1
|
Wang C, Wang Y, Duan Y, Dong Y, Hua H, Cui H, Huang S, Huang Z, Lu J, Ding C, Cai Z, Feng J. Design, Synthesis, and Biological Evaluation of a Novel Long-Acting Human Complement C3 Inhibitor Synthesized via the PASylation-Lipidation Modular (PLM) Platform. Bioconjug Chem 2025. [PMID: 40359518 DOI: 10.1021/acs.bioconjchem.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The complement system is essential for immune defense, but its dysregulation contributes to various complement-mediated disorders, including paroxysmal nocturnal hemoglobinuria (PNH). CP40 (a cyclic peptide also known as AMY101), effectively inhibits complement activation by preventing the initial binding of the C3 substrate to convertase. Despite its potency, CP40 has a very short plasma half-life when unbound to human C3, necessitating frequent dosing. We developed a novel PASylation-Lipidation Modular (PLM) platform. This platform incorporates a solubilizing PAS module and a half-life-extending lipid moiety into CP40 via a chemical linker. Systematic optimization of the spacer and lipid components in PLM-modified CP40 analogues identified 6C1 as a lead compound. Compared to CP40, 6C1 exhibited a 5-fold increase in antihemolytic potency in the classical complement pathway and a 6.3-fold improvement in solubility. In vivo studies demonstrated that PLM-CP40 analogues possess superior pharmacokinetic properties, with a 15.6-fold extension in half-life relative to unmodified CP40. Mechanistic studies revealed that the PLM platform extends half-life by interacting with albumin, which serves as a circulating depot for the compound. Surface plasmon resonance analysis and hemolysis assays postalbumin incubation demonstrated that PLM modifications maintain receptor affinity by strategically positioning the albumin-binding moiety away from the peptide region, preserving its biological activity. In a clinically relevant in vitro model of complement-mediated hemolysis in PNH, 6C1 effectively reduced erythrocyte lysis. The PLM platform thus offers a versatile strategy for enhancing peptide therapeutics by improving solubility, extending circulation time, and increasing efficacy, broadening their therapeutic potential.
Collapse
Affiliation(s)
- Chengcheng Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Yapeng Wang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yu Duan
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Yuanzhen Dong
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Haoju Hua
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Huixin Cui
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Shuaiyi Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Zongqing Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Jianguang Lu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengyan Cai
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Jun Feng
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| |
Collapse
|
2
|
Cui X, Sun Q, Wang H. Targeting fibroblast growth factor (FGF)-21: a promising strategy for metabolic dysfunction-associated steatotic liver disease treatment. Front Pharmacol 2025; 16:1510322. [PMID: 40331190 PMCID: PMC12052895 DOI: 10.3389/fphar.2025.1510322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic dysfunction-associated steatitic liver disease (MASLD) is the predominant chronic liver disease, with its incidence increasing year by year. It has emerged as the most rapidly increasing contributor to liver-related mortality worldwide and is becoming a principal cause of end-stage liver disorders, primarily cancer of the liver and liver transplantation, hence putting a substantial economic burden on public health. The approval of Resmetirom signifies significant advancement in the treatment of metabolic dysfunction-associated steatohepatitis (MASH); nonetheless, the heterogeneity of MASLD renders it challenging for a single medication to address the requirements of all patients. Consequently, it is essential to formulate varied therapeutic approaches for distinct pathogenic causes and phases of disease. Fibroblast growth factor 21 (FGF21), a member of the fibroblast growth factor family, plays a positive and protective role in MASLD. It attenuates hepatic steatosis and lipotoxicity, ameliorates insulin resistance (IR), reduces oxidative stress, endoplasmic reticulum (ER) stress, and inflammation, as well as possesses anti-fibrotic effects. As a result, FGF21 has the potential to treat MASLD. In this review, we will address the possible mechanisms of FGF21 therapy for MASLD to facilitate the development of clinical therapies targeting FGF21 for MASLD.
Collapse
Affiliation(s)
- Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Gastroenterology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Hong J, Kim YH. Cutting-edge biotherapeutics and advanced delivery strategies for the treatment of metabolic dysfunction-associated steatotic liver disease spectrum. J Control Release 2025; 380:433-456. [PMID: 39923856 DOI: 10.1016/j.jconrel.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a condition with the potential to progress into liver cirrhosis or hepatocellular carcinoma, has become a significant global health concern due to its increasing prevalence alongside obesity and metabolic syndrome. Despite the promise of existing therapies such as thyroid hormone receptor-β (THR-β) agonists, PPAR agonists, FXR agonists, and GLP-1 receptor agonists, their effectiveness is limited by the complexity of the metabolic, inflammatory, and fibrotic pathways that drive MASLD progression, encompassing steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and reversible liver fibrosis. Recent advances in targeted therapeutics, including RNA interference (RNAi), mRNA-based gene therapies, monoclonal antibodies, proteolysis-targeting chimeras (PROTAC), peptide-based strategies, cell-based therapies such as CAR-modified immune cells and stem cells, and extracellular vesicle-based approaches, have emerged as promising interventions. Alongside these developments, innovative drug delivery systems are being actively researched to enhance the stability, precision, and therapeutic efficacy of these biotherapeutics. These delivery strategies aim to optimize biodistribution, improve target-specific action, and reduce systemic exposure, thus addressing critical limitations of existing treatment modalities. This review provides a comprehensive exploration of the underlying biological mechanisms of MASLD and evaluates the potential of these cutting-edge biotherapeutics in synergy with advanced delivery approaches to address unmet clinical needs. By integrating fundamental disease biology with translational advancements, it aims to highlight future directions for the development of effective, targeted treatments for MASLD and its associated complications.
Collapse
Affiliation(s)
- Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea; Cursus Bio Inc., Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea.
| |
Collapse
|
4
|
Lin S, Tang L, Xu N. Research progress and strategy of FGF21 for skin wound healing. Front Med (Lausanne) 2025; 12:1510691. [PMID: 40231082 PMCID: PMC11994443 DOI: 10.3389/fmed.2025.1510691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Fibroblast Growth Factor 21 (FGF21), a pivotal member of the fibroblast growth factor family, exhibits multifaceted biological functions, including the modulation of pro-inflammatory cytokines and metabolic regulation. Recent research has revealed that in impaired skin tissues, FGF21 and its receptors are upregulated and play a significant role in accelerating the wound healing process. However, the clinical application of FGF21 is severely limited by its short in vivo half-life: this factor is often degraded by enzymes before it can exert its therapeutic effects. To address this limitation, the transdermal drug delivery system (TDDS) has emerged as an innovative approach that enables sustained drug release, significantly prolonging the therapeutic duration. Leveraging genetic recombination technology, research teams have ingeniously fused FGF21 with cell-penetrating peptides (CPPs) to construct recombinant FGF21 complexes. These novel conjugates can efficiently penetrate the epidermal barrier and achieve sustained and stable pharmacological activity through TDDS. This review systematically analyzes the potential signaling pathways by which FGF21 accelerates skin wound repair, summarizes the latest advancements in TDDS technology, explores the therapeutic potential of FGF21, and evaluates the efficacy of CPP fusion tags. The manuscript not only proposes an innovative paradigm for the application of FGF21 in skin injury treatment but also provides new insights into its use in transdermal delivery, marking a significant step toward overcoming existing clinical therapeutic challenges. From a clinical medical perspective, this innovative delivery system holds promise for addressing the bioavailability issues of traditional FGF21 therapies, offering new strategies for the clinical treatment of metabolism-related diseases and wound healing. With further research, this technology holds vast potential for clinical applications in hard-to-heal wounds such as diabetic foot ulcers and burns.
Collapse
Affiliation(s)
- Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lu Tang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
6
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
7
|
Liu Y, Yin W. CD36 in liver diseases. Hepatol Commun 2025; 9:e0623. [PMID: 39774047 PMCID: PMC11717518 DOI: 10.1097/hc9.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein with the ability to bind to multiple ligands and perform diverse functions. Through the recognition of long-chain fatty acids, proteins containing thrombospondin structural homology repeat domains such as thrombospondin-1, and molecules with molecular structures consistent with danger- or pathogen-associated molecular patterns, CD36 participates in various physiological and pathological processes of the body. CD36 is widely expressed in various cell types, including hepatocytes and KCs in the liver, where it plays a pivotal role in lipid metabolism, inflammation, and oxidative stress. Accumulating evidence suggests that CD36 plays a complex role in the development of nonalcoholic simple fatty liver disease and NASH and contributes to the pathogenesis of inflammatory liver injury, hepatitis B/hepatitis C, liver fibrosis, and liver cancer. This review summarizes the current understanding of the structural properties, expression patterns, and functional mechanisms of CD36 in the context of liver pathophysiology. Furthermore, the potential of CD36 as a therapeutic target for the prevention and treatment of liver diseases is highlighted.
Collapse
|
8
|
Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL. Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol 2024; 985:177092. [PMID: 39510336 DOI: 10.1016/j.ejphar.2024.177092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic metabolic liver diseases worldwide. Perillaldehyde (4-propyl-1-en-2-ylcyclohexene-1-aldehyde, PA) is a terpenoid compound extracted from Perilla, which has effective pharmacological activities such as anti-inflammatory, antidepressant, and anticancer. This study aimed to explore the pharmacological effects of PA in intervening with NAFLD and reveal its potential mechanisms. Firstly, we identified the core targets of PA intervention therapy for NAFLD through network pharmacology and molecular docking techniques. After that, in vitro animal experiments such as H&E and Masson staining, immunofluorescence, immunohistochemistry, and Western blot were conducted to validate the results network effectively pharmacology predicted. Network pharmacology analysis suggested that PPAR-α may be the core target of PA intervention in NAFLD. H&E and Masson staining showed that after low-dose (50 mg/kg) PA administration, there was a noticeable improvement in fat deposition in the livers of NAFLD mice, and liver tissue fibrosis was alleviated. Immunohistochemical and immunofluorescence analysis showed that low dose (50 mg/kg) PA could reduce hepatocyte apoptosis, decrease the content of pro-apoptosis protein Bax, and increase the expression of anti-apoptosis protein Bcl-2 in NAFLD mice. Western blot results confirmed that low-dose (50 mg/kg) PA could increase the expression of PPAR-α and inhibit the expression of NF-κB in NAFLD mice. Our study indicated that PA could enhance the activity of PPAR-α and reduce the level of NF-κB in NAFLD mice, which may positively affect the prevention of NAFLD.
Collapse
Affiliation(s)
- Qian-Qian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Yu-Ting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Chun-Rui Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Xi-Yue Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Cheng-Zhi Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Hui-Dan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Mao D, Guo J, Yang K, Yang F, Peng J, Jia X, Luo Z, Liu L, Yang E, Tang R, Lan H, Zheng Q. Mechanism of epigallocatechin gallate in treating non-alcoholic fatty liver disease: Insights from network pharmacology and experimental validation. Biochem Biophys Res Commun 2024; 734:150424. [PMID: 39083974 DOI: 10.1016/j.bbrc.2024.150424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
To explore the therapeutic effects along with the molecular mechanisms of epigallocatechin gallate (EGCG) in non-alcoholic fatty liver disease (NAFLD) treatment using network pharmacology as well as animal experiments. Firstly, the Traditional Chinese Medicine (TCM) Systems Pharmacology Database was searched to identify the potential targets of EGCG. The DisGeNET Database was used to screen the potential targets of NAFLD. The GeneCards Database was searched to identify related genes involved in pyroptosis. Subsequently, the intersecting genes of EGCG targeting pyroptosis to regulate NAFLD were obtained using a Venn diagram. Simultaneously, the aforementioned intersecting genes were used to construct a drug-disease target protein-protein interaction (PPI) network. The DAVID database was adopted for Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The main pathway-target network was determined. Next, the potential mechanism of EGCG targeting pyroptosis to regulate NAFLD was investigated and validated through in vivo experiments. 626 potential targets of EGCG, 447 target genes of NAFLD, and 568 potential targets of pyroptosis were identified. The number of common targets between EGCG, NAFLD, and pyroptosis was 266. GO biological process items and 92 KEGG pathways were determined based on the analysis results. Animal experiments demonstrated that EGCG could ameliorate body weight, glucolipid metabolism, steatosis, and liver injury, enhance insulin sensitivity, and improve glucose tolerance in NAFLD mice through the classical pathway of pyroptosis. EGCG could effectively treat NAFLD through multiple targets and pathways. It was concluded that EGCG ameliorates hepatocyte steatosis, pyroptosis, dyslipidemia, and inflammation in NAFLD mice fed a high-fat diet (HFD), and the protective mechanism could be associated with the NLRP3-Caspase-1-GSDMD classical pyroptosis pathway.
Collapse
Affiliation(s)
- Danting Mao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Jianwei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Kunli Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Fan Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Jiaojiao Peng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Ziren Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Lu Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Enjie Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Rui Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Haitao Lan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
10
|
Wang Y, Shen L, Wang C, Dong Y, Hua H, Xu J, Zhang Y, Huang H, Huang Z, Zhao F, Xu Z, Qiu Y, Lu J, Ju D, Feng J. Lipidation-dimerization platform unlocks treatment potential of fibroblast growth factor 21 for non-alcoholic steatohepatitis. J Control Release 2024; 376:1130-1142. [PMID: 39510256 DOI: 10.1016/j.jconrel.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Optimizing the druggability of both native and AI-designed bioactive proteins is crucial for realizing their therapeutic potential. A key focus in designing protein-based therapeutics is improving their pharmacokinetic properties. However, a significant challenge is to preserve biological activity while implementing long-acting strategies. Fibroblast growth factor 21 (FGF21), an endogenous hormone with potential as a treatment for non-alcoholic steatohepatitis (NASH), exemplifies this challenge. In this study, we present a novel lipidation-dimerization (LiDi) platform that integrates lipidation with a dimeric form of FGF21 connected by a hydrophilic linker. The lipidation enhances albumin binding, enabling sustained release, while the dimeric structure boosts biological activity. In vivo evaluations of the LiDi FGF21 analogs demonstrated that they offer excellent pharmacokinetic properties and superior efficacy compared to other treatments for NASH. This platform effectively extends the therapeutic half-life of proteins without compromising their activity, substantially broadening the application range of proteins as therapeutics.
Collapse
Affiliation(s)
- Yapeng Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 201203 Shanghai, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Lei Shen
- Anhui University of Traditional Chinese Medicine School of Pharmacy, 230013 Hefei, China; Yangtze Delta Drug Advanced Research Institute, 226133 Nantong, China; Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Chengcheng Wang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Yuanzhen Dong
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Haoju Hua
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Jun Xu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Ying Zhang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Hao Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Zongqing Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Fei Zhao
- Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Zhiru Xu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 200083 Shanghai, China
| | - Yunliang Qiu
- Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Jianguang Lu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 201203 Shanghai, China.
| | - Jun Feng
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China.
| |
Collapse
|
11
|
Yanagisawa H, Maeda H, Noguchi I, Tanaka M, Wada N, Nagasaki T, Kobayashi K, Kanazawa G, Taguchi K, Chuang VTG, Sakai H, Nakashima H, Kinoshita M, Kitagishi H, Iwakiri Y, Sasaki Y, Tanaka Y, Otagiri M, Watanabe H, Maruyama T. Carbon monoxide-loaded red blood cells ameliorate metabolic dysfunction-associated steatohepatitis progression via enhancing AMP-activated protein kinase activity and inhibiting Kupffer cell activation. Redox Biol 2024; 76:103314. [PMID: 39163766 PMCID: PMC11381851 DOI: 10.1016/j.redox.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of nonalcoholic fatty liver disease characterised by fat accumulation, inflammation, oxidative stress, fibrosis, and impaired liver regeneration. In this study, we found that heme oxygenase-1 (HO-1) is induced in both MASH patients and in a MASH mouse model. Further, hepatic carbon monoxide (CO) levels in MASH model mice were >2-fold higher than in healthy mice, suggesting that liver HO-1 is activated as MASH progresses. Based on these findings, we used CO-loaded red blood cells (CO-RBCs) as a CO donor in the liver, and evaluated their therapeutic effect in methionine-choline deficient diet (MCDD)-induced and high-fat-diet (HFD)-induced MASH model mice. Intravenously administered CO-RBCs effectively delivered CO to the MASH liver, where they prevented fat accumulation by promoting fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor induction. They also markedly suppressed Kupffer cell activation and their corresponding anti-inflammatory and antioxidative stress activities in MASH mice. CO-RBCs also helped to restore liver regeneration in mice with HFD-induced MASH by activating AMPK. We confirmed the underlying mechanisms by performing in vitro experiments in RAW264.7 cells and palmitate-stimulated HepG2 cells. Taken together, CO-RBCs show potential as a promising cellular treatment for MASH.
Collapse
Affiliation(s)
- Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Gastroenterology and Hepatology, Saiseikai Kumamoto Hospital, Kumamoto, Japan.
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Gai Kanazawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Victor Tuan Giam Chuang
- Pharmacy Discipline, Curtin Medical School, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, Western Australia, Australia.
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan.
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan.
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States.
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan.
| | - Hiroshi Watanabe
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
12
|
Umemura M, Honda A, Yamashita M, Chida T, Noritake H, Yamamoto K, Honda T, Ichimura-Shimizu M, Tsuneyama K, Miyazaki T, Kurono N, Leung PSC, Gershwin ME, Suda T, Kawata K. High-fat diet modulates bile acid composition and gut microbiota, affecting severe cholangitis and cirrhotic change in murine primary biliary cholangitis. J Autoimmun 2024; 148:103287. [PMID: 39033687 DOI: 10.1016/j.jaut.2024.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Increasing evidence suggests that, in addition to a loss of tolerance, bile acid (BA) modulates the natural history of primary biliary cholangitis (PBC). We focused on the impacts of dietary changes on the immunopathology of PBC, along with alterations in BA composition and gut microbiota. In this study, we have taken advantage of our unique PBC model, a Cyp2c70/Cyp2a12 double knockout (DKO), which includes a human-like BA composition, and develops progressive cholangitis following immunization with the PDC-E2 mimic, 2-octynoic acid (2OA). We compared the effects of a ten-week high-fat diet (HFD) (60 % kcal from fat) and a normal diet (ND) on 2OA-treated DKO mice. Importantly, we report that 2OA-treated DKO mice fed HFD had significantly exacerbated cholangitis, leading to cirrhosis, with increased hepatic expression of Th1 cytokines/chemokines and hepatic fibrotic markers. Serum lithocholic acid (LCA) levels and the ratio of chenodeoxycholic acid (CDCA)-derived BAs to cholic acid-derived BAs were significantly increased by HFD. This was also associated with downregulated expression of key regulators of BA synthesis, including Cyp8b1, Cyp3a11, and Sult2a1. In addition, there were increases in the relative abundances of Acetatifactor and Lactococcus and decreases in Desulfovibrio and Lachnospiraceae_NK4A136_group, which corresponded to the abundances of CDCA and LCA. In conclusion, HFD and HFD-induced alterations in the gut microbiota modulate BA composition and nuclear receptor activation, leading to cirrhotic change in this murine PBC model. These findings have significant implications for understanding the progression of human PBC.
Collapse
Affiliation(s)
- Masahiro Umemura
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1Chuo, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| | - Maho Yamashita
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | - Teruo Miyazaki
- Joint Research Center and Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1Chuo, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
13
|
Liu L, Ning N, Xu S, Chen D, Zhou L, Guo Z, Liang X, Ye X. Double promoter and tandem gene strategy for efficiently expressing recombinant FGF21. Microb Cell Fact 2024; 23:171. [PMID: 38867280 PMCID: PMC11167883 DOI: 10.1186/s12934-024-02447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a promising candidate for treating metabolic disorder diseases and has been used in phase II clinical trials. Currently, metabolic diseases are prevalent worldwide, underscoring the significant market potential of FGF21. Therefore, the production of FGF21 must be effectively improved to meet market demand. RESULTS Herein, to investigate the impact of vectors and host cells on FGF21 expression, we successfully engineered strains that exhibit a high yield of FGF21. Surprisingly, the data revealed that vectors with various copy numbers significantly impact the expression of FGF21, and the results showed a 4.35-fold increase in expression levels. Furthermore, the performance of the double promoter and tandem gene expression construction design surpassed that of the conventional construction method, with a maximum difference of 2.67 times. CONCLUSION By exploring engineered vectors and host cells, we successfully achieved high-yield production of the FGF21 strain. This breakthrough lays a solid foundation for the future industrialization of FGF21. Additionally, FGF21 can be easily, quickly and efficiently expressed, providing a better tool and platform for the research and application of more recombinant proteins.
Collapse
Affiliation(s)
- Longying Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Nuoyi Ning
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Simeng Xu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dongqing Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Luping Zhou
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhimou Guo
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
- Dalian Institute of Chemical Physics, Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
- Dalian Institute of Chemical Physics, Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
14
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Liu Y, Sun Z, Dong R, Liu P, Zhang X, Li Y, Lai X, Cheong HF, Wu Y, Wang Y, Zhou H, Gui D, Xu Y. Rutin ameliorated lipid metabolism dysfunction of diabetic NAFLD via AMPK/SREBP1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155437. [PMID: 38394735 DOI: 10.1016/j.phymed.2024.155437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND In diabetic liver injury, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Rutin is a bioflavonoid produced by the hydrolysis of glucosidases to quercetin. Its biological activities include lowering blood glucose, regulating insulin secretion, regulating dyslipidemia, and exerting anti-inflammatory effects have been demonstrated. However, its effect on diabetic NAFLD is rarely reported. PURPOSE Our study aimed to investigate the protective effects of Rutin on diabetic NAFLD and potential pharmacological mechanism. METHODS We used db/db mice as the animal model to investigate diabetic NAFLD. Oleic acid-treated (OA) HeLa cells were examined whether Rutin had the ability to ameliorate lipid accumulation. HepG2 cells treated with 30 mM/l d-glucose and palmitic acid (PA) were used as diabetic NAFLD in vitro models. Total cholesterol (TC) and Triglycerides (TG) levels were determined. Oil red O staining and BODIPY 493/503 were used to detect lipid deposition within cells. The indicators of inflammation and oxidative stress were detected. The mechanism of Rutin in diabetic liver injury with NAFLD was analyzed using RNA-sequence and 16S rRNA, and the expression of fat-synthesizing proteins in the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway was investigated. Compound C inhibitors were used to further verify the relationship between AMPK and Rutin in diabetic NAFLD. RESULTS Rutin ameliorated lipid accumulation in OA-treated HeLa. In in vitro and in vivo models of diabetic NAFLD, Rutin alleviated lipid accumulation, inflammation, and oxidative stress. 16S analysis showed that Rutin could reduce gut microbiota dysregulation, such as the ratio of Firmicutes to Bacteroidetes. RNA-seq showed that the significantly differentially genes were mainly related to liver lipid metabolism. And the ameliorating effect of Rutin on diabetic NAFLD was through AMPK/SREBP1 pathway and the related lipid synthesis proteins was involved in this process. CONCLUSION Rutin ameliorated diabetic NAFLD by activating the AMPK pathway and Rutin might be a potential new drug ingredient for diabetic NAFLD.
Collapse
Affiliation(s)
- Yadi Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Zhongyan Sun
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Ruixue Dong
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China
| | - Peiyu Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Xi Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yiran Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Xiaoshan Lai
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Hio-Fai Cheong
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yuwei Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yilin Wang
- Department of Metabolic Diseases of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China; Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China.
| |
Collapse
|
16
|
Qi J, Guo Z, Zhu S, Jiang X, Wu Y, Chen Y, Hu F, Xiong J, Wu Y, Ye X, Liang X. Therapeutic effect of long-acting FGF21 with controlled site-specific modification on nonalcoholic steatohepatitis. Int J Biol Macromol 2024; 261:129797. [PMID: 38290625 DOI: 10.1016/j.ijbiomac.2024.129797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
FGF21 plays an active role in the treatment of type 2 diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). However, the short half-life and poor stability of wild-type FGF21 limit its clinical application. Previous studies found that PEGylation can significantly increase the stability of FGF21. However, the uneven distribution of PEGylation sites in FGF21 makes it difficult to purify PEG-FGF21, thereby affecting its yield, purity, and activity. To obtain long-acting FGF21 with controlled site-specific modification, we mutated lysine residues in FGF21, resulting in PEGylation only at the N-terminus of FGF21 (mFGF21). In addition, we modified mFGF21 molecules with different PEG molecules and selected the PEG-mFGF21 moiety with the highest activity. The yield of PEG-mFGF21 in this study reached 1 g/L (purity >99 %), and the purification process was simple and efficient with strong quality controllability. The half-life of PEG-mFGF21 in rats reached 40.5-67.4 h. Pharmacodynamic evaluation in mice with high-fat, high-cholesterol- and methionine and choline deficiency-induced NASH illustrated that PEG-mFGF21 exhibited long-term efficacy in improving liver steatosis and reducing liver cell damage, inflammation, and fibrosis. Taken together, PEG-mFGF21 could represent a potential therapeutic drug for the treatment of NASH.
Collapse
Affiliation(s)
- Jianying Qi
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhimou Guo
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xuan Jiang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yuanyuan Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yingli Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Fei Hu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Jingjing Xiong
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - YunZhou Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
17
|
Murata R, Watanabe H, Iwakiri R, Chikamatsu M, Satoh T, Noguchi I, Yasuda K, Nishinoiri A, Yoshitake T, Nosaki H, Maeda H, Maruyama T. Albumin-fused thioredoxin ameliorates high-fat diet-induced non-alcoholic steatohepatitis. Heliyon 2024; 10:e25485. [PMID: 38352801 PMCID: PMC10861950 DOI: 10.1016/j.heliyon.2024.e25485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The pathogenesis of non-alcoholic steatohepatitis (NASH) involves the simultaneous interaction of multiple factors such as lipid accumulation, oxidative stress, and inflammatory response. Here, the effect of human serum albumin (HSA) fused to thioredoxin (Trx) on NASH was investigated. Trx is known to have anti-oxidative, anti-inflammatory, and anti-apoptotic effects. However, Trx is a low molecular weight protein and is rapidly eliminated from the blood. To overcome the low availability of Trx, HSA-Trx fusion protein was produced and evaluated the therapeutic effect on high-fat diet (HFD)-induced NASH model mice. HSA-Trx administered before the formation of NASH pathology showed it to have a preventive effect. Specifically, HSA-Trx was found to prevent the pathological progression to NASH by suppressing lipid accumulation, liver injury markers, and liver fibrosis. When HSA-Trx was administered during the early stage of NASH there was a marked reduction in lipid accumulation, inflammation, and fibrosis in the liver, indicating that HSA-Trx ameliorates NASH pathology. The findings indicate that HSA-Trx influences multiple pathological factors, such as oxidative stress, inflammation, and apoptosis, to elicit a therapeutic benefit. HSA-Trx also inhibited palmitic acid-induced lipotoxicity in HepG2 cells. Taken together, these results indicate that HSA-Trx has potential as a therapeutic agent for NASH pathology.
Collapse
Affiliation(s)
- Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayuko Chikamatsu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takao Satoh
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kengo Yasuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ayano Nishinoiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takuma Yoshitake
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
18
|
Suwała S, Białczyk A, Koperska K, Rajewska A, Krintus M, Junik R. Prevalence and Crucial Parameters in Diabesity-Related Liver Fibrosis: A Preliminary Study. J Clin Med 2023; 12:7760. [PMID: 38137829 PMCID: PMC10744287 DOI: 10.3390/jcm12247760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes and obesity have been recognized as confirmed risk factors for the occurrence of liver fibrosis. Despite the long-standing acknowledgment of "diabesity", the simultaneous existence of diabetes and obesity, scholarly literature has shown limited attention to this topic. The aim of this pilot study was to assess the prevalence of liver fibrosis among individuals with diabetes (specifically those who are obese) in order to identify the key factors associated with hepatofibrosis and determine the most important associations and differences between patients with and without liver fibrosis. The research included a total of 164 participants (48.17% had comorbid obesity). Liver elastography (Fibroscan) was performed on these individuals in addition to laboratory tests. Liver fibrosis was found in 34.76% of type 2 diabetes patients; male gender almost doubled the risk of hepatofibrosis (RR 1.81) and diabesity nearly tripled this risk (RR 2.81; however, in degree III of obesity, the risk was elevated to 3.65 times higher). Anisocytosis, thrombocytopenia, or elevated liver enzymes raised the incidence of liver fibrosis by 1.78 to 2.47 times. In these individuals, liver stiffness was negatively correlated with MCV, platelet count, and albumin concentration; GGTP activity and HbA1c percentage were positively correlated. The regression analysis results suggest that the concentration of albumin and the activity of GGTP are likely to have a substantial influence on the future management of liver fibrosis in patients with diabesity. The findings of this study can serve as the basis for subsequent investigations and actions focused on identifying potential therapeutic and diagnostic avenues.
Collapse
Affiliation(s)
- Szymon Suwała
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| | - Aleksandra Białczyk
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Kinga Koperska
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Alicja Rajewska
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Magdalena Krintus
- Department of Laboratory Medicine, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| | - Roman Junik
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
19
|
Puengel T, Tacke F. Efruxifermin, an investigational treatment for fibrotic or cirrhotic non-alcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2023. [PMID: 37376813 DOI: 10.1080/13543784.2023.2230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and strongly associated with metabolic disorders: obesity, type 2 diabetes (T2D), cardiovascular disease. Persistent metabolic injury results in inflammatory processes leading to nonalcoholic steatohepatitis (NASH), liver fibrosis and ultimately cirrhosis. To date, no pharmacologic agent is approved for the treatment of NASH. Fibroblast growth factor 21 (FGF21) agonism has been linked to beneficial metabolic effects ameliorating obesity, steatosis and insulin resistance, supporting its potential as a therapeutic target in NAFLD. AREAS COVERED Efruxifermin (EFX, also AKR-001 or AMG876) is an engineered Fc-FGF21 fusion protein with an optimized pharmacokinetic and pharmacodynamic profile, which is currently tested in several phase 2 clinical trials for the treatment of NASH, fibrosis and compensated liver cirrhosis. EFX improved metabolic disturbances including glycemic control, showed favorable safety and tolerability, and demonstrated antifibrotic efficacy according to FDA requirements for phase 3 trials. EXPERT OPINION While some other FGF-21 agonists (e.g. pegbelfermin) are currently not further investigated, available evidence supports the development of EFX as a promising anti-NASH drug in fibrotic and cirrhotic populations. However, antifibrotic efficacy, long-term safety and benefits (i.e. cardiovascular risk, decompensation events, disease progression, liver transplantation, mortality) remain to be determined.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|