1
|
Jakab S, Kaszab E, Marton S, Bányai K, Bálint Á, Nemes I, Szabó I. Genetic diversity of imported PRRSV-2 strains, 2005-2020, Hungary. Front Vet Sci 2022; 9:986850. [PMID: 36304410 PMCID: PMC9595726 DOI: 10.3389/fvets.2022.986850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) remains sporadic in Europe. In this study, we investigated the molecular epidemiology of PRRSV-2 infections encompassing 15 years in Hungary. Partial (423 bp long) ORF5 sequences (n = 44) from 20 Hungarian pig herds were analyzed. The study strains fell into two genetic lineages, L1 and L5, being L5 strains more prevalent (88.6 vs. 11.4%). Pairwise sequence identities within Hungarian representative PRRSV-2 strains ranged between 84.7 to 100% (nucleotide, nt) and 85 to 100% (amino acid, aa). When compared with reference strains, identity values fell between 87 and 100% (L1, nt 87–91%, aa 87–93%, reference strain IAF-exp91; L5, nt 87–100%, aa 88–100%, reference strain Ingelvac MLV). Epidemiologic examination implied that the majority of L5 strains were imported repeatedly from other European countries where Ingelvac MLV was approved for routine use. The emergence of L1 strains was thought to be associated with a single introduction and subsequent dissemination between pig farms of a large integrator. Results presented here contribute to a better understanding of the epizootiology of PRRSV-2 infections and shed light on the genetic diversity of viral strains in non-endemic countries.
Collapse
Affiliation(s)
- Szilvia Jakab
- Veterinary Medical Research Institute, Budapest, Hungary.,National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Budapest, Hungary.,National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Szilvia Marton
- Veterinary Medical Research Institute, Budapest, Hungary.,National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary.,National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medical Research, Budapest, Hungary
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Imre Nemes
- Hungarian Association for Porcine Health Management, Budapest, Hungary
| | - István Szabó
- National PRRS Eradication Committee, Budapest, Hungary
| |
Collapse
|
2
|
Jeong CG, Nazki S, Kim SC, Khatun A, Noh YH, Lee DU, Kang SC, Seo BJ, Yang MS, Lee SI, Yoon IJ, Kim B, Kim WI. Comparison of the pathogenicity of porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 in pregnant sows. Arch Virol 2022; 167:425-439. [PMID: 35079900 DOI: 10.1007/s00705-021-05303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
To date, few studies related to the evaluation of the pathogenicity of different PRRSV isolates using a reproductive model have been undertaken, and the main focus has remained on respiratory models using young pigs. This study aimed to evaluate the pathogenicity of two PRRSV-1 isolates (D40 and CBNU0495) and two PRRSV-2 isolates (K07-2273 and K08-1054) in a reproductive model. Pregnant sows were experimentally infected with PRRSV at gestational day 93 or used as an uninfected negative control. Sera were collected at 0, 3, 7, 14, and 19 days post-challenge (dpc) for virological and serological assays. At 19 dpc, all sows were euthanized, and their fetuses were recovered by performing cesarean section and immediately euthanized for sample collection. Here, compared to the other isolates, the CBNU0495 isolate replicated most efficiently in the pregnant sows, and K07-2273 produced the highest rate of reproductive failure even though it did not replicate as efficiently as the other isolates in sows and fetuses, indicating that vertical transmission and reproductive failure due to PRRSV infection do not have any significant correlation with the viral loads in samples from sows and fetuses. Similarly, the viral loads and the histopathological lesions did not show any correlation with each other, as the PRRSV-2-infected groups displayed more prominent and frequent histopathological lesions with lower viral loads than the PRRSV-1-infected groups. However, viral loads in the myometrium/endometrium might be related to the spreading of PRRSV in the fetuses, which affected the birth weight of live fetuses. This study contributes to a better understanding of the pathogenicity of the most prevalent Korean PRRSVs in a reproductive model.
Collapse
Affiliation(s)
- Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.,The Pirbright Institute, Pirbright, UK
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Yun-Hee Noh
- ChoongAng Vaccine Laboratory, Daejeon, 34055, Republic of Korea
| | - Dong-Uk Lee
- ChoongAng Vaccine Laboratory, Daejeon, 34055, Republic of Korea
| | | | - Byoung-Joo Seo
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - In-Joong Yoon
- ChoongAng Vaccine Laboratory, Daejeon, 34055, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
3
|
Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9020185. [PMID: 33671826 PMCID: PMC7926738 DOI: 10.3390/vaccines9020185] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) presents one of the challenging viral pathogens in the global pork industry. PRRS is characterized by two distinct clinical presentations; reproductive failure in breeding animals (gilts, sows, and boars), and respiratory disease in growing pigs. PRRSV is further divided into two species: PRRSV-1 (formerly known as the European genotype 1) and PRRSV-2 (formerly known as the North American genotype 2). A PRRSV-2 modified-live virus (MLV) vaccine was first introduced in North America in 1994, and, six years later, a PRRSV-1 MLV vaccine was also introduced in Europe. Since then, MLV vaccination is the principal strategy used to control PRRSV infection. Despite the fact that MLV vaccines have shown some efficacy, they were problematic as the efficacy of vaccine was often unpredictable and depended highly on the field virus. This paper focused on the efficacy of commercially available MLV vaccines at a global level based on respiratory disease in growing pigs, and maternal and paternal reproductive failure in breeding animals.
Collapse
|
4
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Barranco I, Carrasco L, Gómez-Laguna J. Activation of the extrinsic apoptotic pathway in the thymus of piglets infected with PRRSV-1 strains of different virulence. Vet Microbiol 2020; 243:108639. [PMID: 32273018 DOI: 10.1016/j.vetmic.2020.108639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/17/2022]
Abstract
In the last decade, the outbreaks caused by virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains from both PRRSV-1 and PRRSV-2 have considerably increased. PRRSV is able to modulate the host's immune response through the induction of apoptosis of cells in lymphoid organs like thymus, increasing the susceptibility to secondary infectious agents. The present study aimed to compare the impact of two PRRSV-1 strains, a field low virulent strain (3249 strain) and a virulent strain (Lena strain), in the thymus of infected pigs, focusing on clinical signs, histological analysis, viraemia, thymus viral load and the study of the different routes of apoptosis phenomena by immunohistochemistry. Sera and thymus samples were collected from infected animals with 3249 strain, Lena strain and mock-infected animals at 1, 3, 6, 8 and 13 days post-infection (dpi). Lena-infected animals showed severe clinical disease, high sera and thymus viral loads with evident thymic atrophy since 6 dpi, matching with PRRSV-N protein, TUNEL and cCasp3 expression in the thymic cortex. In both infected groups, there was an increase in the number of cells expressing molecules related to the extrinsic pathway of apoptosis (cCasp8 and Fas) in cortex and medulla, showing an important role in the apoptosis induction produced in thymus of PRRSV-infected piglets. The extensive apoptosis in the thymus through this pathway would lead to a decrease in the number of mature T lymphocytes and the sustained release of viral particles, which may explain the greater severity of the clinical signs observed in Lena-infected pigs.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - Inmaculada Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
5
|
Yang S, Oh T, Cho H, Chae C. A comparison of commercial modified-live PRRSV-1 and PRRSV-2 vaccines against a dual heterologous PRRSV-1 and PRRSV-2 challenge in late term pregnancy gilts. Comp Immunol Microbiol Infect Dis 2020; 69:101423. [PMID: 31972500 DOI: 10.1016/j.cimid.2020.101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/28/2022]
Abstract
This study compared the efficacy, in terms of reproductive performance, of a porcine reproductive and respiratory syndrome virus (PRRSV)-1 or PRRSV-2 modified-live virus (MLV) vaccine against a dual heterologous PRRSV-1 and PRRSV-2 challenge. Gilts were administered either the PRRSV-1 or PRRSV-2 MLV vaccine at 21 days prior to breeding and were challenged intranasally with both PRRSV species at day 93 of gestation. Vaccination of gilts with PRRSV-2 MLV vaccine resulted in improved reproductive performance in sows (e.g. duration of pregnancy) and piglet health and overall viability (e.g. increase of the number of live-born and weaned pigs, and decrease of stillborn). Vaccination of gilts with PRRSV-1 MLV vaccine was able to reduce only PRRSV-1 viremia in contrast, PRRSV-2 MLV vaccine was able to reduce both PRRSV-1 and PRRSV-2 viremia. Vaccination of gilts with PRRSV-2 MLV induced higher numbers of PRRSV-2 specific interferon-γ secreting cells (IFN-γ-SC) compared to the PRRSV-1 MLV while there was no difference in the number of PRRSV-1 specific IFN-γ-SC between the two vaccines. Taken together, the results presented here suggest that vaccination of gilts with the PRRSV-2 MLV vaccine is more efficacious against dual heterologous PRRSV-1 and PRRSV-2 challenge compared to the PRRSV-1 MLV vaccine.
Collapse
Affiliation(s)
- Siyeon Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyejean Cho
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Wang G, Yu Y, Cai X, Zhou EM, Zimmerman JJ. Effects of PRRSV Infection on the Porcine Thymus. Trends Microbiol 2019; 28:212-223. [PMID: 31744664 DOI: 10.1016/j.tim.2019.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) dramatically affects the thymus and its ability to carry out its normal functions. In particular, infection incapacitates PRRSV-susceptible CD14pos antigen-presenting cells (APCs) in the thymus and throughout the body. PRRSV-induced autophagy in thymic epithelial cells modulates the development of T cells, and PRRSV-induced apoptosis in CD4posCD8pos thymocytes modulates cellular immunity against PRRSV and other pathogens. Pigs are less able to resist and/or eliminate secondary infectious agents due the effect of PRRSV on the thymus, and this susceptibility phenomenon is long recognized as a primary characteristic of PRRSV infection.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Ying Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
7
|
Efficacy of concurrent vaccination with modified-live PRRSV-1 and PRRSV-2 vaccines against heterologous dual PRRSV-1 and PRRSV-2 challenge in late term pregnancy gilts. Vet Microbiol 2019; 239:108497. [PMID: 31767085 DOI: 10.1016/j.vetmic.2019.108497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effect of concurrent vaccination with a porcine reproductive and respiratory syndrome virus (PRRSV)-1 modified-live virus (MLV) vaccine and a PRRSV-2 MLV vaccine against a dual heterologous PRRSV-1 and PRRSV-2 challenge in late term pregnancy gilts. Gilts were concurrently administered PRRSV-1 and PRRSV-2 MLV vaccines at 21 days prior to breeding at separate anatomical sites and were inoculated intranasally with both PRRSV types at 93 days of gestation. Vaccinated gilts had a higher number of live-born and weaned pigs, and a decrease in stillbirths compared to the unvaccinated control group following a dual challenge. Concurrent vaccination resulted also in the reduction of both PRRSV-1 and PRRSV-2 viremia which correlated with an increase in the number of PRRSV-1 and PRRSV-2 specific interferon-γ secreting cells (IFN-γ-SC). We believe the T cell responses contributed to the reduction of both PRRSV-1 and PRRSV-2 viremia. The results presented here demonstrate that concurrent vaccination with PRRSV-1 and PRRSV-2 MLV vaccines improves reproductive performance, reduces viremia of PRRSV-1 and PRRSV-2, and induces protective T cell reactions against dual PRRSV-1 and PRRSV-2 challenge in late term pregnancy gilts without local and systemic adverse reactions related to concurrent vaccination.
Collapse
|
8
|
Oh T, Kim H, Park KH, Jeong J, Yang S, Kang I, Chae C. Comparison of four commercial PRRSV MLV vaccines in herds with co-circulation of PRRSV-1 and PRRSV-2. Comp Immunol Microbiol Infect Dis 2019; 63:66-73. [PMID: 30961820 DOI: 10.1016/j.cimid.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
Abstract
The efficacy of four commercial porcine reproductive and respiratory syndrome virus (PRRSV) modified-live virus (MLV) vaccines against respiratory disease was evaluated and compared in pig farms suffering from co-infection with PRRSV-1 and PRRSV-2. All vaccinated groups on average exhibited improved growth rate compared to the unvaccinated pigs. Interestingly, the two groups vaccinated with either of the PRRSV-2 MLV vaccines had a better overall growth rate compared to the pigs vaccinated with either of the PRRSV-1 MLV vaccines. Vaccination of pigs with either of the PRRSV-1 MLV vaccines did not result in reduction of PRRSV-1 or PRRSV-2 viremia whereas vaccination of pigs with either of the PRRSV-2 MLV vaccines resulted in the reduction of PRRSV-2 viremia only. Taken together, the results of this field study demonstrate that a PRRSV-2 MLV vaccine can be efficacious against respiratory disease caused by co-infection with PRRSV-1 and PRRSV-2.
Collapse
Affiliation(s)
- Taehwan Oh
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hanjin Kim
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kee Hwan Park
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiwoon Jeong
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Siyeon Yang
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ikjae Kang
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chanhee Chae
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Jeong J, Park C, Oh T, Park KH, Yang S, Kang I, Park SJ, Chae C. Cross-protection of a modified-live porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine against a heterologous PRRSV-1 challenge in late-term pregnancy gilts. Vet Microbiol 2018; 223:119-125. [PMID: 30173737 DOI: 10.1016/j.vetmic.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 11/29/2022]
Abstract
We have evaluated the cross-protection of a modified-live virus (MLV) vaccine based on porcine reproductive and respiratory syndrome virus (PRRSV)-2, against a heterologous PRRSV-1 challenge in late term pregnancy gilts. Gilts were vaccinated 42 days prior to breeding and then challenged intranasally with PRRSV-1 at 93 days of gestation. No local or systemic adverse effects related to vaccination were observed in the vaccinated gilts throughout the study. Vaccination resulted in a longer gestation period, a higher number of live-born and weaned piglets, and a significant decrease in the number of stillborn piglets compared to the unvaccinated group. The PRRSV-2 MLV vaccine was also able to significantly reduce PRRSV-1 viremia. At the time of PRRSV-1 challenge, vaccinated gilts had significantly higher PRRSV-1 specific interferon-γ secreting cells but low neutralizing antibody titers against PRRSV-1 compared to unvaccinated gilts. This correlated with a reduction of PRRSV-1 viremia, indicating that cell-mediated rather than humoral immunity played a role in PRRSV-1 clearance from the blood. Fetal thymic tissues from vaccinated pregnant gilts had fewer PRRSV-1 positive cells compared to unvaccinated gilts. Taken together these results indicate that vaccination of gilts with PRRSV-2 MLV vaccine can provide cross-protection against PRRSV-1 challenge and improve reproductive performance.
Collapse
Affiliation(s)
- Jiwoon Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changhoon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kee Hwan Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Siyeon Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ikjae Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Su-Jin Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Jeong J, Kang I, Park C, Kim S, Park SJ, Park KH, Oh T, Yang S, Yoon JS, Lee O, Chae C. A comparison of the severity of reproductive failure between single and dual infection with porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 in late-term pregnancy gilts. Transbound Emerg Dis 2018; 65:1641-1647. [PMID: 29877065 DOI: 10.1111/tbed.12921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
The objective of this study was to compare the severity of reproductive failure caused by either a single or a dual infection with porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 in late-term pregnancy gilts. Pregnant gilts were intranasally administered PRRSV-1, PRRSV-2 or both at 3 weeks before the expected farrowing date (93 days of gestation). Regardless of single and dual infection, PRRSV-infected pregnant gilts experienced premature farrowing (103-109 days of gestation) compared with negative control gilts which carried their pregnancy to full term (114-115 days of gestation). Pregnant gilts infected with only PRRSV-1 had a significantly (p < 0.05) higher number of genomic copies of PRRSV-1 in their blood compared with dually infected gilts. Additionally, stillborn foetuses and live-born piglets from pregnant gilts infected with only PRRSV-1 had a significantly (p < 0.05) higher number of PRRSV-1-positive cells per unit area of tissue sections examined, compared to pregnant gilts dually infected with PRRSV-1 and PRRSV-2. In contrast, pregnant gilts infected with only PRRSV-2 showed no difference in the number of genomic copies of PRRSV-2 compared with dually infected pregnant gilts and there were no significant differences in PRRSV-2-positive cells per unit area in tissues of stillborn foetuses and live-born piglets from pregnant gilts infected with PRRSV-2 only compared with dually infected gilts. Interestingly, even though PRRSV-2 was shown to replicate more efficiently compared with PRRSV-1 in dually infected pregnant gilts, neither PRRSV type was able to exacerbate reproductive failure in pregnant gilts already dually infected with PRRSV-1 and PRRSV-2. Our results suggest that the severity of reproductive failure is similar between dual (PRRSV-1 and PRRSV-2) and single infection (PRRSV-1 or PRRSV-2).
Collapse
Affiliation(s)
- Jiwoon Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ikjae Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Changhoon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seeun Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Su-Jin Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kee Hwan Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Siyeon Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | - Ohhyung Lee
- CJ Cheiljedang Center, CJ CHEILJEDANG, Seoul, Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Jeong J, Kim S, Park C, Kang I, Park KH, Ham HJ, Chae C. Effect of vaccination with a porcine reproductive and respiratory syndrome subunit vaccine on sow reproductive performance in endemic farms. Vet Rec 2018; 182:602. [DOI: 10.1136/vr.104547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/29/2018] [Accepted: 02/25/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Jiwoon Jeong
- Department of Veterinary Pathology; College of Veterinary Medicine, Seoul National University; Seoul Republic of Korea
| | - Seeun Kim
- Department of Veterinary Pathology; College of Veterinary Medicine, Seoul National University; Seoul Republic of Korea
| | - Changhoon Park
- Department of Veterinary Pathology; College of Veterinary Medicine, Seoul National University; Seoul Republic of Korea
| | - Ikjae Kang
- Department of Veterinary Pathology; College of Veterinary Medicine, Seoul National University; Seoul Republic of Korea
| | - Kee Hwan Park
- Department of Veterinary Pathology; College of Veterinary Medicine, Seoul National University; Seoul Republic of Korea
| | - Hee Jin Ham
- College of Liberal Arts, Anyang University; Anyang Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology; College of Veterinary Medicine, Seoul National University; Seoul Republic of Korea
| |
Collapse
|
12
|
Jeong J, Kang I, Kim S, Park SJ, Park KH, Oh T, Yang S, Chae C. A modified-live porcine reproductive and respiratory syndrome virus (PRRSV)-1 vaccine protects late-term pregnancy gilts against heterologous PRRSV-1 but not PRRSV-2 challenge. Transbound Emerg Dis 2018. [PMID: 29536637 DOI: 10.1111/tbed.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to determine the efficacy of a commercially available porcine reproductive and respiratory syndrome virus (PRRSV)-1 modified-live virus (MLV) vaccine against PRRSV-1 and PRRSV-2 challenge in late-term pregnancy gilts. Gilts were vaccinated with the PRRSV-1 MLV vaccine at 4 weeks prior to breeding and then challenged intranasally with PRRSV-1 or PRRSV-2 at 93 days of gestation. After PRRSV-1 challenge, vaccinated pregnant gilts had a significantly longer gestation period, significantly higher numbers of live-born and weaned piglets and a significantly lower number of stillborn piglets at birth compared to unvaccinated pregnant gilts. No significant improvement in reproductive performance was observed between vaccinated and unvaccinated pregnant gilts following PRRSV-2 challenge. Vaccinated pregnant gilts also exhibited a significantly improved reproductive performance after challenge with PRRSV-1 compared to vaccinated pregnant gilts following PRRSV-2 challenge. The PRRSV-1 MLV vaccine was able to reduce PRRSV-1 but not PRRSV-2 viremia in pregnant gilts. Vaccinated gilts also showed a significantly higher number of PRRSV-1-specific IFN-γ-secreting cells (IFN-γ-SC) compared to PRRSV-2-specific IFN-γ-SC. The data presented here suggest that the vaccination of pregnant gilts with a PRRSV-1 MLV vaccine provides good protection against PRRSV-1 but only limited protection against PRRSV-2 challenge in late-term pregnancy gilts based on improvement of reproductive performance, reduction in viremia and induction of IFN-γ-SC.
Collapse
Affiliation(s)
- J Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - I Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - S Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - S-J Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - K H Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - T Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - S Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - C Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Abstract
Epidemiological investigations were conducted on recently emerging porcine reproductive and respiratory syndrome virus (PRRSV) strains in Shandong province in 2014–2015. The proportion of the NADC30 strain identified by ORF7 sequence alignment has been gradually increasing. Three emerging PRRSV strains were successfully isolated, and the complete genomic sequences were determined. Our results indicate the importance of recombinant strains in Shandong province, China. There was a varied degree of recombination of two or three strains (classical, HP-PRRSV and/or NADC30). Moreover, the recombination strains affected the pathogenicity of newly emerged strains.
Collapse
|
14
|
Liu C, Ning Y, Xu B, Gong W, Zhang D. Analysis of genetic variation of porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Central China. J Vet Med Sci 2016; 78:641-8. [PMID: 26781704 PMCID: PMC4873856 DOI: 10.1292/jvms.15-0570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an epidemic etiology in
pigs of all ages causing reproductive failure and respiratory manifestation. PRRSV has
been circulating in Chinese pig farms for almost 20 years. The aim of the present study
was to fully understand the extent of the genetic diversity and molecular characteristics
of PRRSVs in Central China. A strain of PRRSV isolated from a recent outbreak farm in
Hunan province in Central China, designated HUN-2014, was sequenced and analyzed with 39
other PRRSVs from 1998 to 2014 in Central China. Comparative results of genomic sequences
revealed that all 40 PRRSVs belonged to the North American genotype (NA genotype) and
shared 88.8–99.0% homology. Phylogenetic analysis showed three subgenotypes, namely
conventional PRRSV (C-PRRSV), specially mutant PRRSV (S-PRRSV) and highly pathogenic PRRSV
(HP-PRRSV), in all 40 PRRSVs. Moreover, comparative analysis of amino acid (AA) sequences
of NSP2, GP3, GP5 and ORF5a revealed the main evolution trend of PRRSVs in Central China
from 1998 to 2014, which was from C-PRRSV to HP-PRRSV, accompanied by different evolving
directions to S-PRRSV. In conclusion, both the major evolutionary trend and special
features of genetic variation should be emphasized as theoretical basis for development of
new vaccines and control strategies for PRRS.
Collapse
Affiliation(s)
- Can Liu
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing 100081, China
| | | | | | | | | |
Collapse
|
15
|
Park C, Kim T, Choi K, Jeong J, Kang I, Park SJ, Chae C. Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-Modified Live Vaccines Reduce Seminal Shedding of Type 1 PRRSV but not Type 2 PRRSV in Infected Boars. Transbound Emerg Dis 2015; 64:194-203. [PMID: 25879825 DOI: 10.1111/tbed.12361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to compare the effects of two commercial type 1 porcine reproductive and respiratory syndrome virus (PRRSV)-modified live vaccines on type 1 and type 2 PRRSV shedding in the semen of experimentally infected boars. Upon challenge with PRRSV, unvaccinated boars exhibited an increase in daily rectal temperature (39.4-39.7°C). Vaccination of boars with type 1 PRRSV significantly reduced the amount of type 1 PRRSV load in blood and semen after challenge with type 1 PRRSV, but barely reduced the amount of type 2 PRRSV load in blood and semen after the type 2 PRRSV challenge. There were no significant differences in the reduction of viremia and seminal shedding of type 1 and type 2 PRRSV between the two commercial vaccines. The seminal shedding of PRRSV is independent of viremia. The reduction of type 1 PRRSV seminal shedding coincided with the appearance of type 1 PRRSV-specific interferon-γ secreting cells (IFN-γ-SC) in vaccinated type 1 PRRSV-challenged boars. The frequencies of type 1 PRRSV-specific IFN-γ-SC induced by type 1 PRRSV vaccine are relatively high compared to type 2 PRRSV-specific IFN-γ-SC induced by the same vaccine which may explain why type 1 PRRSV vaccine is more effective in reducing seminal shedding of type 1 PRRSV when compared to type 2 PRRSV in vaccinated challenged boars. These results provide clinical information on how to reduce seminal shedding of type 1 PRRSV in boars using type 1 PRRSV-modified live vaccine.
Collapse
Affiliation(s)
- C Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - T Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - K Choi
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - J Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - I Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - S-J Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - C Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Morgan SB, Frossard JP, Pallares FJ, Gough J, Stadejek T, Graham SP, Steinbach F, Drew TW, Salguero FJ. Pathology and Virus Distribution in the Lung and Lymphoid Tissues of Pigs Experimentally Inoculated with Three Distinct Type 1 PRRS Virus Isolates of Varying Pathogenicity. Transbound Emerg Dis 2014; 63:285-95. [PMID: 25382098 DOI: 10.1111/tbed.12272] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 12/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) continues to be the most economically important disease of swine worldwide. The appearance of highly pathogenic PRRS virus (PRRSV) strains in Europe and Asia has raised concerns about this disease and initiated increased efforts to understand the pathogenesis. In this study, we have compared the pathology and the virus distribution in tissues of pigs experimentally inoculated with three different genotype 1 PRRSV isolates. Sixty 5-week-old pigs were inoculated intranasally with a) the Lelystad virus (LV), b) a field strain from the UK causing respiratory clinical signs (UK) or c) a highly pathogenic strain from Belarus (BE). Sixteen animals were mock-infected and used as controls. The animals were euthanized at 3, 7 and 35 days post-infection (dpi), and lung and lymphoid tissues collected for histopathological examination and PRRSV detection by immunohistochemistry (IHC). Histopathological lesions consisted of interstitial pneumonia with mononuclear cell infiltrates in the lungs, lymphoid depletion, apoptosis and follicular hyperplasia in the spleen, lymph nodes and tonsil and lymphoid depletion in the thymus. Porcine reproductive and respiratory syndrome virus was detected mainly in monocytes-macrophages. BE-infected animals showed the highest pathological scores and the highest presence of virus at 3 and 7 dpi, followed by the UK field strain and then LV. Moderate lesions were observed at 35 dpi with lesser detection of PRRSV by IHC in each infected group. The highly pathogenic BE strain induced more severe pathology in both lungs and lymphoid organs of pigs compared with the classic field isolate and the prototype LV. The increased severity of pathology was in correlation with the presence of a higher number of PRRSV-infected cells in the tissues.
Collapse
Affiliation(s)
- S B Morgan
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, UK.,Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - J P Frossard
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, UK
| | - F J Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Murcia University, Murcia, Spain.,Department of Pathology, Animal Health and Veterinary Laboratories Agency, Addlestone, UK
| | - J Gough
- Department of Pathology, Animal Health and Veterinary Laboratories Agency, Addlestone, UK
| | - T Stadejek
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - S P Graham
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, UK
| | - F Steinbach
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, UK
| | - T W Drew
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, UK
| | - F J Salguero
- Department of Pathology, Animal Health and Veterinary Laboratories Agency, Addlestone, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|