.2488228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Probiotics offer substantial health benefits, leading to their increased consumption in various food products. The viability of probiotics is a critical factor that influences the nutritional and therapeutic efficacy of these foods. However, as probiotics often lose viability during production and oral administration, effective preservation and encapsulation technologies are needed to overcome this challenge. This review elucidates the diverse sources and incorporation strategies of probiotics, while systematically analyzing the effects of water transformation (ice front velocity, glass transition temperature, and collapse temperature), processing conditions (food matrix, temperature, and dissolved oxygen), and gastrointestinal challenges (gastric fluid, digestive enzymes, and bile salts) on probiotic viability. Effective strategies to strengthen probiotic viability encompass three primary domains: fermentation processes, production techniques, and encapsulation methods. Specifically, these include meticulous fermentation control (nitrogen sources, lipids, and carbon sources), pre-stress treatments (pre-cooling, heat shock, NaCl stress, and acid stress), optimized lyoprotectant selection (carbohydrates, proteins, and polyols), synergistic freeze-drying technologies (infrared technology, spray drying, and microwave), bulk encapsulation approaches (polysaccharide or protein-based microencapsulation), and single-cell encapsulation methods (self-assembly and surface functionalization). Despite these advancements, targeting specific probiotics and food matrices remains challenging, necessitating further research to enhance probiotic viability.
Collapse
Affiliation(s)
- Xuewu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Dikbaş N, Orman YC, Uçar S, Alım Ş. Investigation of Probiotic Properties of Lacticaseibacillus casei 4 N-6 Strain Isolated From Cow Milk. Food Sci Nutr 2025; 13:e70205. [PMID: 40291923 PMCID: PMC12021581 DOI: 10.1002/fsn3.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
The aim of the present study was to characterize the probiotic potential of Lacticaseibacillus casei 4 N-6 strain isolated from cow's milk. For this purpose, acid, bile salt, pancreatin, pepsin, phenol, and lysozyme tolerance, co-aggregation and auto-aggregation properties, phytase production, antibiotic resistance, and antibacterial properties were analyzed in vitro. The strain had relatively poor acid, bile salt, and pepsin tolerance. However, the strain showed a high pancreatin, lysozyme, and phenol tolerance. In addition, it exhibited moderate co-aggregation with E. coli and good autoaggregation. Furthermore, the cell-free supernatant of Lb. casei 4 N-6 showed a high antimicrobial activity against Bacillus cereus (N32), Salmonella enteritidis (RK-485), and Enterococcus faecalis (RK-487). 4 N-6 was resistant to vancomycin, teicoplanin, gentamicin, and ceflazidime. The 4 N-6 strain did not show hemolytic activity. In addition, this strain was found to be able to produce phytase. All the findings obtained indicate that Lb. casei 4 N-6 is promising as a potential probiotic candidate and has superior properties that can be evaluated as a probiotic in the future. However, further research and in vivo studies are needed to fully understand its mechanism of action and optimize its use as a probiotic.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Yusuf Can Orman
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Sevda Uçar
- Department of Field Crops, Faculty of Agricultural Sciences and TechnologySivas Science and Technology UniversitySivasTurkey
| | - Şeyma Alım
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| |
Collapse
|
9
|
Huang Y, Cai H, Liu H, Wang L, Feng G, Ding Z, Fei Y, Li A, Fang J. Probiotic nanocomposite materials with excellent resistance, inflammatory targeting, and multiple efficacies for enhanced treatment of colitis in mice. J Nanobiotechnology 2025; 23:188. [PMID: 40055678 PMCID: PMC11889847 DOI: 10.1186/s12951-025-03240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
The occurrence of inflammatory bowel disease (IBD) is relevant to impaired intestinal mucosal barrier and disordered gut microbiota, subsequently leading to excessive production of reactive oxygen species (ROS) and elevated levels of inflammatory factors. Traditional therapies focus on inhibiting inflammation, but the vast majority involve non-targeted systemic administration, whose long-term use may result in potential side effects. Oral microbial therapy has exhibited great application prospects currently in IBD treatment; however, its progress has been slowed by issues with deficient bioavailability, poor targeting of colitis, and low therapeutic efficacy. Consequently, it is exceedingly desirable to develop a strategy by which probiotics can be endowed with additional anti-inflammatory and antioxidant properties, as well as enhanced targeting of the inflamed intestine. Herein, we present an innovative therapeutic strategy for encapsulating probiotic Bacillus coagulans spores with rosmarinic acid (RA) and silk fibroin (SF). Probiotics in spore morphology possessed strong gastrointestinal environmental resistance; RA alleviated oxidative damage by scavenging ROS and inhibited inflammatory responses; SF assisted probiotics release and colonize in the inflamed intestine. We demonstrated the therapeutic efficacy of probiotic composite materials in a colitis mouse model, which significantly alleviated a series of colitis symptoms, inhibited inflammatory cytokine storms, restored the balance of the gut microbiota, and downregulated inflammation-related signaling pathways. We are optimistic that the utilization of therapeutic nanocoating to modify probiotics will open up novel avenues for future microbial therapy targeting IBD.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hongting Cai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Huipeng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lixiang Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Zizi Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Aike Li
- Feed Research Institute/Grain Quality & Nutrition Institute, Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2025; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
11
|
Han M, Wang Z, Xie Z, Hou M, Gao Z. Polydopamine-modified sodium alginate hydrogel for microplastics removal: Adsorption performance, characteristics, and kinetics. Int J Biol Macromol 2025; 297:139947. [PMID: 39824429 DOI: 10.1016/j.ijbiomac.2025.139947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated. Results demonstrated that the incorporation of polydopamine reduced the hydrogel's surface zeta potential and increased its adsorption capacity for microplastics. PMSAH5 exhibited the highest removal efficiency, reaching approximately 99.6 %. Additionally, polydopamine-modified sodium alginate hydrogel exhibited higher elasticity and thermal stability. The hydrogel successfully adsorbed microplastics, regardless of their size and surface charge. This adsorption was driven by the combined action of multiple forces, resulting in multilayer adsorption. The unique advantages of polydopamine-mediated multi-molecular interactions present a promising and environmentally friendly approach for effective removal of microplastics in daily drinking water.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zihan Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Ziyue Xie
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Zhang Y, He J, Zeng H, Xu D, Li W, Wang Y. Advances in prebiotic carbohydrate-based targeted delivery: Overcoming gastrointestinal challenges for bioactive ingredients. Food Chem 2025; 466:142210. [PMID: 39615354 DOI: 10.1016/j.foodchem.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Natural bioactive ingredients face challenges in extensive application owing to low oral bioavailability. This can be improved by overcoming gastrointestinal barriers and facilitating targeted release through delivery strategies. This study provides a comprehensive review of targeted delivery systems using prebiotic carbohydrate matrices, focusing on structures, release mechanisms and applications. The bioactive ingredients can be encapsulated into nanohydrogels, nanoparticles, nanoemulsions, micro/nanocapsules and nanofibres to achieve controlled/targeted delivery to predetermined locations via interactions with pH, mucus, microbiome, enzymes and other factors in the colon. In particular, the prebiotic function of carbohydrates is generated by colonic microbiota degradation and fermentation, producing beneficial postbiotics through multiple metabolic pathways. This study provides certain insights into the in-depth development and application of prebiotic carbohydrate-based targeted delivery systems in the fields of food and health.
Collapse
Affiliation(s)
- Yunzhen Zhang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, 8 West Guochuang Road, Hohhot 010110, Inner Mongolia, PR China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Duoxia Xu
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Wenlu Li
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| |
Collapse
|
13
|
Cheng Y, Hu G, Deng L, Zan Y, Chen X. Therapeutic role of gut microbiota in lung injury-related cognitive impairment. Front Nutr 2025; 11:1521214. [PMID: 40017811 PMCID: PMC11867030 DOI: 10.3389/fnut.2024.1521214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
Lung injury can lead to specific neurocognitive dysfunction, and the "triple-hit" phenomenon may be the key theoretical mechanism for the progressive impairment of lung injury-related cognitive impairment. The lung and brain can communicate biologically through immune regulation pathway, hypoxic pathway, neural circuit, mitochondrial dysfunction, and microbial influence, which is called the "lung-brain axis." The gut microbiota is a highly complex community of microorganisms that reside in the gut and communicate with the lung via the "gut-lung axis." The dysregulation of gut microbiota may lead to the migration of pathogenic bacteria to the lung, and directly or indirectly regulate the lung immune response through their metabolites, which may cause or aggravate lung injury. The gut microbiota and the brain interact through the "gut-brain axis." The gut microbiota can influence and regulate cognitive function and behavior of the brain through neural pathway mechanisms, immune regulation pathway and hypothalamic-pituitary-adrenal (HPA) axis regulation. Based on the gut microbiota regulation mechanism of the "gut-lung axis" and "gut-brain axis," combined with the mechanisms of cognitive impairment caused by lung injury, we proposed the "triple-hit" hypothesis. It states that the pathophysiological changes of lung injury trigger a series of events such as immune disorder, inflammatory responses, and microbiota changes, which activate the "lung-gut axis," thus forming a "triple-hit" that leads to the development or deterioration of cognitive impairment. This hypothesis provides a more comprehensive framework for studying and understanding brain dysfunction in the context of lung injury. This review proposes the existence of an interactive tandem network for information exchange among the gut, lung, and brain, referred to as the "gut-lung-brain axis." It further explores the potential mechanism of lung injury-related cognitive impairment caused by multiple interactions of gut microbiota in the "gut-lung-brain axis." We found that there are many numerous pathophysiological factors that influence the interaction within the "gut-lung-brain axis." The impact of gut microbiota on cognitive functions related to lung injury may be mediated through mechanisms such as the "triple-hit" hypothesis, direct translocation of microbes and their metabolites, hypoxic pathway, immune modulation, vagal nerve activity, and the HPA axis regulation, among others. As the research deepens, based on the "triple-hit" hypothesis of lung injury, it is further discovered that gut microbial therapy can significantly change the pathogenesis of the inflammatory process on the "gut-lung-brain axis." It can also relieve lung injury and therapeutically modulate brain function and behavior. This perspective provides a new idea for the follow-up treatment of lung injury-related cognitive impairment caused by dysregulation of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Xia Chen
- Department of Pediatrics, Child and Adolescent Psychiatric Center of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (Army 958th Hospital), Chongqing, China
| |
Collapse
|
14
|
Rui X, Fu K, Wang H, Pan T, Wang W. Formation Mechanisms of Protein Coronas on Food-Related Nanoparticles: Their Impact on Digestive System and Bioactive Compound Delivery. Foods 2025; 14:512. [PMID: 39942105 PMCID: PMC11817056 DOI: 10.3390/foods14030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The rapid development of nanotechnology provides new approaches to manufacturing food-related nanoparticles in various food industries, including food formulation, functional foods, food packaging, and food quality control. Once ingested, nanoparticles will immediately adsorb proteins in the biological fluids, forming a corona around them. Protein coronas alter the properties of nanoparticles, including their toxicity, cellular uptake, and targeting characteristics, by altering the aggregation state. In addition, the conformation and function of proteins and enzymes are also influenced by the formation of protein coronas, affecting the digestion of food products. Since the inevitable application of nanoparticles in food industries and their subsequent digestion, a comprehensive understanding of protein coronas is essential. This systematic review introduces nanoparticles in food and explains the formation of protein coronas, with interactions between proteins and nanoparticles. Furthermore, the potential origin of nanoparticles in food that migrate from packaging materials and their fates in the gastrointestinal tract has been reviewed. Finally, this review explores the possible effects of protein coronas on bioactive compounds, including probiotics and prebiotics. Understanding the formation mechanisms of protein coronas is crucial, as it enables the design of tailored delivery systems to optimize the bioavailability of bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Zhang Q, Yang Y, Chen Y, Ban S, Gu S, Li F, Xue M, Sun J, Li X, Tie S. Optimization of pH-responsive microgel for the co-delivery of Weizmannia coagulans and procyanidins to enhance survival rate and tolerance. Food Chem 2025; 464:141691. [PMID: 39442217 DOI: 10.1016/j.foodchem.2024.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The purpose of this study was to prepare a pH-responsive microgel for co-delivering Weizmannia coagulans 99 (BC99) and procyanidins (PCs) to enhance the survival rate and tolerance of probiotics in complex micro-environment. The effects of different concentrations of PCs on the properties of microgels were optimized, and found that the spherical microgels had higher encapsulation efficiency (90.27 ± 2.51%) and smaller size when the concentration of PCs was 20 μg/mL. The interaction among PCs, pectin and protein could effectively improve the survival rate of BC99 under different pH, bile salt, digestive enzyme and temperature conditions, maintain their stability in acidic gastric fluid, and realize the release of probiotics in neutral intestinal fluid. Moreover, the microgel was able to protect BC99 against H2O2 and antibiotics. This work provides a pH-responsive co-loaded microgels for BC99 and PCs, and has the potential in the loading and delivery of other probiotics and polyphenols.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yujin Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yannan Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 270018, China; College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an 271018, China
| | - Shuoshuo Ban
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Fang Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengmeng Xue
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
16
|
Ma DX, Cheng HJ, Zhang H, Wang S, Shi XT, Wang X, Gong DC. Harnessing the polysaccharide production potential to optimize and expand the application of probiotics. Carbohydr Polym 2025; 349:122951. [PMID: 39643409 DOI: 10.1016/j.carbpol.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Certain probiotic microorganisms can synthesize important bioproducts, including polysaccharides as components of cellular structure or extracellular matrix. Probiotic-derived polysaccharides have been widely applied in food, pharmaceutical, and medical fields due to their excellent properties and biological activities. The development of polysaccharide production potential has become a driving force for facilitating biotechnological applications of probiotics. Based on technical advances in synthetic biology, significant progress has recently been made in engineering probiotics with efficient biosynthesis of polysaccharides. Herein, this review summarizes probiotics chassis and genetic tools used for polysaccharide production. Then, probiotic polysaccharides and relevant biosynthesis mechanisms are also clearly described. Next, we introduce strategies for preparing high-yield, controllable molecular weight or non-native polysaccharides by adjusting metabolic pathways and integrating expression elements in probiotics. Finally, some prospective and well-established contributions of exogenous and in situ polysaccharides in probiotics' stability, bioactivity, and therapeutic effects are presented. Our viewpoints on advancing the efficient biomanufacturing of valuable biopolymers in probiotics and engineering probiotics with customized features are provided to exploit probiotics' industrial and biomedical applications.
Collapse
Affiliation(s)
- Dong-Xu Ma
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Hui-Juan Cheng
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Hui Zhang
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Shuo Wang
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Xiao-Tao Shi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Xin Wang
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China.
| | - Da-Chun Gong
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
17
|
Zhang B, Wang C, Liang S, Song S, Fu Y, Ai C, Yang J, Wen C, Yan C. Construction, characterization, and properties of a probiotic delivery system based on oxidized high amylose starch. Food Res Int 2025; 203:115809. [PMID: 40022338 DOI: 10.1016/j.foodres.2025.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
This study demonstrates the preparation of oxidized high amylose starch (OHAS) and its effect on the survival and release of Lacticaseibacillus rhamnosus GG (LGG) in the gastrointestinal tract when combined with sodium alginate (SA). OHAS with different degrees of oxidation was combined with SA, and through rheological analysis, an SA/OHAS composite with good viscoelasticity, stable structure, and favorable for probiotic colonization was selected as the probiotic carrier. Specifically, SA/OHAS showed a good encapsulation efficiency of 46.21 % and maintained good viability after gastric juice digestion, with a surviving probiotic count of 5.87 × 106 CFU/mL. It exhibits good release efficiency in intestinal fluid, with a release rate reaching 85.67 % within 2 h. In vivo intestinal transit visualization evaluation after feeding mice showed that SA/OHAS could effectively prolong the retention time of probiotics in the intestine. In vitro experiments further proved that SA/OHAS could significantly enhance the resistance of probiotics in gastric juice and provide a targeted release for intestine-specific delivery. These results provide a promising strategy for the delivery system of SA/OHAS encapsulated probiotics in oral food applications.
Collapse
Affiliation(s)
- Bin Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Chenxin Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Shuang Liang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Yinghuan Fu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China.
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Jingfeng Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Chengrong Wen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| |
Collapse
|
18
|
Li H, Chen X, Rao S, Zhou M, Lu J, Liang D, Zhu B, Meng L, Lin J, Ding X, Zhang Q, Hu D. Recent development of micro-nano carriers for oral antineoplastic drug delivery. Mater Today Bio 2025; 30:101445. [PMID: 39866789 PMCID: PMC11762190 DOI: 10.1016/j.mtbio.2025.101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Chemotherapy is widely recognized as a highly efficacious modality for cancer treatment, involving the administration of chemotherapeutic agents to target and eradicate tumor cells. Currently, oral administration stands as the prevailing and widely utilized method of delivering chemotherapy drugs. However, the majority of anti-tumor medications exhibit limited solubility and permeability, and poor stability in harsh gastrointestinal environments, thereby impeding their therapeutic efficacy for chemotherapy. Therefore, more and more micro-nano drug delivery carriers have been developed and used to effectively deliver anti-cancer drugs, which can overcome physiological barriers, facilitate oral administration, and ultimately improve drug efficacy. In this paper, we first discuss the effects of various biological barriers on micro-nano drug carriers and oral administration approach. Then, the development of micro-nano drug carriers based on various biomedical components, such as micelles, dendrimers, hydrogels, liposomes, inorganic nanoparticles, etc. were introduced. Finally, the current dilemma and the potential of oral drug delivery for clinical treatment were discussed. The primary objective of this review is to introduce various oral delivery methods and serve as a point of reference for the advancement of novel oral delivery carriers, with the ultimate goal of informing the development of future clinical applications.
Collapse
Affiliation(s)
- Hongzheng Li
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Xiang Chen
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shangrui Rao
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Minyu Zhou
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianhua Lu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Danna Liang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Bingzi Zhu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Letian Meng
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ji Lin
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoya Ding
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Qingfei Zhang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Danhong Hu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
19
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
20
|
da Silva Simões CV, Stamford TCM, Berger LRR, Araújo AS, da Costa Medeiros JA, de Britto Lira Nogueira MC, Pintado MME, Salgado SM, de Lima MAB. Edible Alginate-Fungal Chitosan Coatings as Carriers for Lacticaseibacillus casei LC03 and Their Impact on Quality Parameters of Strawberries During Cold Storage. Foods 2025; 14:203. [PMID: 39856871 PMCID: PMC11765008 DOI: 10.3390/foods14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigated the efficacy of an innovative edible coating, composed of fungal chitosan and alginate, functionalized with Lacticaseibacillus casei LC03, in both free and microencapsulated forms, to extend the shelf life and enhance the nutritional value of strawberries. L. casei LC03 cells were successfully encapsulated in alginate microparticles (MAL) and further coated with chitosan (MALC), resulting in enhanced protection (cell reduction below 1.4 CFU/mL), viability (8.02 log CFU/mL), and encapsulation efficiencies exceeding 90%. The edible coating with L. casei microencapsulated in alginate and coated with fungal chitosan (CACLM) significantly improved strawberry preservation by maintaining pH (3.16 ± 0.41), titratable acidity (0.94 ± 0.20), moisture (90.74 ± 0.27), and microbial quality, and delayed the decrease in total phenolic compounds (below 40%) during the storage time of strawberries. While coatings with free L. casei (CALF) slightly reduced color parameters (L* value 29.13 ± 2.05), those with chitosan (CACLM) demonstrated lower weight loss (below 6%). Overall, the alginate-chitosan coating, particularly when combined with microencapsulated L. casei, proved effective in maintaining the quality, safety, and nutritional value of strawberries during refrigerated storage, highlighting its potential for developing functional, eco-friendly packaging solutions. This research contributes to the development of sustainable food preservation strategies and functional foods.
Collapse
Affiliation(s)
- Camila Vilela da Silva Simões
- Programa de Pós-graduação em Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (C.V.d.S.S.); (T.C.M.S.); (A.S.A.)
- Laboratório de Microbiologia Aplicada, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (L.R.R.B.); (J.A.d.C.M.)
| | - Thayza Christina Montenegro Stamford
- Programa de Pós-graduação em Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (C.V.d.S.S.); (T.C.M.S.); (A.S.A.)
- Laboratório de Microbiologia Aplicada, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (L.R.R.B.); (J.A.d.C.M.)
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Profª Moraes Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil;
| | - Lúcia Raquel Ramos Berger
- Laboratório de Microbiologia Aplicada, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (L.R.R.B.); (J.A.d.C.M.)
- Laboratório de Microbiologia Agrícola e Ambiental, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Alessandra Silva Araújo
- Programa de Pós-graduação em Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (C.V.d.S.S.); (T.C.M.S.); (A.S.A.)
- Laboratório de Microbiologia Aplicada, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (L.R.R.B.); (J.A.d.C.M.)
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Profª Moraes Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil;
| | - José Alberto da Costa Medeiros
- Laboratório de Microbiologia Aplicada, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (L.R.R.B.); (J.A.d.C.M.)
| | - Mariane Cajubá de Britto Lira Nogueira
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Profª Moraes Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil;
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Rua Alto do Reservatório, s/n, Vitória de Santo Antão, PE 55608-680, Brazil
| | - Maria Manuela Estevez Pintado
- Centro de Biotecnologia e Química Fina-CBQF, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal;
| | - Silvana Magalhães Salgado
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil;
| | - Marcos Antonio Barbosa de Lima
- Programa de Pós-graduação em Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife, PE 50670-901, Brazil; (C.V.d.S.S.); (T.C.M.S.); (A.S.A.)
- Laboratório de Microbiologia Agrícola e Ambiental, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE 52171-900, Brazil
| |
Collapse
|
21
|
Jiang HY, Shao B, Wang HD, Zhao WQ, Ren SH, Xu YN, Liu T, Sun CL, Xiao YY, Li YC, Chen Q, Zhao PY, Yang GM, Liu X, Ren YF, Wang H. Analysis of nanomedicine applications for inflammatory bowel disease: structural and temporal dynamics, research hotspots, and emerging trends. Front Pharmacol 2025; 15:1523052. [PMID: 39845796 PMCID: PMC11750799 DOI: 10.3389/fphar.2024.1523052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Background The application of nanomedicine in inflammatory bowel disease (IBD) has gained significant attention in the recent years. As the field rapidly evolves, analyzing research trends and identifying research hotpots are essential for guiding future advancements, and a comprehensive bibliometric can provide valuable insights. Methods The current research focused on publications from 2001 to 2024, and was sourced from the Web of Science Core Collection (WoSCC). CiteSpace and VOSviewer were employed to visualize authors, institutions, countries, co-cited references, and keywords, thereby mapping the intellectual structure and identifying emerging trends in the field. Results The analysis covered 1,518 literature across 447 journals, authored by 9,334 researchers from 5,459 institutions and 287 countries/regions. The global publication numbers exhibited an upward trend, particularly in the last decade, with China leading as the top publishing country and the Chinese Academy of Sciences emerging as the foremost institution. Dr. Xiao Bo is the prominent figure in advanced drug delivery systems. This interdisciplinary field, which spans materials science, pharmacy, and medicine, has seen influential publications mainly concentrated on targeted nanoparticles treatment for IBD. Keyword analysis revealed that current research hotspots include drug delivery, immune cell regulation, antioxidant damage, intestinal microbiota homeostasis, and nanovesicles. Conclusion This study offers a comprehensive overview of global research landscape, emphasizing the rapid growth and increasing complexity of this field. It identifies key research hotspots and trends, including efforts to enhance the precision, efficacy, and safety of nanomedicine applications. Emerging directions are highlighted as crucial for further progress in this evolving area.
Collapse
Affiliation(s)
- Hong-Yu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen-Qi Zhao
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Cheng Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Fan Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
22
|
Meng Z, He Q, Mu L, Feng J, Zhang F, Wu J, Zhou L, Hu Q, Tang X, Li Y. Pullulan-spermine enhance the tolerance of probiotics and immune stimulation of macrophages. Int J Biol Macromol 2025; 287:138417. [PMID: 39662548 DOI: 10.1016/j.ijbiomac.2024.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
The application of probiotics as adjunctive therapy in colorectal cancer treatment is hindered by the paucity of strains with specialized functions and the instability of their in vivo efficacy. The design of innovative and simple encapsulation strategies to enhance their stability and efficacy of probiotics has garnered substantial interest. This study investigated four Bifidobacterium longum strains from human feces for tolerance and cytotoxicity, and then synthesized a cationic polysaccharide, pullulan-spermine (PS), for probiotic encapsulation. The results indicated that the encapsulation by PS hold superior protective capacity and elevated the level of TNF-α and IL-12. In vivo studies further confirmed the retention capacity and safety of this probiotic-PS complex. Generally, this research presents an effective probiotic encapsulation strategy that could enhance macrophage immune responses, offering novel insights for probiotic-based therapies in major diseases like colon cancer treatment.
Collapse
Affiliation(s)
- Zihui Meng
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qinghui He
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Litong Mu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiaying Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fei Zhang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiayi Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qingang Hu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Xuna Tang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Yanan Li
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
23
|
Wang Q, Jin L, Yang H, Yu L, Cao X, Mao Z. Bacteria/Nanozyme Composites: New Therapeutics for Disease Treatment. SMALL METHODS 2025; 9:e2400610. [PMID: 38923867 DOI: 10.1002/smtd.202400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Bacterial therapy is recognized as a cost-effective treatment for several diseases. However, its development is hindered by limited functionality, weak inherent therapeutic effects, and vulnerability to harsh microenvironmental conditions, leading to suboptimal treatment activity. Enhancing bacterial activity and therapeutic outcomes emerges as a pivotal challenge. Nanozymes have garnered significant attention due to their enzyme-mimic activities and high stability. They enable bacteria to mimic the functions of gene-edited bacteria expressing the same functional enzymes, thereby improving bacterial activity and therapeutic efficacy. This review delineates the therapeutic mechanisms of bacteria and nanozymes, followed by a summary of strategies for preparing bacteria/nanozyme composites. Additionally, the synergistic effects of such composites in biomedical applications such as gastrointestinal diseases and tumors are highlighted. Finally, the challenges of bacteria/nanozyme composites are discussed and propose potential solutions. This study aims to provide valuable insights to offer theoretical guidance for the advancement of nanomaterial-assisted bacterial therapy.
Collapse
Affiliation(s)
- Qirui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinran Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang, Hangzhou, 310009, China
| |
Collapse
|
24
|
Zhang J, Hu X, Ma Z. Debranched Lentil Starch-Sodium Alginate-Based Encapsulated Particles of Lacticaseibacillus rhamnosus GG: Morphology, Structural Characterization, In Vitro Release Behavior, and Storage Stability. Foods 2024; 13:4047. [PMID: 39766989 PMCID: PMC11728095 DOI: 10.3390/foods13244047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Starches with different degrees of debranching (DBS30, DBS60, and DBS90) and sodium alginate were used as the wall material for encapsulating particles of Lacticaseibacillus rhamnosus GG (LGG). The structural characteristics of these encapsulated particles were examined, along with the impact of varying levels of debranching on the encapsulation efficiency, the in vitro release of LGG under the simulated gastrointestinal environment, and the storage stability of the encapsulated particles. The results revealed a transformation in the crystalline polymorph from C- to B+V-type following debranching and retrogradation. This process also resulted in a significant decrease in molecular weight and polydispersity index, accompanied by an increase in amylose and resistant starch levels along with the relative crystallinity of the debranched lentil starch. Comparatively, DBS60-LGG and DBS90-LGG exhibited higher encapsulation efficiency and encapsulation yield than UDBS-LGG and DBS30-LGG. Furthermore, these encapsulated particles provided enhanced protection for LGG in both the simulated gastrointestinal environment and the storage process. It can be inferred that a superior encapsulation performance of the debranched lentil starch-sodium alginate-based encapsulated LGG particles was associated with higher debranching levels, a more uniform molecular weight distribution, and a more ordered multi-scale structure of the debranched lentil starch.
Collapse
Affiliation(s)
| | | | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China; (J.Z.); (X.H.)
| |
Collapse
|
25
|
de Deus C, Duque-Soto C, Rueda-Robles A, Martínez-Baena D, Borrás-Linares I, Quirantes-Piné R, Ragagnin de Menezes C, Lozano-Sánchez J. Stability of probiotics through encapsulation: Comparative analysis of current methods and solutions. Food Res Int 2024; 197:115183. [PMID: 39593393 DOI: 10.1016/j.foodres.2024.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Probiotics have awakened a great interest in the scientific community for their potential beneficial effects on health. Although only allowed by the European Food Safety Agency as a nutrition declaration associated with the improvement of lactose digestion, recent in vitro and in vivo studies have demonstrated their varied beneficial effect for the improvement of certain pathologies. However, probiotics face stability and viability challenges, which make their delivery difficult in sufficient quantities for these effects to be observed. Thus, there is a dire need for the development and implantation of innovative technological protection procedures. In this sense, encapsulation rises as a widely applied technique, offering additional advantages. In the present study, a systematic review was conducted for the evaluation of the main encapsulation technologies applied in literature, considering operating conditions, probiotics, and encapsulation efficacy. For this purpose, several conditions are evaluated: a) the characteristics, storage conditions and viability of probiotics; b) evaluation and comparison of the probiotic stabilization for the main encapsulation methods; and c) co-encapsulation with potential bioactive molecules as a new alternative for improving cell viability. This evaluation revealed the efficacy of seven encapsulation techniques on the improvement of the stability and viability of probiotics.
Collapse
Affiliation(s)
- Cassandra de Deus
- Department of Food Science and Technology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Daniel Martínez-Baena
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | | | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
26
|
Chen K, Wang H, Yang X, Tang C, Hu G, Gao Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol Res 2024; 210:107483. [PMID: 39521027 DOI: 10.1016/j.phrs.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The global epidemic of type 2 diabetes mellitus (T2DM) imposes a substantial burden on public health and healthcare expenditures, thereby driving the pursuit of cost-effective preventive and therapeutic strategies. Emerging evidence suggests a potential association between dysbiosis of gut microbiota and its metabolites with T2DM, indicating that targeted interventions aimed at modulating gut microbiota may represent a promising therapeutic approach for the management of T2DM. In this review, we concentrated on the multifaceted interactions between the gut microbiota and the intestinal barrier in the context of T2DM. We systematically summarized that the imbalance of beneficial gut microbiota and its metabolites may constitute a viable therapeutic approach for the management of T2DM. Meanwhile, the mechanisms by which gut microbiota interventions, such as probiotics, prebiotics, postbiotics, and synbiotics, synergistically improve insulin resistance in T2DM are summarized. These mechanisms include the restoration of gut microbiota structure, upregulation of intestinal epithelial cell proliferation and differentiation, enhancement of tight junction protein expression, promotion of mucin secretion by goblet cells, and the immunosuppressive functions of regulatory T cells (Treg) and M2 macrophages. Collectively, these actions contribute to the amelioration of the body's metabolic inflammatory status. Our objective is to furnish evidence that supports the clinical application of probiotics, prebiotics, and postbiotics in the management of T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Guojie Hu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Zezheng Gao
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
27
|
Ma Y, Hu C, Zhang J, Xu C, Ma L, Chang Y, Hussain MA, Ma J, Hou J, Jiang Z. Lactobacillus plantarum 69-2 combined with α-lactalbumin hydrolysate alleviates DSS-induced ulcerative colitis through the TLR4/NF-κB inflammatory pathway and the gut microbiota in mice. Food Funct 2024; 15:10987-11004. [PMID: 39400032 DOI: 10.1039/d4fo02975e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Ulcerative colitis (UC), an inflammatory bowel disease, seriously affects people's quality of life. Diet-derived active peptides and Lactobacillus plantarum have shown promise for mitigating symptoms of UC. This investigation explored the combined effects of α-lactalbumin (α-LA) hydrolysate, which boasts a high antioxidant capacity, and L. plantarum 69-2 (L69-2) on a colitis mouse model. The results showed that α-LA hydrolysate with a molecular weight <3 kDa obtained with neutral protease had excellent antioxidant activity and potential to enhance probiotic proliferation. Furthermore, the synergistic application of α-LA hydrolysate and L69-2 could alleviate the adverse impact of colon inflammation by reducing oxidative stress and regulating immune disorders. It maintains the intestinal epithelial barrier, thereby reducing immune system over-activation, promoting the colonization of beneficial bacteria, and regulating intestinal immune responses. Simultaneously, it remodels the structure of the disrupted intestinal flora. The increase in the richness and diversity of the flora leads to the production of beneficial metabolites, which in turn inhibits the activation of the TLR4/NF-κB inflammatory pathway. This study provides a novel perspective on milk-derived peptide synergism with probiotics in alleviating UC.
Collapse
Affiliation(s)
- Yue Ma
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chuanbing Hu
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jing Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lizhi Ma
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Yunhe Chang
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Muhammad Altaf Hussain
- Faculty of Veterinary and Animal Science Lasbela University of Agriculture Water and Marine Sciences, Balochistan, 90159, Pakistan
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
28
|
Daisley BA, Allen‐Vercoe E. Microbes as medicine. Ann N Y Acad Sci 2024; 1541:63-82. [PMID: 39392836 PMCID: PMC11580781 DOI: 10.1111/nyas.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Over the last two decades, advancements in sequencing technologies have significantly deepened our understanding of the human microbiome's complexity, leading to increased concerns about the detrimental effects of antibiotics on these intricate microbial ecosystems. Concurrently, the rise in antimicrobial resistance has intensified the focus on how beneficial microbes can be harnessed to treat diseases and improve health and offer potentially promising alternatives to traditional antibiotic treatments. Here, we provide a comprehensive overview of both established and emerging microbe-centric therapies, from probiotics to advanced microbial ecosystem therapeutics, examine the sophisticated ways in which microbes are used medicinally, and consider their impacts on microbiome homeostasis and health outcomes through a microbial ecology lens. In addition, we explore the concept of rewilding the human microbiome by reintroducing "missing microbes" from nonindustrialized societies and personalizing microbiome modulation to fit individual microbial profiles-highlighting several promising directions for future research. Ultimately, the advancements in sequencing technologies combined with innovative microbial therapies and personalized approaches herald a new era in medicine poised to address antibiotic resistance and improve health outcomes through targeted microbiome management.
Collapse
Affiliation(s)
- Brendan A. Daisley
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Emma Allen‐Vercoe
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
29
|
Xu C, Guo J, Chang B, Wang Q, Zhang Y, Chen X, Zhu W, Ma J, Qian S, Jiang Z, Hou J. Study on encapsulation of Lactobacillus plantarum 23-1 in W/O/W emulsion stabilized by pectin and zein particle complex. Int J Biol Macromol 2024; 279:135346. [PMID: 39242010 DOI: 10.1016/j.ijbiomac.2024.135346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study was conducted to develop a W/O/W emulsion encapsulated Lactobacillus plantarum 23-1 (LP23-1) to significantly enhance the survival rate of LP23-1 under simulated digestion and storage conditions. The zein particles and pectin formed a complex through electrostatic interaction and hydrogen bonding. When the proportion of zein particles to pectin was 1:1, the emulsifying stability index (ESI) was 304.17 %. Additionally, when the proportion of the internal aqueous phase to the oil phase was 1:9, the polyglycerol polyricinoleate (PGPR) concentration was 5 %, the proportion of primary emulsion to the external aqueous phase was 5:5, the zein particles concentration was 4 %, and the proportion of zein particles to pectin was 1:1, the encapsulation rate was the highest at 96.27 %. Cryo-scanning electron microscopy and fluorescence microscopy confirmed the morphology of W/O/W emulsion and successful encapsulation of LP23-1. Furthermore, compared with free LP23-1, the W/O/W emulsion encapsulation significantly improved the survival rate of LP23-1 to 73.36 % after simulated gastrointestinal digestion and maintained a high survival rate of 78.42 % during the 35-day storage. The W/O/W emulsion was found to effectively improve the survival rate of LP23-1 during simulated digestion and storage, which has implications for the development of probiotic functional foods with elevated survival rates.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Qingyun Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Xianhui Chen
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Wanyi Zhu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Shanshan Qian
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, China.
| |
Collapse
|
30
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
31
|
Wang Y, Xie Z, Li H, Zhang G, Liu R, Han J, Zhang L. Improvement in probiotic intestinal survival by electrospun milk fat globule membrane-pullulan nanofibers: Fabrication and structural characterization. Food Chem X 2024; 23:101756. [PMID: 39295963 PMCID: PMC11408380 DOI: 10.1016/j.fochx.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Studies have demonstrated the protective effect of milk fat globule membrane (MFGM) on probiotics in harsh environments. However, currently, there are no reports on the encapsulation of probiotics using MFGM. In this study, MFGM and pullulan (PUL) polysaccharide fibers were prepared by electrostatic spinning and used to encapsulate probiotics, with whey protein isolates (WPI)/PUL as the control. The morphology, physical properties, mechanical properties, survival, and stability of the encapsulated Lacticaseibacillus rhamnosus GG (LGG) were studied. The results showed that the MFGM/PUL solution had significant effects on pH, viscosity, conductivity, and stability. Electrostatic spinning improved the mechanical properties and encapsulation ability of the polymer formed by MFGM/PUL. LGG encapsulated in MFGM/PUL nanofibers survived rate was higher than WPI/PUL nanofibers in mimic intestinal juice, which could be attributed to the phospholipid content contained in MFGM. These results demonstrate that MFGM is a promising material for probiotic encapsulation, providing an important basis for the potential use of MFGM/PUL nanofibers as a robust encapsulation matrix.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Haitian Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Gongsheng Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
32
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
33
|
Liu M, Ma S, Zhi J, Wang M, Xu Y, Kim YR, Luo K. Bioinspired core-shell microparticle for dual-delivery of prebiotic and probiotic for the treatment of ulcerative colitis. J Control Release 2024; 376:566-576. [PMID: 39426504 DOI: 10.1016/j.jconrel.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Lactiplantibacillus plantarum (LP) is a well-known probiotic strain that has a beneficial effect in preventing ulcerative colitis. However, delivering a sufficient number of viable LP to the colon still face challenges due to its vulnerability to the highly complex intestinal flora ecosystem. Herein, we present a centrifuge-driven micronozzle system designed for double-layered core-shell alginate microcapsules (DAM), which can serve as an effective carrier for dual delivery of resistant starch nanoparticles (RSNP, prebiotic) and LP (probiotics) for the treatment of colitis. This system enables precise loading of LP and RSNP within the core and shell regions of DAM, respectively. The resulting LP/RS@DAM exhibited a high encapsulation efficiency of LP (108 CFU per bead), in which the dense distribution of RSNP in the shell effectively protected LP against acidic conditions (pH 2) and maintained the cell viability up to 52 % even after long-term storage for 30 days. Furthermore, LP/RS@DAM effectively enhances the production of short-chain fatty acids, leading to a reduction in inflammatory cytokines and restoration of intestinal microbial diversity in dextran sulfate sodium (DSS)-induced colitis. We believe that this innovative approach would offer a potential solution for improving colitis management and paving the way for tailored therapeutic interventions in gastrointestinal disorders.
Collapse
Affiliation(s)
- Mengyao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Jinglei Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mingming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
34
|
Han M, Hou M, Yang S, Gao Z. Oral responsive delivery systems for probiotics targeting the intestinal tract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39424610 DOI: 10.1002/jsfa.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
The increasing prevalence of health issues, driven by sedentary lifestyles and unhealthy diets in modern society, has led to a growing demand for natural dietary supplements to support overall health and well-being. Probiotic dietary supplements have garnered widespread recognition for their potential health benefits. However, their efficacy is often hindered by the hostile conditions of the gastrointestinal tract. To surmount this challenge, biomaterial-based microencapsulation techniques have been extensively employed to shield probiotics from the harsh environments of stomach acid and bile salts, facilitating their precise delivery to the colon for optimal nutritional effects. With consideration of the distinctive gastrointestinal tract milieu, probiotic delivery systems have been categorized into pH-responsive release, enzyme-responsive release, redox-responsive release and pressure-triggered release systems. These responsive delivery systems have not only demonstrated improved probiotic survival rates in the stomach, but also successful release in the intestines, facilitating enhanced adhesion and colonization of probiotics within the gut. Consequently, these responsive delivery systems contribute to the effectiveness of probiotic supplementation in intervening with gastrointestinal diseases. This review provides a comprehensive overview of the diverse oral responsive delivery systems tailored for probiotics targeting the intestinal tract. Furthermore, the review critically examines the limitations and future prospects of these approaches. This review offers valuable guidance for the effective delivery of probiotics to the intestinal tract, enhancing the potential of probiotics as dietary supplements to promote gastrointestinal health and well-being. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
35
|
Chen C, Su Y, Li S, Man C, Jiang Y, Qu B, Yang X, Guo L. Advances in oligosaccharides and polysaccharides with different structures as wall materials for probiotics delivery: A review. Int J Biol Macromol 2024; 277:134468. [PMID: 39217037 DOI: 10.1016/j.ijbiomac.2024.134468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Probiotics are active microorganisms that are beneficial to the health of the host. However, probiotics are highly sensitive to the external environment, and are susceptible to a variety of factors that reduce their activity during production, storage, and use. Microencapsulation is an effective method that enhances probiotic activity. Macromolecules like polysaccharides, who classified as biologically active prebiotics, have attracted significant attention for their utility in probiotic microencapsulation. This article summarized the types of commonly used microencapsulation materials and their structural characteristics from the perspective of polysaccharides prebiotics. It also discussed recent advancements, probiotic-prebiotic microcapsule-based modulation of the immune system, as well as the associated limitations. Furthermore, the advantages and disadvantages of eight prebiotics as microencapsulation wall materials. The honeycomb structure of β-glucan enhances the bioavailability of probiotics, while, fructooligosaccharide and galactooligosaccharides improve microbead structure to tightly encapsulate probiotics. The terminal reducing groups of isomaltooligosaccharides and the free hydroxyl groups in xylooligosaccharides also positively affect the structure of microcapsules. Prebiotics not only enhance the survival rate and biological activity of probiotics as embedding materials during storage, but also exert their own probiotic effects. Collectively, prebiotics holds great promise as microencapsulation materials for probiotics delivery.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shihang Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Qu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
36
|
Zhao R, Yu T, Li J, Niu R, Liu D, Wang W. Single-cell encapsulation systems for probiotic delivery: Armor probiotics. Adv Colloid Interface Sci 2024; 332:103270. [PMID: 39142064 DOI: 10.1016/j.cis.2024.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Functional foods or drugs based on probiotics have gained unprecedented attention and development due to the increasingly clear relationship between probiotics and human health. Probiotics can regulate intestinal microbiota, dynamically participating in various physiological activities to directly affect human health. Some probiotic-based functional preparations have shown great potential in treating multiple refractory diseases. Currently, the survival and activity of probiotic cells in complex environments in vitro and in vivo have taken priority, and various encapsulation systems based on food-derived materials have been designed and constructed to protect and deliver probiotics. However, traditional encapsulation technology cannot achieve precise protection for a single probiotic, which makes it unable to have a significant effect after release. In this case, single-cell encapsulation systems can be assembled based on biological interfaces to protect and functionalize individual probiotic cells, maximizing their physiological activity. This review discussed the arduous challenges of probiotics in food processing, storage, human digestion, and the commonly used probiotic encapsulation system. Besides, a novel technology of probiotic encapsulation was introduced based on single-cell coating, namely, "armor probiotics". We focused on the classification, structural design, and functional characteristics of armor coatings, and emphasized the essential functional characteristics of armor probiotics in human health regulation, including regulating intestinal health and targeted bioimaging and treatment of diseased tissues. Subsequently, the benefits, limitations, potential challenges, as well as future direction of armor probiotics were put forward. We hope this review may provide new insights and ideas for developing a single-cell probiotics encapsulating system.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
37
|
Li SF, Hu TG, Wu H. Development of quercetin-loaded electrospun nanofibers through shellac coating on gelatin: Characterization, colon-targeted delivery, and anticancer activity. Int J Biol Macromol 2024; 277:134204. [PMID: 39069044 DOI: 10.1016/j.ijbiomac.2024.134204] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Quercetin possesses multiple biological activities. To achieve efficient colon-specific release of quercetin, new composite nanofibers were developed by coating pH-responsive shellac on hydrophilic gelatin through coaxial electrospinning. These composite nanofibers contained bead-like structures. The encapsulation efficiency (87.6-98.5 %) and loading capacity (1.4-4.1 %) varied with increasing the initial quercetin addition amount (2.5-7.5 %). FTIR, XRD, and TGA results showed that the quercetin was successfully encapsulated in composite nanofibers in an amorphous state, with interactions occurring among quercetin, gelatin, and shellac. Composite nanofibers had pH-responsive surface wettability due to the shellac coating. In vitro digestion experiments showed that these composite nanofibers were highly stable in the upper gastrointestinal tract, with quercetin release ranging from 4.75 % to 12.54 %. In vivo organ distribution and pharmacokinetic studies demonstrated that quercetin could be sustainably released in the colon after oral administration of composite nanofibers. Besides, the enhanced anticancer activity of composite nanofibers was confirmed against HCT-116 cells by analyzing their effect on cell viability, cell cycle, and apoptosis. Overall, these novel composite nanofibers could deliver efficiently quercetin to the colon and achieve its sustained release, thus potential to regulate colon health. This system is also helpful in delivering other bioactives to the colon and exerting their functional effects.
Collapse
Affiliation(s)
- Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510640, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China.
| |
Collapse
|
38
|
Sun R, Du S, Wang M, Chen Z, Yan Q, Yuan B, Jin Y. Colonic long-term retention and colonization of probiotics by double-layer chitosan/tannic acid coating and microsphere embedding for treatment of ulcerative colitis and radiation enteritis. Int J Biol Macromol 2024; 280:135757. [PMID: 39299414 DOI: 10.1016/j.ijbiomac.2024.135757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Oral probiotics can alleviate enteric inflammations but their rapid transit through the gut limits their retention and colonization in the colon. Here, a novel strategy integrating the bacterial double-layer coating and hydrogel microsphere embedding techniques was used to highly enhance the colonic retention and colonization efficiency of Lactobacillus rhamnosus GG (LGG). LGG was coated by the double layers of chitosan (CS) and tannic acid (TA), and then embedded in calcium alginate (CA) hydrogel microspheres to form LGG@CT@CA. The microspheres resisted gastric liquids, improving LGG safe transit through the stomach to reach the colon. LGG@CT rapidly released in the colon due to the good swelling of hydrogel microspheres. More importantly, LGG exhibited long-term retention up to 7 days in the colon, and colonized the deep site of the colonic mucosa. LGG@CT@CA had a high therapeutic efficiency of ulcer colitis with the long colon and the low intestinal permeability of colonic tissues. LGG@CT@CA also alleviated the small intestinal damage induced by irradiation and the survival rates were improved. The mechanisms included local ROS decrease, IL-10 increase, and ferroptosis reduction in the small intestine. The oral colon-targeted system holds promise for oral probiotic therapy by the long-term retention and colonization in the colon.
Collapse
Affiliation(s)
- Rui Sun
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Shumin Du
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Minting Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Qiucheng Yan
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
39
|
Shen Y, Miao C, Ma M, Zhen Z, He J, Pei X, Zhang Y, Man C, Zhao Q, Jiang Y. Mechanistic insights into the changes of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei fortified milk powder during storage. Food Chem 2024; 452:139501. [PMID: 38728887 DOI: 10.1016/j.foodchem.2024.139501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zizhu Zhen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
40
|
Xiong Y, Lo Y, Song H, Lu J. Development of a Self-Luminescent Living Bioreactor for Enhancing Photodynamic Therapy in Breast Cancer. Bioconjug Chem 2024; 35:1269-1282. [PMID: 39120495 DOI: 10.1021/acs.bioconjchem.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The penetration ability of visible light (<2 mm) and near-infrared (NIR) light (∼1 cm) remarkably impairs the therapeutic efficacy and clinical applications of photodynamic therapy (PDT). To address the limitation of light penetration depth, a novel self-luminescent bacterium, teLuc.FP-EcN, has been engineered through transfection of a fusion expression plasmid containing the luciferase gene teLuc and bright red fluorescent protein mScarlet-I into Escherichia coli Nissle 1917 (EcN). The engineered teLuc.FP-EcN can specifically target and colonize tumors without significant toxicity to the host. Acting as a continuous internal light source, teLuc.FP-EcN can activate the photosensitizer chlorin e6 (Ce6) to generate reactive oxygen species (ROS) and then effectively destroy tumor tissue from the inside. As a result, a significant reduction in tumor proliferation and extension of the overall survival in mouse tumor models has been observed. Furthermore, teLuc.FP-EcN-boosted PDT amplified its therapeutic effect by activating antitumor immune response, including the conversion of M2 macrophages into pro-inflammatory M1 macrophages, as well as an increase in the proportion of CD3+ T cells and a decrease in T-cell exhaustion. In conclusion, teLuc.FP-EcN can be used as an implantable light source for tumor phototherapy, which simultaneously possesses ROS generation and immune regulation.
Collapse
Affiliation(s)
- Yanian Xiong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingtung Lo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Huizhu Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianzhong Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
41
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
42
|
Li Y, Pan X, Hai P, Zheng Y, Shan Y, Zhang J. All-in-one nanotheranostic platform based on tumor microenvironment: new strategies in multimodal imaging and therapeutic protocol. Drug Discov Today 2024; 29:104029. [PMID: 38762088 DOI: 10.1016/j.drudis.2024.104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Conventional tumor diagnosis and treatment approaches have significant limitations in clinical application, whereas personalized theranostistic nanoplatforms can ensure advanced diagnosis, precise treatment, and even a good prognosis in cancer. Tumor microenvironment (TME)-targeted therapeutic strategies offer absolute advantages in all aspects compared to tumor cell-targeted therapeutic strategies. It is essential to create a TME-responsive all-in-one nanotheranostic platform to facilitate individualized tumor treatment. Based on the TME-responsive multifunctional nanotheranostic platform, we focus on the combined use of multimodal imaging and therapeutic protocols and summary and outlooks on the latest advanced nanomaterials and structures for creating the integrated nanotheranostic system based on material science, which provide insights and reflections on the development of innovative TME-targeting tools for cancer theranostics.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yongbiao Zheng
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
43
|
Wang K, Chen E, Lin X, Tian X, Wang L, Huang K, Skirtach AG, Tan M, Su W. Core-shell nanofibers based on microalgae proteins/alginate complexes for enhancing survivability of probiotics. Int J Biol Macromol 2024; 271:132461. [PMID: 38777024 DOI: 10.1016/j.ijbiomac.2024.132461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In this study, a novel one-step coaxial electrospinning process is employed to fabricate shell-core structure fibers choosing Chlorella pyrenoidosa proteins (CP) as the core material. These nanofibers, serving as the wall material for probiotic encapsulation, aimed to enhance the stability and antioxidant activity of probiotics in food processing, storage, and gastrointestinal environments under sensitive conditions. Morphological analysis was used to explore the beads-on-a-string morphology and core-shell structure of the electrospun fibers. Probiotics were successfully encapsulated within the fibers (7.97 log CFU/g), exhibiting a well-oriented structure along the distributed fibers. Compared to free probiotics and uniaxial fibers loaded with probiotics, encapsulation within microalgae proteins/alginate core-shell structure nanofibers significantly enhanced the probiotic cells' tolerance to simulated gastrointestinal conditions (p < 0.05). Thermal analysis indicated that microalgae proteins/alginate core-shell structure nanofibers displayed superior thermal stability compared to uniaxial fibers. The introduction of CP resulted in a 50 % increase in the antioxidant capacity of probiotics-loaded microalgae proteins/alginate nanofibers compared to uniaxial alginate nanofibers, with minimal loss of viability (0.8 log CFU/g) after 28 days of storage at 4 °C. In summary, this dual-layer carrier holds immense potential in probiotic encapsulation and enhancing their resistance to harsh conditions.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Entao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China.
| | - Xueying Tian
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
44
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
45
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
46
|
Mergulhão NLON, Bulhões LCG, Silva VC, Duarte IFB, Basílio-Júnior ID, Freitas JD, Oliveira AJ, Goulart MOF, Barbosa CV, Araújo-Júnior JX. Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals (Basel) 2024; 17:599. [PMID: 38794169 PMCID: PMC11124181 DOI: 10.3390/ph17050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Alginate encapsulates loaded with clove essential oil (CEO) were prepared by ionic gelation, with subsequent freeze-drying. The objective of the present work was to develop a product with the ability to protect CEO against its easy volatility and oxidation. The following techniques were used to characterize the formulations: eugenol release, degree of swelling, GC/MS, TGA/DSC, and SEM. The alginate solution (1.0%) containing different concentrations of CEO (LF1: 1.0%; LF2: 0.5%; LF3: 0.1%) was dropped into a 3.0% CaCl2 solution. After lyophilization, the encapsulated samples were wrinkled and rigid, with high encapsulation power (LF3: 76.9% ± 0.5). Three chemical components were identified: eugenol (the major one), caryophyllene, and humulene. The antioxidant power (LF1: DPPH IC50 18.1 µg mL-1) was consistent with the phenol content (LF1: 172.2 mg GAE g-1). The encapsulated ones were thermally stable, as shown by analysis of FTIR peaks, eugenol molecular structure was kept unaltered. The degree of swelling was 19.2% (PBS). The release of eugenol (92.5%) in the PBS solution was faster than in the acidic medium. It was concluded that the low-cost technology used allows the maintenance of the content and characteristics of CEO in the three concentrations tested, offering a basis for further research with essential oil encapsulates.
Collapse
Affiliation(s)
- Naianny L. O. N. Mergulhão
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Laisa C. G. Bulhões
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Valdemir C. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
- Estácio de Alagoas Faculty, Maceió 57035-225, Brazil
| | - Ilza F. B. Duarte
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Irinaldo D. Basílio-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - Johnnatan D. Freitas
- Department of Food Chemistry, Federal Institute of Alagoas, Maceió 57020-600, Brazil;
| | - Adeildo J. Oliveira
- Department of Exact Sciences, Federal University of Alagoas, Arapiraca 57309-005, Brazil;
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Círia V. Barbosa
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - João X. Araújo-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| |
Collapse
|
47
|
Huang X, Du L, Li Z, Yang Z, Xue J, Shi J, Tingting S, Zhai X, Zhang J, Capanoglu E, Zhang N, Sun W, Zou X. Lactobacillus bulgaricus-loaded and chia mucilage-rich gum arabic/pullulan nanofiber film: An effective antibacterial film for the preservation of fresh beef. Int J Biol Macromol 2024; 266:131000. [PMID: 38521333 DOI: 10.1016/j.ijbiomac.2024.131000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.
Collapse
Affiliation(s)
- Xiaowei Huang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
| | - Liuzi Du
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhihua Li
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Zhikun Yang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jin Xue
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jiyong Shi
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
| | - Shen Tingting
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Junjun Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Esra Capanoglu
- Istanbul Technical University (ITU), Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Maslak, Istanbul, Turkey
| | - Ning Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Wei Sun
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China.
| |
Collapse
|
48
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
49
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Sun R, Lv Z, Wang Y, Gu Y, Sun Y, Zeng X, Gao Z, Zhao X, Yuan Y, Yue T. Preparation and characterization of pectin-alginate-based microbeads reinforced by nano montmorillonite filler for probiotics encapsulation: Improving viability and colonic colonization. Int J Biol Macromol 2024; 264:130543. [PMID: 38432271 DOI: 10.1016/j.ijbiomac.2024.130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Hydrogel microbeads can be used to enhance the stability of probiotics during gastrointestinal delivery and storage. In this study, the pectin-alginate hydrogel was enhanced by adding montmorillonite filler to produce microbeads for encapsulating Lactobacillus kefiranofaciens (LK). Results showed that the viscosity of biopolymer solutions with 1 % (PAMT1) and 3 % (PAMT3) montmorillonite addition was suitable for producing regular-shaped microbeads. A layered cross-linked network was formed on the surface of PAMT3 microbeads through electrostatic interaction between pectin-alginate and montmorillonite filler, and the surrounding LK with adsorbed montmorillonite was encapsulated inside the microbeads. PAMT3 microbeads reduced the loss of viability of LK when passing through the gastric acid environment, and facilitated the slow release of LK in the intestine and colonic colonization. The maximum decrease in viability among all filler groups was 1.21 log CFU/g after two weeks of storage, while PAMT3 freeze-drying microbeads only decreased by 0.46 log CFU/g, indicating that the gel layer synergized with the adsorbed layer to provide dual protection for probiotics. Therefore, filler-reinforced microbeads are a promising bulk encapsulation carrier with great potential for the protection and delivery of probiotics and can be developed as food additives for dairy products.
Collapse
Affiliation(s)
- Rui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongyi Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Gu
- Chemical Engineering with Biotechnology, Imperial College London, SW7 2BX, United Kingdom
| | - Yuhan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|