1
|
Li C, Liang Y, Lu Q, Lin Y, Wen S, Luo X, Huang S, Zhong X, Xu Z, Wang F. Protective effect of serum carotenoids on mortality among metabolic syndrome patients: attenuated by lipid-lowering drugs. Nutr J 2025; 24:27. [PMID: 39972496 PMCID: PMC11837722 DOI: 10.1186/s12937-025-01092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Limited evidence exists about the relationship between serum carotenoid and mortality in metabolic syndrome (MetS) patients, and the effects of medication use on this association remains unclear. METHODS The study encompassed 2,521 MetS patients from the National Health and Nutrition Examination Survey (NHANES) 2001-2006 and 2017-2018. A total of 7 serum carotenoids were evaluated. Death data were sourced from the National Death Index, with causes assessed using ICD-10 codes. Bayesian kernel machine regression (BKMR) and random survival forest (RSF) were utilized to investigate serum carotenoid mixture on mortality and identify key carotenoids. "Qgcompint" R package was used to explore the modifying effects of medication use. RESULTS The serum carotenoid levels at baseline ranged from 0.04 to 1.37 µmol/L. During a follow-up of 15.1 years, there were 696 deaths (27.61%), with 247 (35.49%) by cardiovascular disease (CVD), 148 (21.26%) by cancer, and 301 (43.25%) by other diseases. Individual and combined serum carotenoids were negatively associated with all-cause mortality (HR range:0.70-0.88, 95%CI range:0.56-0.99, all P < 0.05). α-carotene (VIMP = 0.223 in RSF) and lutein/zeaxanthin (PIP = 1.000 in BKMR) emerged as the greatest contributors to all-cause mortality. Lipid-lowering drugs attenuate the negative effect of serum carotenoids on MetS patients' mortality (Pint = 0.014). CONCLUSION The present study identified a protective effect of serum carotenoid on mortality in MetS patients, which was probably weakened by lipid-lowering drugs. Early dietary interventions for MetS patients taking lipid-lowering drugs, particularly those rich in carotenoids like α-carotene and lutein/zeaxanthin, could help reduce mortality.
Collapse
Affiliation(s)
- Chunxiang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanlan Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiuyuan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanxin Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shifeng Wen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shiping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Zhong
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - ZhangJian Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
O'Hearn LA. Signals of energy availability in sleep: consequences of a fat-based metabolism. Front Nutr 2024; 11:1397185. [PMID: 39267859 PMCID: PMC11390529 DOI: 10.3389/fnut.2024.1397185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Humans can flexibly switch between two primary metabolic modes, usually distinguished by whether substrate supply from glucose can meet energy demands or not. However, it is often overlooked that when glucose use is limited, the remainder of energy needs may still be met more or less effectively with fat and ketone bodies. Hence a fat-based metabolism marked by ketosis is often conflated with starvation and contexts of inadequate energy (including at the cellular level), even when energy itself is in ample supply. Sleep and satiation are regulated by common pathways reflecting energy metabolism. A conceptual analysis that distinguishes signals of inadequate energy in a glucose-dominant metabolism from signals of a fat-based metabolism that may well be energy sufficient allows a reexamination of experimental results in the study of sleep that may shed light on species differences and explain why ketogenic diets have beneficial effects simultaneously in the brain and the periphery. It may also help to distinguish clinically when a failure of a ketogenic diet to resolve symptoms is due to inadequate energy rather than the metabolic state itself.
Collapse
|
3
|
Bosch-Sierra N, Grau-del Valle C, Salom C, Zaragoza-Villena B, Perea-Galera L, Falcón-Tapiador R, Rovira-Llopis S, Morillas C, Monleón D, Bañuls C. Effect of a Very Low-Calorie Diet on Oxidative Stress, Inflammatory and Metabolomic Profile in Metabolically Healthy and Unhealthy Obese Subjects. Antioxidants (Basel) 2024; 13:302. [PMID: 38539836 PMCID: PMC10967635 DOI: 10.3390/antiox13030302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 10/07/2024] Open
Abstract
The purpose of the study was to determine the impact of weight loss through calorie restriction on metabolic profile, and inflammatory and oxidative stress parameters in metabolically healthy (MHO) and unhealthy (MUHO) obese individuals. A total of 74 subjects (34 MHO and 40 MUHO) received two cycles of a very low-calorie diet, alternating with a hypocaloric diet for 24 weeks. Biochemical, oxidative stress, and inflammatory markers, as well as serum metabolomic analysis by nuclear magnetic resonance, were performed at baseline and at the end of the intervention. After the diet, there was an improvement in insulin resistance, as well as a significant decrease in inflammatory parameters, enhancing oxidative damage, mitochondrial membrane potential, glutathione, and antioxidant capacity. This improvement was more significant in the MUHO group. The metabolomic analysis showed a healthier profile in lipoprotein profile. Lipid carbonyls also decrease at the same time as unsaturated fatty acids increase. We also display a small decrease in succinate, glycA, alanine, and BCAAs (valine and isoleucine), and a slight increase in taurine. These findings show that moderate weight reduction leads to an improvement in lipid profile and subfractions and a reduction in oxidative stress and inflammatory markers; these changes are more pronounced in the MUHO population.
Collapse
Affiliation(s)
- Neus Bosch-Sierra
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Carmen Grau-del Valle
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Christian Salom
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Begoña Zaragoza-Villena
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Laura Perea-Galera
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Rosa Falcón-Tapiador
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Susana Rovira-Llopis
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
- Department of Physiology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| |
Collapse
|
4
|
Javadi B, Sobhani Z. Role of apigenin in targeting metabolic syndrome: A systematic review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:524-534. [PMID: 38629096 PMCID: PMC11017844 DOI: 10.22038/ijbms.2024.71539.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/03/2023] [Indexed: 04/19/2024]
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that has a high prevalence worldwide. Apigenin is a flavonoid present in several vegetables and fruits and has anti-inflammatory, anti-oxidant, and anti-MetS properties. This study aims to systematically review the effects of apigenin against MetS and the relevant molecular and cellular mechanisms of action, pharmacokinetics features, and potential structure-activity relationship. Electronic databases including Scopus, PubMed, Science Direct and Cochrane Library were searched for in vivo, and in vitro, and human studies with the following keywords: "apigenin" and "metabolic syndrome or insulin resistance syndrome", "fatty liver", "hypertension or blood pressure", "diabetes or blood glucose", "dyslipidemia", "heart or cardiovascular " and "obesity" in title/abstract. Data were collected from 2000 until 2021 (up to April). Only papers published in the English language were included. Forty-six full-text articles out of 1016 retrieved papers were reviewed and underwent quality assessment by investigators. Anti-obesity activity of apigenin is mainly through attenuating adipocyte differentiation by suppressing the mitotic clonal expansion and the adipogenesis-related factors. Its anti-diabetic effects can be exerted through inhibition of protein tyrosine phosphatase1B expression, maintaining the activity of anti-oxidant enzymes, reducing intracellular ROS production, cellular DNA damage, protein carbonylation, and attenuating β-cell apoptosis. Moreover, apigenin could attenuate dyslipidemia and subsequent atherosclerotic conditions through down-regulating sterol regulatory element-binding proteins (SREBP)-1c, SREBP-2, stearyl-CoA desaturase-1, and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Apigenin as a dietary bioactive compound would be a promising candidate for improving MetS and its components.
Collapse
Affiliation(s)
- Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sobhani
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wan S, Xie J, Liang Y, Yu X. Pathological roles of bone marrow adipocyte-derived monocyte chemotactic protein-1 in type 2 diabetic mice. Cell Death Discov 2023; 9:412. [PMID: 37957155 PMCID: PMC10643445 DOI: 10.1038/s41420-023-01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a prevalent public health concern, with beta-cell dysfunction involved in its pathogenesis. Bone marrow adipose tissue (BMAT) increases in both the quantity and area in individuals with T2DM along with heightened monocyte chemotactic protein-1 (MCP-1) secretion. This study aims to investigate the influence and underlying mechanisms of MCP-1 originating from bone marrow adipocytes (BMAs) on systemic glucose homeostasis in T2DM. Initially, a substantial decrease in the proliferation and glucose-stimulated insulin secretion (GSIS) of islet cells was observed. Moreover, a comparative analysis between the control (Ctrl) group and db/db mice revealed significant alterations in the gene expression profiles of whole bone marrow cells, with a noteworthy upregulation of Mcp-1. And the primary enriched pathways included chemokine signaling pathway and AGE-RAGE signaling pathway in diabetic complications. In addition, the level of MCP-1 was distinctly elevated in BMA-derived conditional media (CM), leading to a substantial inhibition of proliferation, GSIS and the protein level of phosphorylated Akt (p-Akt) in Min6 cells. After blocking MCP-1 pathway, we observed a restoration of p-Akt and the proliferation of islet cells, resulting in a marked improvement in disordered glucose homeostasis. In summary, there is an accumulation of BMAs in T2DM, which secrete excessive MCP-1, exacerbating the abnormal accumulation of BMAs in the bone marrow cavity through paracrine signaling. The upregulated MCP-1, in turn, worsens glucose metabolism disorder by inhibiting the proliferation and insulin secretion of islet cells through an endocrine pathway. Inhibiting MCP-1 signaling can partially restore the proliferation and insulin secretion of islet cells, ultimately ameliorating glucose metabolism disorder. It's worth noting that to delve deeper into the impact of MCP-1 derived from BMAs on islet cells and its potential mechanisms, it is imperative to develop genetically engineered mice with conditional Mcp-1 knockout from BMAs.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Liang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Al-Kuraishy HM, Jabir MS, Albuhadily AK, Al-Gareeb AI, Rafeeq MF. The link between metabolic syndrome and Alzheimer disease: A mutual relationship and long rigorous investigation. Ageing Res Rev 2023; 91:102084. [PMID: 37802319 DOI: 10.1016/j.arr.2023.102084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
It has been illustrated that metabolic syndrome (MetS) is associated with Alzheimer disease (AD) neuropathology. Components of MetS including central obesity, hypertension, insulin resistance (IR), and dyslipidemia adversely affect the pathogenesis of AD by different mechanisms including activation of renin-angiotensin system (RAS), inflammatory signaling pathways, neuroinflammation, brain IR, mitochondrial dysfunction, and oxidative stress. MetS exacerbates AD neuropathology, and targeting of molecular pathways in MetS by pharmacological approach could a novel therapeutic strategy in the management of AD in high risk group. However, the underlying mechanisms of these pathways in AD neuropathology are not completely clarified. Therefore, this review aims to elucidate the association between MetS and AD regarding the oxidative and inflammatory mechanistic pathways.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of technology, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
7
|
Li C, Liu X, Adhikari BK, Chen L, Liu W, Wang Y, Zhang H. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: an overview of pathophysiology, evaluation, and management. Front Endocrinol (Lausanne) 2023; 14:1167952. [PMID: 37260440 PMCID: PMC10229094 DOI: 10.3389/fendo.2023.1167952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
In recent decades, the epicardial adipose tissue (EAT) has been at the forefront of scientific research because of its diverse role in the pathogenesis of cardiovascular diseases (CVDs). EAT lies between the myocardium and the visceral pericardium. The same microcirculation exists both in the epicardial fat and the myocardium. Under physiological circumstances, EAT serves as cushion and protects coronary arteries and myocardium from violent distortion and impact. In addition, EAT acts as an energy lipid source, thermoregulator, and endocrine organ. Under pathological conditions, EAT dysfunction promotes various CVDs progression in several ways. It seems that various secretions of the epicardial fat are responsible for myocardial metabolic disturbances and, finally, leads to CVDs. Therefore, EAT might be an early predictor of CVDs. Furthermore, different non-invasive imaging techniques have been proposed to identify and assess EAT as an important parameter to stratify the CVD risk. We also present the potential therapeutic possibilities aiming at modifying the function of EAT. This paper aims to provide overview of the potential role of EAT in CVDs, discuss different imaging techniques to assess EAT, and provide potential therapeutic options for EAT. Hence, EAT may represent as a potential predictor and a novel therapeutic target for management of CVDs in the future.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Liu
- School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | | | - Liping Chen
- Department of Echocardiography, Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyun Liu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| |
Collapse
|
8
|
Kim HR, Ingram JL, Que LG. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J Asthma Allergy 2023; 16:481-499. [PMID: 37181453 PMCID: PMC10171222 DOI: 10.2147/jaa.s402340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.
Collapse
Affiliation(s)
- Haein R Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Klisic A, Malenica M, Kostadinovic J, Kocic G, Ninic A. Malondialdehyde as an independent predictor of body mass index in adolescent girls. J Med Biochem 2023; 42:224-231. [PMID: 36987421 PMCID: PMC10040194 DOI: 10.5937/jomb0-39044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/16/2022] [Indexed: 03/17/2023] Open
Abstract
Background Given the fact that the studies that examined oxidative stress in relation to obesity that included late adolescents are scarce and show inconclusive results we aimed to investigate a wide spectrum of nitro-oxidative stress biomarkers i.e., malondialdehyde (MDA), xanthine oxidase (XO), xanthine oxidoreductase (XOD), xanthine dehydrogenase (XDH), advanced oxidation protein products (AOPP) and nitric oxide products (NOx), as well as an antioxidative enzyme, i.e., catalase (CAT) in relation with obesity in the cohort of adolescent girls ages between 16 and 19 years old. Methods A total of 59 teenage girls were included in this cross-sectional study. Binary logistic regression analysis was performed to examine possible associations between biochemical and nitro-oxidative stress markers and body mass index (BMI). Results There were not significant differences between oxidative stress markers between normal weight and overweight/obese girls (i.e., AOPP, XOD, XO, XDH) and CAT, except for MDA (p<0.001) and NOx (p=0.010) concentrations which were significantly higher in overweight/obese adolescent girls. Positive associations were evident between BMI and high sensitivity C-reactive protein (hsCRP) (OR=2.495), BMI and uric acid (OR=1.024) and BMI and MDA (OR=1.062). Multivariable binary regression analysis demonstrated significant independent associations of BMI and hsCRP (OR=2.150) and BMI and MDA (OR=1.105). Even 76.3% of the variation in BMI could be explained with this Model. Conclusions Inflammation (as measured with hsCRP) and oxidative stress (as determined with MDA) independently correlated with BMI in teenage girls.
Collapse
Affiliation(s)
- Aleksandra Klisic
- University of Montenegro, Faculty of Medicine, Primary Health Care Center, Podgorica, Montenegro
| | - Maja Malenica
- University of Sarajevo, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, Sarajevo, Bosnia and Herzegovina
| | | | - Gordana Kocic
- University of Nis, School of Medicine, Department of Medical Biochemistry, Nis
| | - Ana Ninic
- University of Belgrade, Faculty of Pharmacy, Department for Medical Biochemistry, Belgrade
| |
Collapse
|
10
|
Mert H, İrak K, Çibuk S, Yıldırım S, Mert N. The effect of evening primrose oil ( Oenothera biennis) on the level of adiponectin and some biochemical parameters in rats with fructose induced metabolic syndrome. Arch Physiol Biochem 2022; 128:1539-1547. [PMID: 32594769 DOI: 10.1080/13813455.2020.1781900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of evening primrose oil on adiponectin level and some biochemical parameters in model of fructose-induced metabolic syndrome were investigated. The rats were divided into 4 groups: control, evening primrose oil, fructose, fructose + evening primrose oil. Body weight, daily feed and water consumptions and systolic blood pressures of animals were measured. At the end of trial, blood samples were taken, livers were excised and histopathological examination was performed. Glucose, uric acid, triglyceride, T.cholesterol, LDL, HDL, VLDL, ALT, AST, ALP, LDH, adiponectin, insulin, IL-6, TNF-α, TAC, and TOS levels were analysed. Some analysed parameters and systolic blood pressure of fructose + evening primrose oil group decreased significantly compared to fructose group and adiponectin, TAC, and HDL levels were significantly increased. As conclusion, evening primrose oil can be considered as antioxidant agent by reducing oxidative stress, increasing adiponectin levels and insulin sensitivity, anti-inflammatory properties, exhibiting anti-atherogenic effect by regulating dyslipidemia and systolic blood pressure.
Collapse
Affiliation(s)
- Handan Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Kıvanç İrak
- Faculty of Veterinary Medicine, Department of Biochemistry, Siirt University, Siirt, Turkey
| | - Salih Çibuk
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkey
| | - Serkan Yıldırım
- Faculty of Veterinary Medicine, Department of Pathology, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
11
|
Naryzhnaya NV, Koshelskaya OA, Kologrivova IV, Suslova TE, Kharitonova OA, Andreev SL, Gorbunov AS, Kurbatov BK, Boshchenko AA. Production of Reactive Oxygen Species by Epicardial Adipocytes Is Associated with an Increase in Postprandial Glycemia, Postprandial Insulin, and a Decrease in Serum Adiponectin in Patients with Severe Coronary Atherosclerosis. Biomedicines 2022; 10:biomedicines10082054. [PMID: 36009601 PMCID: PMC9405686 DOI: 10.3390/biomedicines10082054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022] Open
Abstract
Purpose. This work investigates the relations between the production of reactive oxygen species (ROS) by epicardial adipose tissue (EAT) adipocytes and parameters of glucose/insulin metabolism, circulating adipokines levels, and severity of coronary atherosclerosis in patients with coronary artery disease (CAD); establishing significant determinants describing changes in ROS EAT in this category of patients. Material and methods. This study included 19 patients (14 men and 5 women, 53−72 y.o., 6 patients with diabetes mellitus type 2; 5 patients with prediabetes), with CAD, who underwent coronary artery bypass graft surgery. EAT adipocytes were isolated by the enzymatic method from intraoperative explants obtained during coronary artery bypass grafting. The size of EAT adipocytes and ROS level were determined. Results. The production of ROS by EAT adipocytes demonstrated a direct correlation with the level of postprandial glycemia (rs = 0.62, p < 0.05), and an inverse correlation with serum adiponectin (rs = −0.50, p = 0.026), but not with general and abdominal obesity, EAT thickness, and dyslipidemia. Regression analysis demonstrated that the increase in ROS of EAT adipocytes occurs due to the interaction of the following factors: postprandial glycemia (β = 0.95), postprandial insulin (β = 0.24), and reduced serum adiponectin (β = −0.20). EAT adipocytes in patients with diabetes and prediabetes manifested higher ROS production than in patients with normoglycemia. Although there was no correlation between the production of ROS by EAT adipocytes and Gensini score in the total group of patients, higher rates of oxidative stress were observed in EAT adipocytes from patients with a Gensini score greater than median Gensini score values (≥70.55 points, Gr.B), compared to patients with less severe coronary atherosclerosis (<70.55 points, Gr.A). Of note, the frequency of patients with diabetes and prediabetes was higher among the patients with the most severe coronary atherosclerosis (Gr.B) than in the Gr.A. Conclusions. Our data have demonstrated for the first time that systemic impairments of glucose/insulin metabolism and a decrease in serum adiponectin are significant independent determinants of oxidative stress intensity in EAT adipocytes in patients with severe coronary atherosclerosis. The possible input of the interplay between oxidative stress in EAT adipocytes and metabolic disturbances to the severity of coronary atherosclerosis requires further investigation.
Collapse
|
12
|
Fanalli SL, da Silva BPM, Gomes JD, de Almeida VV, Freitas FAO, Moreira GCM, Silva-Vignato B, Afonso J, Reecy J, Koltes J, Koltes D, de Almeida Regitano LC, Garrick DJ, de Carvalho Balieiro JC, Meira AN, Freitas L, Coutinho LL, Fukumasu H, Mourão GB, de Alencar SM, Luchiari Filho A, Cesar ASM. Differential Gene Expression Associated with Soybean Oil Level in the Diet of Pigs. Animals (Basel) 2022; 12:1632. [PMID: 35804531 PMCID: PMC9265114 DOI: 10.3390/ani12131632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to identify the differentially expressed genes (DEG) from the skeletal muscle and liver samples of animal models for metabolic diseases in humans. To perform the study, the fatty acid (FA) profile and RNA sequencing (RNA-Seq) data of 35 samples of liver tissue (SOY1.5, n = 17 and SOY3.0, n = 18) and 36 samples of skeletal muscle (SOY1.5, n = 18 and SOY3.0, n = 18) of Large White pigs were analyzed. The FA profile of the tissues was modified by the diet, mainly those related to monounsaturated (MUFA) and polyunsaturated (PUFA) FA. The skeletal muscle transcriptome analysis revealed 45 DEG (FDR 10%), and the functional enrichment analysis identified network maps related to inflammation, immune processes, and pathways associated with oxidative stress, type 2 diabetes, and metabolic dysfunction. For the liver tissue, the transcriptome profile analysis revealed 281 DEG, which participate in network maps related to neurodegenerative diseases. With this nutrigenomics study, we verified that different levels of soybean oil in the pig diet, an animal model for metabolic diseases in humans, affected the transcriptome profile of skeletal muscle and liver tissue. These findings may help to better understand the biological mechanisms that can be modulated by the diet.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
| | - Bruna Pereira Martins da Silva
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
| | - Julia Dezen Gomes
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Vivian Vezzoni de Almeida
- College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74690-900, GO, Brazil;
| | - Felipe André Oliveira Freitas
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | | | - Bárbara Silva-Vignato
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, São Carlos 70770-901, SP, Brazil; (J.A.); (L.C.d.A.R.)
| | - James Reecy
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA; (J.R.); (J.K.); (D.K.)
| | - James Koltes
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA; (J.R.); (J.K.); (D.K.)
| | - Dawn Koltes
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA; (J.R.); (J.K.); (D.K.)
| | | | - Dorian John Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton 3214, New Zealand;
| | | | - Ariana Nascimento Meira
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Luciana Freitas
- DB Genética de Suínos, Patos de Minas 38706-000, MG, Brazil;
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
| | - Gerson Barreto Mourão
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Severino Matias de Alencar
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Albino Luchiari Filho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| |
Collapse
|
13
|
Antioxidative, Anti-Inflammatory, Anti-Obesogenic, and Antidiabetic Properties of Tea Polyphenols-The Positive Impact of Regular Tea Consumption as an Element of Prophylaxis and Pharmacotherapy Support in Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23126703. [PMID: 35743146 PMCID: PMC9224362 DOI: 10.3390/ijms23126703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial cancer (EC) is second only to cervical carcinoma among the most commonly diagnosed malignant tumours of the female reproductive system. The available literature provides evidence for the involvement of 32 genes in the hereditary incidence of EC. The physiological markers of EC and coexisting diet-dependent maladies include antioxidative system disorders but also progressing inflammation; hence, the main forms of prophylaxis and pharmacotherapy ought to include a diet rich in substances aiding the organism’s response to this type of disorder, with a particular focus on ones suitable for lifelong consumption. Tea polyphenols satisfy those requirements due to their proven antioxidative, anti-inflammatory, anti-obesogenic, and antidiabetic properties. Practitioners ought to consider promoting tea consumption among individuals genetically predisposed for EC, particularly given its low cost, accessibility, confirmed health benefits, and above all, suitability for long-term consumption regardless of the patient’s age. The aim of this paper is to analyse the potential usability of tea as an element of prophylaxis and pharmacotherapy support in EC patients. The analysis is based on information available from worldwide literature published in the last 15 years.
Collapse
|
14
|
Zheng J, Chen K, Huang T, Shao C, Li P, Wang J, Wang W, Zhang K, Meng X, Gao J, Wang X, Liu Y, Song J, Dong E, Tang YD. Genetically Determined Lifestyle and Cardiometabolic Risk Factors Mediate the Association of Genetically Predicted Age at Menarche With Genetic Predisposition to Myocardial Infarction: A Two-Step, Two-Sample Mendelian Randomization Study. Front Cardiovasc Med 2022; 9:821068. [PMID: 35548428 PMCID: PMC9081496 DOI: 10.3389/fcvm.2022.821068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Observational studies have shown an association between early age at menarche (AAM) and myocardial infarction (MI) with recorded cases. In this Mendelian randomization (MR) study, we used large amounts of summary data from genome-wide association studies (GWASs) to further estimate the association of genetically predicted AAM with genetically predicated risk of MI and investigate to what extent this association is mediated by genetically determined lifestyles, cardiometabolic factors, and estrogen exposure. Methods A two-step, two-sample MR study was performed by mediation analysis. Genetic variants identified by GWAS meta-analysis of reproductive genetics consortium (n = 182,416) were selected for genetically predicted AAM. Genetic variants identified by the Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics Consortium (n = 184,305) were selected for genetically predicted risk of MI. Genetic variants from other international GWAS summary data were selected for genetically determined mediators. Results This MR study showed that increase in genetically predicted AAM was associated with lower risk of genetically predicted MI (odds ratio 0.91, 95% confidence interval 0.84–0.98). Inverse variance weighted (IVW) MR analysis also showed that decrease in genetically predicted AAM was associated with higher genetically predicted alcohol intake frequency, current smoking behavior, higher waist-to-hip ratio, and higher levels of systolic blood pressure (SBP), fasting blood glucose, hemoglobin A1c (HbA1c), and triglycerides (TGs). Furthermore, increase in genetically predicted AAM was associated with genetically predicted longer sleep duration, higher levels of high-density lipoproteins, and older age at which hormone replacement therapy was started. The most essential mediators identified were genetically predicted current smoking behavior and levels of HbA1c, SBP, and TGs, which were estimated to genetically mediate 13.9, 12.2, 10.5, and 9.2%, respectively, with a combined mediation proportion of 37.5% in the association of genetically predicted AAM with genetically predicted increased risk of MI in an MR framework. Conclusion Our MR analysis showed that increase in genetically predicted AAM was associated with lower genetically predicted risk of MI, which was substantially mediated by genetically determined current smoking behavior and levels of HbA1c, SBP, and TGs. Intervening on the above mediators may reduce the risk of MI.
Collapse
Affiliation(s)
- Jilin Zheng
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ken Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Huang
- Key Laboratory of Molecular Cardiovascular Sciences, Department of Epidemiology and Biostatistics, Center for Intelligent Public Health, Academy for Artificial Intelligence, School of Public Health, Ministry of Education, Peking University, Beijing, China
| | - Chunli Shao
- Key Laboratory of Molecular Cardiovascular Sciences, Department of Cardiology, Institute of Vascular Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Ping Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjia Wang
- Key Laboratory of Molecular Cardiovascular Sciences, Department of Cardiology, Institute of Vascular Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Wenyao Wang
- Key Laboratory of Molecular Cardiovascular Sciences, Department of Cardiology, Institute of Vascular Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Kuo Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangbin Meng
- Key Laboratory of Molecular Cardiovascular Sciences, Department of Cardiology, Institute of Vascular Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Jun Gao
- Key Laboratory of Molecular Cardiovascular Sciences, Department of Cardiology, Institute of Vascular Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yupeng Liu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjing Song
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Eran Dong
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Institute of Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Yi-Da Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Department of Cardiology, Institute of Vascular Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- *Correspondence: Yi-Da Tang,
| |
Collapse
|
15
|
Kovačević S, Brkljačić J, Vojnović Milutinović D, Gligorovska L, Bursać B, Elaković I, Djordjevic A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. Front Nutr 2021; 8:749328. [PMID: 34869524 PMCID: PMC8632624 DOI: 10.3389/fnut.2021.749328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Obesity and related metabolic disturbances are frequently related to modern lifestyle and are characterized by excessive fructose intake. Visceral adipose tissue (VAT) inflammation has a central role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility and progression of metabolic disorders are not yet fully understood, our aim was to examine inflammation and insulin signaling in VAT of fructose-fed female and male adult rats. Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake, VAT mass and histology, and systemic insulin sensitivity. VAT insulin signaling and markers of VAT inflammation, and antioxidative defense status were also evaluated. Results: The fructose diet had no effect on VAT mass and systemic insulin signaling in the female and male rats, while it raised plasma uric acid, increased PPARγ level in the VAT, and initiated the development of a distinctive population of small adipocytes in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFκB, increased expression of proinflammatory cytokines (IL-1β, IL-6, and TNFα), and protein level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase. In contrast to the females, the fructose diet had no effect on plasma uric acid and VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling were observed. Conclusion: Even though dietary fructose did not elicit changes in energy intake and led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable of storing fats further. In contrast to the males, this state of VAT was accompanied with enhanced inflammation, which most likely contributed to the development of insulin resistance. The observed distinction could possibly originate from sex-related differences in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor for the development of T2D. Our results emphasize that adipose tissue dysfunction, rather than its simple enlargement, could significantly contribute to the onset and development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol 2021; 101:107598. [PMID: 34233864 PMCID: PMC8135227 DOI: 10.1016/j.intimp.2021.107598] [Citation(s) in RCA: 431] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
MCP-1 (Monocyte chemoattractant protein-1), also known as Chemokine (CC-motif) ligand 2 (CCL2), is from family of CC chemokines. It has a vital role in the process of inflammation, where it attracts or enhances the expression of other inflammatory factors/cells. It leads to the advancement of many disorders by this main mechanism of migration and infiltration of inflammatory cells like monocytes/macrophages and other cytokines at the site of inflammation. MCP-1 has been inculpated in the pathogenesis of numerous disease conditions either directly or indirectly like novel corona virus, cancers, neuroinflammatory diseases, rheumatoid arthritis, cardiovascular diseases. The elevated MCP-1 level has been observed in COVID-19 patients and proven to be a biomarker associated with the extremity of disease along with IP-10. This review will focus on involvement and role of MCP-1 in various pathological conditions.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| | - D Anshita
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
17
|
Chikopela T, Goma F, Kaluba L, Mutale W, Guure C, Heimburger DC, Koethe JR. Arterial stiffness is associated with oxidative stress and endothelial activation among persons with treated HIV in Zambia. South Afr J HIV Med 2021; 22:1298. [PMID: 34858654 PMCID: PMC8603157 DOI: 10.4102/sajhivmed.v22i1.1298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) prevalence is rising among persons with HIV (PLWH) in sub-Saharan Africa. Oxidative stress and endothelial activation, resulting in reduced vascular compliance, are contributors to CVD risk. However, there is a paucity of vascular health data in this population. OBJECTIVES To assess the relationships of oxidative stress and endothelial activation with vascular stiffness among PLWH. METHOD Fifty-four PLWH on antiretroviral therapy > 5 years and 57 HIV-negative controls, all aged 18-45 years, were enrolled from the University Teaching Hospital, Lusaka, Zambia. Oxidative stress was measured by nitrotyrosine, a peroxynitrite biomarker, and endothelial activation by soluble intercellular adhesion molecule-1 (sICAM-1) plasma levels. Vascular compliance was measured using carotid-radial pulse wave velocity (crPWV) and arterial stiffness index (crASI). RESULTS PLWH had higher sICAM-1 levels (median 345 ng/mL) compared to controls (275 ng/mL, p < 0.01), as well as higher nitrotyrosine levels (297 versus 182 nM; p = 0.02). Median crPWV was similar between the groups, but PLWH had higher crASI (2.4 versus 2.2 cm/ms; p < 0.05). After adjusting for age, fat mass, and blood pressure, the estimated effect of a one unit increase in nitrotyrosine on crPWV were twofold higher in the PLWH, but neither reached significance. In a model pooling all participants, there were significant differences in the relationship of nitrotyrosine with crPWV and crASI by HIV status. CONCLUSION PLWH in sub-Saharan Africa had significantly greater oxidative stress and endothelial activation compared to HIV-negative individuals. These factors may contribute to increased arterial stiffness and higher CVD prevalence in this population.
Collapse
Affiliation(s)
- Theresa Chikopela
- Department of Physiology, Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| | - Fastone Goma
- Department of Physiological Sciences, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Longa Kaluba
- School of Medicine, Cavendish University, Lusaka, Zambia
| | - Wilbroad Mutale
- Department of Health Policy and Management, School of Public Health, University of Zambia, Lusaka, Zambia
- Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Chris Guure
- Department of Biostatistics, School of Public Health, University of Ghana, Legon, Ghana
| | - Douglas C Heimburger
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - John R Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
18
|
Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021; 22:ijms22168971. [PMID: 34445677 PMCID: PMC8396527 DOI: 10.3390/ijms22168971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin increases insulin sensitivity and has cardio and vascular protection actions. Studies related to adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this molecule in asthma. Studies based on various asthma animal models and on the key cells involved in the allergic response have provided important insights about this relation. Some of them indicated protection and others reversed the balance towards negative effects. Many of them described the cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still need to be provided. In this article, we will, briefly, present the general actions of adiponectin and the epidemiological studies supporting the relation with asthma. The main focus of the current review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From this perspective, we will provide arguments for and against the positive influence of this molecule in asthma, also indicating the controversies and sketching out the potential directions of research to complete the picture.
Collapse
|
19
|
Chronic Intermittent Hypoxia Induces Early-Stage Metabolic Dysfunction Independently of Adipose Tissue Deregulation. Antioxidants (Basel) 2021; 10:antiox10081233. [PMID: 34439481 PMCID: PMC8388878 DOI: 10.3390/antiox10081233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies demonstrated a link between obstructive sleep apnea (OSA) and the development of insulin resistance. However, the main event triggering insulin resistance in OSA remains to be clarified. Herein, we investigated the effect of mild and severe chronic intermittent hypoxia (CIH) on whole-body metabolic deregulation and visceral adipose tissue dysfunction. Moreover, we studied the contribution of obesity to CIH-induced dysmetabolic states. Experiments were performed in male Wistar rats submitted to a control and high-fat (HF) diet. Two CIH protocols were tested: A mild CIH paradigm (5/6 hypoxic (5% O2) cycles/h, 10.5 h/day) during 35 days and a severe CIH paradigm (30 hypoxic (5% O2) cycles, 8 h/day) during 15 days. Fasting glycemia, insulinemia, insulin sensitivity, weight, and fat mass were assessed. Adipose tissue hypoxia, inflammation, angiogenesis, oxidative stress, and metabolism were investigated. Mild and severe CIH increased insulin levels and induced whole-body insulin resistance in control animals, effects not associated with weight gain. In control animals, CIH did not modify adipocytes perimeter as well as adipose tissue hypoxia, angiogenesis, inflammation or oxidative stress. In HF animals, severe CIH attenuated the increase in adipocytes perimeter, adipose tissue hypoxia, angiogenesis, and dysmetabolism. In conclusion, adipose tissue dysfunction is not the main trigger for initial dysmetabolism in CIH. CIH in an early stage might have a protective role against the deleterious effects of HF diet on adipose tissue metabolism.
Collapse
|
20
|
Martini C, Sosa FN, Malvicini R, Pacienza N, Yannarelli G, Del C Vila M. Alendronate inhibits triglyceride accumulation and oxidative stress in adipocytes and the inflammatory response of macrophages which are associated with adipose tissue dysfunction. J Physiol Biochem 2021; 77:601-611. [PMID: 34302624 DOI: 10.1007/s13105-021-00826-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
Alendronate, a bisphosphonate used to prevent osteoporosis, stimulates osteogenesis but impairs adipogenesis. Different clinical trials suggest that the incidence of diabetes may be lower in patients treated with alendronate. Taking into account the importance of adipocytes and macrophages of adipose tissue in insulin resistance and type 2 diabetes, it is necessary to evaluate the effect of alendronate in both cell types. In this paper, we investigated the effect of alendronate on the differentiation to adipocytes of 3T3-L1 fibroblasts, the cell line most used to study adipogenesis, and also its effect on lipid content and oxidative stress in mature adipocytes as well as on the inflammatory response of macrophages. We found that alendronate inhibits differentiation of 3T3-L1 fibroblasts to adipocytes in keeping with reports in other cell lines. On the other hand, treatment of 3T3-L1 adipocytes with alendronate was able to decrease triglyceride content and to prevent H2O2-induced lipid peroxidation which was evaluated as an indicator of oxidative stress. In addition, it was found that activation of RAW 264.7 macrophages to a pro-inflammatory M1 type is inhibited by this bisphosphonate. These results suggest that alendronate may contribute to prevent adipocyte excessive enlargement and the induction of oxidative stress in 3T3-L1 adipocytes as well as the activation of macrophages to a pro-inflammatory M1 type, which are events associated with adipose tissue dysfunction and insulin resistance. In this study, we unraveled the underlying mechanisms of events that were previously observed in clinical trials.
Collapse
Affiliation(s)
- Claudia Martini
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Fernando Nicolas Sosa
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Ricardo Malvicini
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - Natalia Pacienza
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - María Del C Vila
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Inoue T, Yoshida K, Sasaki E, Aizawa K, Kamioka H. Effects of lycopene intake on HDL-cholesterol and triglyceride levels: A systematic review with meta-analysis. J Food Sci 2021; 86:3285-3302. [PMID: 34268742 DOI: 10.1111/1750-3841.15833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/28/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Lycopene is a lipophilic unsaturated carotenoid and has a very strong singlet oxygen-quenching ability. Increased serum or plasma lycopene levels have been reported to be associated with a lower risk of metabolic syndrome. We aimed to investigate the effects of lycopene intake on blood HDL-cholesterol (HCL-c) and triglyceride (TG) levels, which are metabolic syndrome biomarkers, by systematic review and meta-analyses of human interventional trials. We searched 15 databases and included studies that assessed the effects of oral lycopene intake on blood HDL-c and TG levels of participants ≥18 years of age. Three reviewers independently selected applicable studies, then assessed study qualities. Data were pooled as standardized mean difference (SMD) and analyzed by random-effects model. Heterogeneity was assessed by I2 statistics. Meta-analysis including 12 trial arms (n = 781) revealed a significantly increased HDL-c level in the lycopene group compared with that in the control group (SMD = 0.33 [95% CI: 0.12, 0.54], p = 0.002) and moderate heterogeneity (I2 = 45%). Most subgroup meta-analyses (restricted to study design, test food type, intake period, and participants' characteristics) showed similar results for HDL-c level. On the other hand, meta-analysis including 11 studies (n = 854) revealed no significant difference in TG level between the lycopene and control groups. Most studies which met eligibility criteria had moderate risk of bias. Funnel plots for HDL-c and TG suggested an absence of publication bias. In conclusion, this systematic review and meta-analyses suggested that lycopene intake significantly improved blood HDL-c levels but not TG levels.
Collapse
Affiliation(s)
- Takuro Inoue
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan.,Department of Ecological Symbiotic Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kazutaka Yoshida
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan
| | - Erika Sasaki
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan
| | - Koichi Aizawa
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan
| | - Hiroharu Kamioka
- Department of Ecological Symbiotic Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
22
|
Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 2021; 25:26-32. [PMID: 32290794 PMCID: PMC7178880 DOI: 10.1080/13510002.2020.1752002] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
| | - Michal Kraus
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| |
Collapse
|
23
|
Shyur LF, Varga V, Chen CM, Mu SC, Chang YC, Li SC. Extract of white sweet potato tuber against TNF-α-induced insulin resistance by activating the PI3K/Akt pathway in C2C12 myotubes. BOTANICAL STUDIES 2021; 62:7. [PMID: 34003397 PMCID: PMC8131422 DOI: 10.1186/s40529-021-00315-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND White sweet potato (WSP; Ipomoea batatas L. Simon No. 1) has many potential beneficial effects on metabolic control and diabetes-related insulin resistance. The improvement of insulin resistance by WSP tuber extracts on glucose uptake were not investigated in C2C12 myoblast cells. RESULTS WSP tuberous ethanol extract (WSP-E) was partitioned with ethyl-acetate and water to obtain ethyl-acetate layer (WSP-EA) and water layer (WSP-EW). The WSP-EA shows the highest total phenolic contents and highest antioxidant activity by Folin-Ciocalteu and (2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH) assay, respectively. After low concentration horse serum on differentiation inducement of C2C12 myoblasts into mature myotubes, the cells were treated with TNF-α to induce insulin resistance. WSP-EA and WSP-EW extracts increased the uptake of fluorescence glucose analogue (2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose, 2-NBDG) in a dose-dependent manner as examined by flow cytometry. The WSP-EA enhanced glucose uptake by activation of phosphorylation of IR (pIR), IRS-1 (pIRS-1) and Akt (pAkt) involved in PI3K (phosphatidylinositol 3-kinase)/protein kinase B (Akt) pathway, also upregulated glucose transporter 4 (GLUT4) expression in myotubes. CONCLUSIONS WSP-EA enhanced the glucose uptake in C2C12 myotubes through upregulating the PI3K/Akt pathway. The in vitro data reveal that WSP tuber extracts has potential applications to improve insulin resistance in diabetes.
Collapse
Affiliation(s)
- Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Viola Varga
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Chiao-Ming Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, 10462 Taiwan
| | - Shu-Chi Mu
- School of Medicine, Fu-Jen Catholic University, New Taipei City, 24205 Taiwan
| | - Yu-Chih Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| |
Collapse
|
24
|
Pan C, Chen Z, Li C, Han T, Liu H, Wang X. Sestrin2 as a gatekeeper of cellular homeostasis: Physiological effects for the regulation of hypoxia-related diseases. J Cell Mol Med 2021; 25:5341-5350. [PMID: 33942488 PMCID: PMC8184687 DOI: 10.1111/jcmm.16540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Sestrin2 (SESN2) is a conserved stress‐inducible protein (also known as hypoxia‐inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response. SESN2 has well‐documented roles in hypoxia‐related diseases, making it a potential target for diagnosis and treatment. This review discusses the regulatory mechanisms of SESN2 and highlights the significance of SESN2 as a biomarker and therapeutic target in hypoxia‐related diseases, such as cancer, respiratory‐related diseases, cardiovascular diseases and cerebrovascular diseases.
Collapse
Affiliation(s)
- Cunyao Pan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Department of Public Health, Lanzhou University, Lanzhou, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Hui Liu
- Department of Public Health, Lanzhou University, Lanzhou, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
25
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
26
|
Moshfegh CM, Case AJ. The Redox-Metabolic Couple of T Lymphocytes: Potential Consequences for Hypertension. Antioxid Redox Signal 2021; 34:915-935. [PMID: 32237890 PMCID: PMC8035925 DOI: 10.1089/ars.2020.8042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
Significance: T lymphocytes, as part of the adaptive immune system, possess the ability to activate and function in extreme cellular microenvironments, which requires these cells to remain highly malleable. One mechanism in which T lymphocytes achieve this adaptability is by responding to cues from both reactive oxygen and nitrogen species, as well as metabolic flux, which together fine-tune the functional fate of these adaptive immune cells. Recent Advances: To date, examinations of the redox and metabolic effects on T lymphocytes have primarily investigated these biological processes as separate entities. Given that the redox and metabolic environments possess significant overlaps of pathways and molecular species, it is inevitable that perturbations in one environment affect the other. Recent consideration of this redox-metabolic couple has demonstrated the strong link and regulatory consequences of these two systems in T lymphocytes. Critical Issues: The redox and metabolic control of T lymphocytes is essential to prevent dysregulated inflammation, which has been observed in cardiovascular diseases such as hypertension. The role of the adaptive immune system in hypertension has been extensively investigated, but the understanding of how the redox and metabolic environments control T lymphocytes in this disease remains unclear. Future Directions: Herein, we provide a discussion of the redox and metabolic control of T lymphocytes as separate entities, as well as coupled to one another, to regulate adaptive immunity. While investigations examining this pair together in T lymphocytes are sparse, we speculate that T lymphocyte destiny is shaped by the redox-metabolic couple. In contrast, disrupting this duo may have inflammatory consequences such as hypertension.
Collapse
Affiliation(s)
- Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
27
|
Contribution of Adipose Tissue Oxidative Stress to Obesity-Associated Diabetes Risk and Ethnic Differences: Focus on Women of African Ancestry. Antioxidants (Basel) 2021; 10:antiox10040622. [PMID: 33921645 PMCID: PMC8073769 DOI: 10.3390/antiox10040622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue (AT) storage capacity is central in the maintenance of whole-body homeostasis, especially in obesity states. However, sustained nutrients overflow may dysregulate this function resulting in adipocytes hypertrophy, AT hypoxia, inflammation and oxidative stress. Systemic inflammation may also contribute to the disruption of AT redox equilibrium. AT and systemic oxidative stress have been involved in the development of obesity-associated insulin resistance (IR) and type 2 diabetes (T2D) through several mechanisms. Interestingly, fat accumulation, body fat distribution and the degree of how adiposity translates into cardio-metabolic diseases differ between ethnicities. Populations of African ancestry have a higher prevalence of obesity and higher T2D risk than populations of European ancestry, mainly driven by higher rates among African women. Considering the reported ethnic-specific differences in AT distribution and function and higher levels of systemic oxidative stress markers, oxidative stress is a potential contributor to the higher susceptibility for metabolic diseases in African women. This review summarizes existing evidence supporting this hypothesis while acknowledging a lack of data on AT oxidative stress in relation to IR in Africans, and the potential influence of other ethnicity-related modulators (e.g., genetic-environment interplay, socioeconomic factors) for consideration in future studies with different ethnicities.
Collapse
|
28
|
Choy KW, Zain ZM, Murugan DD, Giribabu N, Zamakshshari NH, Lim YM, Mustafa MR. Effect of Hydrolyzed Bird's Nest on β-Cell Function and Insulin Signaling in Type 2 Diabetic Mice. Front Pharmacol 2021; 12:632169. [PMID: 33986669 PMCID: PMC8112233 DOI: 10.3389/fphar.2021.632169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus is characterized by both resistance to the action of insulin and defects in insulin secretion. Bird’s nest, which is derived from the saliva of swiftlets are well known to possess multiple health benefits dating back to Imperial China. However, it’s effect on diabetes mellitus and influence on the actions of insulin action remains to be investigated. In the present study, the effect of standardized aqueous extract of hydrolyzed edible bird nest (HBN) on metabolic characteristics and insulin signaling pathway in pancreas, liver and skeletal muscle of db/db, a type 2 diabetic mice model was investigated. Male db/db diabetic and its euglycemic control, C57BL/6J mice were administered HBN (75 and 150 mg/kg) or glibenclamide (1 mg/kg) orally for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Insulin signaling and activation of inflammatory pathways in liver, adipose, pancreas and muscle tissue were evaluated by Western blotting and immunohistochemistry. Pro-inflammatory cytokines were measured in the serum at the end of the treatment. The results showed that db/db mice treated with HBN significantly reversed the elevated fasting blood glucose, serum insulin, serum pro-inflammatory cytokines levels and the impaired OGTT without affecting the body weight of the mice in all groups. Furthermore, HBN treatment significantly ameliorated pathological changes and increased the protein expression of insulin, and glucose transporters in the pancreatic islets (GLUT-2), liver and skeletal muscle (GLUT-4). Likewise, the Western blots analysis denotes improved insulin signaling and antioxidant enzyme, decreased reactive oxygen species producing enzymes and inflammatory molecules in the liver and adipose tissues of HBN treated diabetic mice. These results suggest that HBN improves β-cell function and insulin signaling by attenuation of oxidative stress mediated chronic inflammation in the type 2 diabetic mice.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Zuhaida Md Zain
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Hisam Zamakshshari
- Centre for Natural Product Research and Drug Discovery (CENAR), Wellness Research Cluster, University of Malaya, Kuala Lumpur, Malaysia
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Centre for Cancer Research, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Selangor, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Natural Product Research and Drug Discovery (CENAR), Wellness Research Cluster, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Nunoue T, Yamaguchi S, Teshigawara S, Katayama A, Nakatsuka A, Eguchi J, Niki T, Wada J. Lgals9 deficiency ameliorates obesity by modulating redox state of PRDX2. Sci Rep 2021; 11:5991. [PMID: 33727589 PMCID: PMC7966757 DOI: 10.1038/s41598-021-85080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/25/2021] [Indexed: 01/25/2023] Open
Abstract
The adipose tissue is regarded as an endocrine organ and secretes bioactive adipokines modulating chronic inflammation and oxidative stress in obesity. Gal-9 is secreted out upon cell injuries, interacts with T-cell immunoglobulin-3 (Tim-3) and induces apoptosis in activated Th1 cells. Gal-9 also binds to protein disulfide isomerase (PDI), maintains PDI on surface of T cells, and increases free thiols in the disulfide/thiol cycles. To explore the molecular mechanism of obesity, we investigated Gal-9−/− and Gal-9wt/wt C57BL/6J mice fed with high fat-high sucrose (HFHS) chow. Gal-9−/− mice were resistant to diet-induced obesity associated with reduction of epididymal and mesenteric fat tissues and improved glucose tolerance compared with Gal-9wt/wt mice. However, the number of M1, M2 macrophages, and M1/M2 ratio in epididymal fat were unaltered. Under HFHS chow, Gal-9−/− mice receiving Gal-9−/− or Gal-9wt/wt bone marrow-derived cells (BMCs) demonstrated significantly lower body weight compared with Gal-9wt/wt mice receiving Gal-9−/− BMCs. We identified the binding between Gal-9 and peroxiredoxin-2 (PRDX2) in sugar chain-independent manner by nanoLC-MS/MS, immunoprecipitation, and pull-down assay. In 3T3L1 adipocytes, Gal-9 knockdown shifts PRDX2 monomer (reduced form) dominant from PRDX2 dimer (oxidized form) under oxidative stress with H2O2. The inhibition of Gal-9 in adipocytes may be a new therapeutic approach targeting the oxidative stress and subsequent glucose intolerance in obesity.
Collapse
Affiliation(s)
- Tomokazu Nunoue
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sanae Teshigawara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
30
|
Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants (Basel) 2021; 10:antiox10030406. [PMID: 33800427 PMCID: PMC7999611 DOI: 10.3390/antiox10030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.
Collapse
|
31
|
Nani A, Murtaza B, Sayed Khan A, Khan NA, Hichami A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021; 26:985. [PMID: 33673390 PMCID: PMC7918790 DOI: 10.3390/molecules26040985] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/02/2023] Open
Abstract
Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.
Collapse
Affiliation(s)
- Abdelhafid Nani
- Laboratory of Saharan Natural Resources, African University Ahmed Draia, Adrar 01000, Algeria
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| |
Collapse
|
32
|
Chikopela T, Heimburger DC, Kaluba L, Hamambulu P, Simfukwe N, Mutale W, Koethe JR, Goma F. Endothelial dysfunction and body mass index: is there a role for plasma peroxynitrite? BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:4. [PMID: 33569505 PMCID: PMC7872153 DOI: 10.1186/s43088-020-00092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial function is dependent on the balance between vasoconstrictive and vasodilatory substances. The endothelium ability to produce nitric oxide is one of the most crucial mechanisms in regulating vascular tone. An increase in inducible nitric oxide synthase contributes to endothelial dysfunction in overweight persons, while in underweight persons, oxidative stress contributes to the conversion of nitric oxide to peroxynitrite (measured as nitrotyrosine in vivo). The objective of this study was to elucidate the interaction of body composition and oxidative stress on vascular function and peroxynitrite. This was done through an experimental design with three weight groups (underweight normal weight and overweight), with four treatment arms in each. Plasma nitrotyrosine levels were measured 15-20 hours post lipopolysaccharide (LPS) treatment, as were aortic ring tension changes. Acetylcholine (ACh) and sodium nitroprusside (SNP) challenges were used to observe endothelial dependent and independent vascular relaxation after pre-constriction of aortic rings with phenylephrine. RESULTS Nitrotyrosine levels in saline-treated rats were similar among the weight-groups. There was a significant increase in nitrotyrosine levels between saline-treated rats and those treated with the highest lipopolysaccharide doses in each of the weight groups. In response to ACh challenge, Rmax (percentage reduction in aortic tension) was lowest in overweight rats (112%). In response to SNP, there was an insignificantly lower Rmax in the underweight (106%) compared to the normal weight (112%). Overweight rats had a significant decrease in Rmax (83%) in response to SNP, signifying involvement of a more chronic process in tension reduction changes. A lower Rmax accompanied an increase in peroxynitrite after acetylcholine challenge in all weight-groups. CONCLUSIONS Endothelial dysfunction, observed as an impairment in the ability to reduce tension, is associated with increased plasma peroxynitrite levels across the spectrum of body mass. In higher-BMI rats, an additional role is played by vascular smooth muscle in the causation of endothelial dysfunction.
Collapse
Affiliation(s)
- Theresa Chikopela
- Department of Human Physiology, Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| | - Douglas C. Heimburger
- Vanderbilt Institute for Global Health and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Longa Kaluba
- School of Medicine, Cavendish University, Lusaka, Zambia
| | - Pharaoh Hamambulu
- Department of Human Physiology, Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| | - Newton Simfukwe
- Department of Physiological Sciences, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Wilbroad Mutale
- Department of Health Policy and Management, School of Public Health, University of Zambia, Lusaka, Zambia
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fastone Goma
- Department of Physiological Sciences, School of Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
33
|
Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes. Nutrients 2021; 13:nu13010176. [PMID: 33430086 PMCID: PMC7826547 DOI: 10.3390/nu13010176] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
The objective was to evaluate the mechanisms of digested total proteins (DTP), albumin, glutelin, and pure peptides from chia seed (Salvia hispanica L.) to prevent adipogenesis and its associated inflammation in 3T3-L1 adipocytes. Preadipocytes (3T3-L1) were treated during differentiation with either DTP or digested albumin or glutelin (1 mg/mL) or pure peptides NSPGPHDVALDQ and RMVLPEYELLYE (100 µM). Differentiated adipocytes also received DTP, digested albumin or glutelin (1 mg/mL), before (prevention) or after (inhibition) induced inflammation by addition of conditioned medium (CM) from inflamed macrophages. All treatments prevented adipogenesis, reducing more than 50% the expression of PPARγ and to a lesser extent lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP1), lipase activity and triglycerides. Inflammation induced by CM was reduced mainly during prevention, while DTP decreased expression of NF-κB (−48.4%), inducible nitric oxide synthase (iNOS) (−46.2%) and COX-2 (−64.5%), p < 0.05. Secretions of nitric oxide, PGE2 and TNFα were reduced by all treatments, p < 0.05. DTP reduced expressions of iNOS (−52.1%) and COX-2 (−66.4%). Furthermore, digested samples and pure peptides prevented adipogenesis by modulating PPARγ and additionally, preventing and even inhibiting inflammation in adipocytes by inhibition of PPARγ and NF-κB expression. These results highlight the effectiveness of digested total proteins and peptides from chia seed against adipogenesis complications in vitro.
Collapse
|
34
|
Birulina YG, Ivanov VV, Buyko EE, Efremkina EP, Smagliy LV, Kovalev IV, Nosarev AV, Gusakova SV. Regulation of Vascular Smooth Muscle Contractions in the Model of Metabolic Syndrome. Bull Exp Biol Med 2020; 170:196-199. [PMID: 33263844 DOI: 10.1007/s10517-020-05031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Indexed: 10/22/2022]
Abstract
Reduced glucose tolerance, hyperglycemia, and imbalance in lipid levels were found in rats with metabolic syndrome induced by a high-fat, high-carbohydrate diet. The contractile responses of intact and endothelium-denuded aortic smooth muscle segments from rats with metabolic syndrome to application of acetylcholine, phenylephrine, sodium nitroprusside, and forskolin were studied by mechanographic method. It was found that endothelial dysfunction develops against the background of metabolic and hemodynamic disorders in metabolic syndrome. It was shown that the regulation of vasoconstrictor reactions of vascular smooth muscles in metabolic syndrome is due to a decrease in Ca2+ entry, mainly voltage-independent, as well as changes in the function of cGMP- and cAMP-activated K+-channels.
Collapse
Affiliation(s)
- Yu G Birulina
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.
| | - V V Ivanov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - E E Buyko
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - E P Efremkina
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - L V Smagliy
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - I V Kovalev
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A V Nosarev
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - S V Gusakova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| |
Collapse
|
35
|
Protective Role of Picralima nitida Seed Extract in High-Fat High-Fructose-Fed Rats. Adv Pharmacol Pharm Sci 2020; 2020:5206204. [PMID: 33163962 PMCID: PMC7604582 DOI: 10.1155/2020/5206204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022] Open
Abstract
Picralima nitida is a therapeutic herb used in ethnomedicine for the management of several disease conditions including diabetes. This study examined the potential palliative effect of aqueous seed extract of Picralima nitida (APN) on dyslipidemia, hyperglycemia, oxidative stress, insulin resistance, and the expression of some metabolic genes in high-fat high-fructose-fed rats. Experimental rats (2 months old) were fed a control diet or a high-fat diet with 25% fructose (HFHF diet) in their drinking water for nine weeks. APN was administered orally during the last four weeks. Anthropometric and antioxidant parameters, lipid profile, plasma glucose, and insulin levels and the relative expression of some metabolic genes were assessed. APN caused a significant decrease (P < 0.05) in weight gained, body mass index, insulin resistance, plasma glucose, and insulin levels. High-density lipoprotein cholesterol level was significantly increased (P < 0.05), while triacylglycerol, cholesterol, low-density lipoprotein, cardiac index, atherogenic index, coronary artery index, and malondialdehyde levels in plasma and liver samples were also significantly decreased (P < 0.05) by APN at all experimental doses when compared to the group fed with an HFHF diet only. APN also significantly (P < 0.05) upregulated the relative expression of glucokinase, carnitine palmitoyltransferase-1 (CPT-1), and leptin at 400 mg/kg body weight when compared to the group fed with an HFHF diet only. This study showed that APN alleviated dyslipidemia, hyperglycemia, and oxidant effect associated with the intake of a high-fat high-fructose diet.
Collapse
|
36
|
Amin MN, Siddiqui SA, Uddin MG, Ibrahim M, Uddin SMN, Adnan MT, Rahaman MZ, Kar A, Islam MS. Increased Oxidative Stress, Altered Trace Elements, and Macro-Minerals Are Associated with Female Obesity. Biol Trace Elem Res 2020; 197:384-393. [PMID: 31902098 DOI: 10.1007/s12011-019-02002-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Generally female individuals are more prone to obesity due to their lifestyle and physiology. However, female individuals have got little attention in this aspect. This pioneering study designed to find the level of serum malondialdehyde (MDA), non-enzymatic antioxidant (vitamin C), other trace elements (zinc and iron), and macro-minerals (sodium, potassium, and calcium) for female obesity determining its role and action in disease diagnosis along with propagation. For this prospective case-control study, 70 female obese and 70 healthy individuals were evaluated. Serum lipid peroxidation product malondialdehyde (MDA) concentration was measured to determine the level of lipid peroxidation. UV spectrophotometric method was implemented for vitamin C concentration to measure serum ascorbic acid. Atomic absorption spectroscopy (AAS) was implemented to determine serum macro-minerals (Na, K, and Ca), and trace elements (Zn and Fe) were estimated. For statistical analysis, student's t-test and Pearson's correlation test were executed. A significantly higher concentration of serum MDA (p < 0.001) and low concentration of antioxidants (vitamin C) (p < 0.001) are observed in patient than control group. We found a lower concentration of trace elements (zinc, iron) and macro-minerals (sodium, potassium, and calcium) in patients compared to control except sodium. The mean concentrations for serum Zn, Fe, Na, K, and Ca were 0.34 ± 0.01, 0.25 ± 0.01, 3828.91 ± 205.09, 90.42 ± 6.45, and 43.04 ± 2.38 mg/L and 0.78 ± 0.08, 0.84 ± 0.08, 2600.97 ± 99.79, 223.79 ± 14.64, and 86.43 ± 2.78 mg/L, respectively, for female obese patients and control subjects (p < 0.001). We can suggest from our study that there is a strong association of female obesity with increased serum concentrations of MDA and reduced non-enzymatic antioxidant vitamin C and different serum trace metals and macro-minerals.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Giash Uddin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Ibrahim
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
- College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - S M Naim Uddin
- Department of Pharmacy, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Tarek Adnan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Zahedur Rahaman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Auditi Kar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
37
|
Bojková B, Winklewski PJ, Wszedybyl-Winklewska M. Dietary Fat and Cancer-Which Is Good, Which Is Bad, and the Body of Evidence. Int J Mol Sci 2020; 21:ijms21114114. [PMID: 32526973 PMCID: PMC7312362 DOI: 10.3390/ijms21114114] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A high-fat diet (HFD) induces changes in gut microbiota leading to activation of pro-inflammatory pathways, and obesity, as a consequence of overnutrition, exacerbates inflammation, a known risk factor not only for cancer. However, experimental data showed that the composition of dietary fat has a greater impact on the pathogenesis of cancer than the total fat content in isocaloric diets. Similarly, human studies did not prove that a decrease in total fat intake is an effective strategy to combat cancer. Saturated fat has long been considered as harmful, but the current consensus is that moderate intake of saturated fatty acids (SFAs), including palmitic acid (PA), does not pose a health risk within a balanced diet. In regard to monounsaturated fat, plant sources are recommended. The consumption of plant monounsaturated fatty acids (MUFAs), particularly from olive oil, has been associated with lower cancer risk. Similarly, the replacement of animal MUFAs with plant MUFAs decreased cancer mortality. The impact of polyunsaturated fatty acids (PUFAs) on cancer risk depends on the ratio between ω-6 and ω-3 PUFAs. In vivo data showed stimulatory effects of ω-6 PUFAs on tumour growth while ω-3 PUFAs were protective, but the results of human studies were not as promising as indicated in preclinical reports. As for trans FAs (TFAs), experimental data mostly showed opposite effects of industrially produced and natural TFAs, with the latter being protective against cancer progression, but human data are mixed, and no clear conclusion can be made. Further studies are warranted to establish the role of FAs in the control of cell growth in order to find an effective strategy for cancer prevention/treatment.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 041 54 Košice, Slovakia;
| | - Pawel J. Winklewski
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anatomy and Physiology, Pomeranian University of Slupsk, 76-200 Slupsk, Poland
- Correspondence: ; Tel./Fax: +48-58-3491515
| | | |
Collapse
|
38
|
Risk Associated with the LEPR rs8179183 GG Genotype in a Female Korean Population with Obesity. Antioxidants (Basel) 2020; 9:antiox9060497. [PMID: 32517169 PMCID: PMC7346126 DOI: 10.3390/antiox9060497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
The difference between metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) phenotypes might be partly attributable to genetic traits modulating body fat distribution and other obesity-related metabolic traits, specifically with regard to LEPR rs8179183 in Korean women with obesity. A total of 177 females with obesity participated in the study and were grouped by genotype (GC or GG) and metabolic health status (MHO and MUO). Between the MHO and MUO groups, significant differences were found in waist circumference, waist-to-hip ratio, lipid profiles, glucose-related markers, biomarkers of liver health, adiponectin, oxidative stress markers, whole fat area (WFA), and subcutaneous fat area (SFA) at the level of the L1 vertebra, and WFA and visceral fat area (VFA) at the level of the L4 vertebra. Lipid profiles, glucose-related markers, adipokines, oxidative stress markers, and WFA and VFA at the L4 level were significantly different between the GC and GG genotypes. Notably, the individuals with the MUO phenotype and the GG genotype had the least favorable values of glucose-related markers, lipid profiles, adipokines, oxidative stress markers, and regional fat distribution. These observations suggest that the development of obesity-related metabolic traits is highly associated not only with the rs8179183 genotype but also with metabolic status in Korean females with obesity.
Collapse
|
39
|
Piskov S, Timchenko L, Grimm WD, Rzhepakovsky I, Avanesyan S, Sizonenko M, Kurchenko V. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms ( Pleurotus Ostreatus). Foods 2020; 9:foods9020160. [PMID: 32046069 PMCID: PMC7074390 DOI: 10.3390/foods9020160] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
In food biotechnology, Pleurotus ostreatus is of great interest as a source of natural antioxidants and angiotensin-converting enzyme (ACE) inhibitors. However, research in this area has not yet been completed. The effect of various drying methods on the structural properties and the rehydration capacity of mushrooms was investigated in this paper. The content of secondary metabolites, the peptide profile, and the antioxidative effect and ACE inhibitory activity of dry mushrooms were investigated in vitro, simulating the process of gastrointestinal digestion. X-ray microtomography has confirmed that structure of lyophilic and sun-dried mushrooms is dominated by open pores, and in mushrooms dried with hot air and microwave, closed pores. Experiments have shown that the conditions of freeze drying and sun drying of Pleurotus ostreatus provide a higher rehydration capacity of dried mushrooms. The maximum activity of radical absorption of the oyster mushroom after microwave drying was observed. The iron restoring capacity of the mushrooms is maximally maintained with microwave drying and hot-air drying. The properties of the antioxidant product with an emphasis on the high activity of inhibiting lipid oxidation of the mushroom maximized after drying in the sun. Mushrooms dried lyophilically and in the sun showed the highest ACE inhibitory activity.
Collapse
Affiliation(s)
- Sergey Piskov
- Institute of Live Science, North Caucasus Federal University, 355017 Stavropol, Russia; (S.P.); (L.T.); (I.R.); (S.A.); (M.S.)
| | - Lyudmila Timchenko
- Institute of Live Science, North Caucasus Federal University, 355017 Stavropol, Russia; (S.P.); (L.T.); (I.R.); (S.A.); (M.S.)
| | - Wolf-Dieter Grimm
- Periodontology, School of Dentistry, Faculty of Health, Witten/Herdecke University, A.-Herrhausen-Street 50, 58448 Witten, Germany
- Correspondence: ; Tel.: +49-233-9911-160
| | - Igor Rzhepakovsky
- Institute of Live Science, North Caucasus Federal University, 355017 Stavropol, Russia; (S.P.); (L.T.); (I.R.); (S.A.); (M.S.)
| | - Svetlana Avanesyan
- Institute of Live Science, North Caucasus Federal University, 355017 Stavropol, Russia; (S.P.); (L.T.); (I.R.); (S.A.); (M.S.)
| | - Marina Sizonenko
- Institute of Live Science, North Caucasus Federal University, 355017 Stavropol, Russia; (S.P.); (L.T.); (I.R.); (S.A.); (M.S.)
| | | |
Collapse
|
40
|
Sanchis-Soler G, Tortosa-Martínez J, Manchado-Lopez C, Cortell-Tormo JM. The effects of stress on cardiovascular disease and Alzheimer's disease: Physical exercise as a counteract measure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 152:157-193. [PMID: 32450995 DOI: 10.1016/bs.irn.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AD is a complicated multi-systemic neurological disorder that involves different biological pathways. Several risk factors have been identified, including chronic stress. Chronic stress produces an alteration in the activity of the hypothalamic pituitary adrenal (HPA) system, and the autonomic nervous system (ANS), which over time increase the risk of AD and also the incidence of cardiovascular disease (CVD) and risk factors, such as hypertension, obesity and type 2 diabetes, associated with cognitive impairment and AD. Considering the multi-factorial etiology of AD, understanding the complex interrelationships between different risk factors is of potential interest for designing adequate strategies for preventing, delaying the onset or slowing down the progression of this devastating disease. Thus, in this review we will explore the general mechanisms and evidence linking stress, cardiovascular disease and AD, and discuss the potential benefits of physical activity for AD by counteracting the negative effects of chronic stress, CVD and risk factors.
Collapse
|
41
|
Magherini F, Fiaschi T, Marzocchini R, Mannelli M, Gamberi T, Modesti PA, Modesti A. Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radic Res 2019; 53:1155-1165. [PMID: 31762356 DOI: 10.1080/10715762.2019.1697438] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evidence about the health benefits of regular physical activity is well established. Exercise intensity is a significant variable and structured high-intensity interval training (HIIT) has been demonstrated to improve both whole-body and skeletal muscle metabolic health in different populations. Conversely, fatigue accumulation, if not resolved, leads to overwork, chronic fatigue syndrome (CFS), overtraining syndrome up to alterations of endocrine function, immune, systemic inflammation, and organic diseases with health threat. In response to temporary increases in stress during training, some athletes are unable to maintain sufficient caloric intake, thus suffering a negative energy balance that causes further stress. The regulation of the energy balance is controlled by the central nervous system through an elaborate interaction of the signalling that involves different tissues such as leptin, adiponectin and ghrelin whose provide important feedback to the hypothalamus to regulate the energy balance. Although exercise-induced reactive oxygen species are required for normal force production in muscle, high levels of ROS appear to promote contractile dysfunction. However, a high level of oxidative stress in may induce a rise in inflammatory markers and a disregulation in expression of adiponectin, leptin and grelin.
Collapse
Affiliation(s)
- Francesca Magherini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Marzocchini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michele Mannelli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
42
|
Eirin A, Lerman LO. Stem cell-derived extracellular vesicles for renal repair: do cardiovascular comorbidities matter? Am J Physiol Renal Physiol 2019; 317:F1414-F1419. [PMID: 31630544 DOI: 10.1152/ajprenal.00434.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicle (EV)-based regenerative therapy has shown promising results in preclinical models of renal disease and might be useful for patients with several forms of chronic kidney disease. However, individuals with chronic kidney disease often present with comorbidities, including obesity, hypertension, diabetes, or even metabolic syndrome, which may alter the endogenous characteristics and impair the reparative capacity of stem cells and their daughter EVs. This brief review summarizes evidence of alterations in the morphology, cargo, and function of mesenchymal stem cells and mesenchymal stem cell-derived EVs in the face of cardiovascular disease. We further discuss the important ramifications for their use in patients with kidney disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Canet G, Hernandez C, Zussy C, Chevallier N, Desrumaux C, Givalois L. Is AD a Stress-Related Disorder? Focus on the HPA Axis and Its Promising Therapeutic Targets. Front Aging Neurosci 2019; 11:269. [PMID: 31611783 PMCID: PMC6776918 DOI: 10.3389/fnagi.2019.00269] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has important health and economic impacts in the elderly. Despite a better understanding of the molecular mechanisms leading to the appearance of major pathological hallmarks (senile plaques and neurofibrillary tangles), effective treatments are still lacking. Sporadic AD forms (98% of all cases) are multifactorial, and a panoply of risk factors have been identified. While the major risk factor is aging, growing evidence suggests that chronic stress or stress-related disorders increase the probability to develop AD. An early dysregulation of the hypothalamic-pituitary-adrenal axis (HPA axis or stress axis) has been observed in patients. The direct consequence of such perturbation is an oversecretion of glucocorticoids (GC) associated with an impairment of its receptors (glucocorticoid receptors, GR). These steroids hormones easily penetrate the brain and act in synergy with excitatory amino acids. An overexposure could be highly toxic in limbic structures (prefrontal cortex and hippocampus) and contribute in the cognitive decline occurring in AD. GC and GR dysregulations seem to be involved in lots of functions disturbed in AD and a vicious cycle appears, where AD induces HPA axis dysregulation, which in turn potentiates the pathology. This review article presents some preclinical and clinical studies focusing on the HPA axis hormones and their receptors to fight AD. Due to its primordial role in the maintenance of homeostasis, the HPA axis appears as a key-actor in the etiology of AD and a prime target to tackle AD by offering multiple angles of action.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| |
Collapse
|
44
|
Decharatchakul N, Settasatian C, Settasatian N, Komanasin N, Kukongviriyapan U, Intharaphet P, Senthong V. Association of genetic polymorphisms in SOD2, SOD3, GPX3, and GSTT1 with hypertriglyceridemia and low HDL-C level in subjects with high risk of coronary artery disease. PeerJ 2019; 7:e7407. [PMID: 31396447 PMCID: PMC6679910 DOI: 10.7717/peerj.7407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Oxidative stress modulates insulin resistant-related atherogenic dyslipidemia: hypertriglyceridemia (HTG) and low high-density lipoprotein cholesterol (HDL-C) level. Gene polymorphisms in superoxide dismutase (SOD2 and SOD3), glutathione peroxidase-3 (GPX3), and glutathione S-transferase theta-1 (GSTT1) may enable oxidative stress-related lipid abnormalities and severity of coronary atherosclerosis. The present study investigated the associations of antioxidant-related gene polymorphisms with atherogenic dyslipidemia and atherosclerotic severity in subjects with high risk of coronary artery disease (CAD). Methods Study population comprises of 396 subjects with high risk of CAD. Gene polymorphisms: SOD2 rs4880, SOD3 rs2536512 and rs2855262, GPX rs3828599, and GSTT1 (deletion) were evaluated the associations with HTG, low HDL-C, high TG/HDL-C ratio, and severity of coronary atherosclerosis. Results SOD2 rs4880-CC, SOD3 rs2536512-AA, rs2855262-CC, and GPX3 rs3828599-AA, but not GSTT1-/- individually increased risk of HTG combined with low HDL-C level. With a combination of five risk-genotypes as a genetic risk score (GRS), GRS ≥ 6 increased risks of low HDL-C, high TG/HDL-C ratio, and HTG combined with low HDL-C, comparing with GRS 0–2 [respective adjusted ORs (95% CI) = 2.70 (1.24–5.85), 3.11 (1.55–6.23), and 5.73 (2.22–14.77)]. Gene polymorphisms, though, were not directly associated with severity of coronary atherosclerosis; high TG/HDL-C ratio was associated with coronary atherosclerotic severity [OR = 2.26 (95% CI [1.17–4.34])]. Conclusion Combined polymorphisms in antioxidant-related genes increased the risk of dyslipidemia related to atherosclerotic severity, suggesting the combined antioxidant-related gene polymorphisms as predictor of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Nisa Decharatchakul
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Chatri Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nongnuch Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nantarat Komanasin
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Upa Kukongviriyapan
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phongsak Intharaphet
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand
| | - Vichai Senthong
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand.,Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
45
|
Fortoul van der Goes TI. Editorial. Del estrés oxidante, el deber del médico y otros temas. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.22201/fm.24484865e.2019.62.3.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La vida en nuestro planeta evolucionó de la simbiosis de una cianobacteria y un procarionte. La aparición de los cloroplastos y las mitocondrias permitió a los nuevos organismos generar una atmósfera oxidante, obtener energía e implementar mecanismos para contender con ese ambiente; así aparecieron los antioxidantes. Un desequilibrio entre los antioxidantes y los prooxidantes dará como resultado al estrés oxidante, que se asocia con varias patologías. El compromiso del médico para el cuidado de su paciente, este último más informado (que no bien informado), más exigente, pero menos comprometido con su participación en el proceso de curación. El ritual para la formación del kusiyai revela un proceso de iniciación y selección. Varios casos de interés se incluyen en este número, y finalizamos con las flores del Museo de Botánica de Harvard.
Collapse
|