1
|
Sun Y, He L, Li X, Li C, Yan S, Zhang Y, Sun Z. Unraveling the Genomic Evolution of Dengue Virus Serotype 1: A Case Study from Yantai, China. Life (Basel) 2024; 14:808. [PMID: 39063563 PMCID: PMC11278097 DOI: 10.3390/life14070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
In August 2023, we identified a case of dengue fever in Yantai City, which was imported from Xishuangbanna, China. To investigate its evolutionary history and population dynamics, we utilized the metatranscriptomic method to obtain the virus' whole genome sequence. Together with 367 selected dengue virus whole genome sequences from the NCBI database, we constructed a time-scaled Maximum Clade Credibility (MCC) tree. We found that our sequence exhibited a high homology with a sequence of DENV1 (OR418422.1) uploaded by the Guangzhou Center for Disease Control and Prevention in 2023, with an estimated divergence time around 2019 (95% HPD: 2017-2023), coinciding with the emergence of SARS-CoV-2. The DENV strain obtained in this study belongs to genotype I of DENV1. Its ancestors experienced a global epidemic around 2005 (95% HPD: 2002-2010), and its progeny strains have spread extensively in Southeast Asia and China since around 2007 (95% HPD: 2006-2011). The Bayesian skyline plot indicates that the current population of DENV1 has not been affected by SARS-CoV-2 and is expected to maintain stable transmission. Hence, it is imperative to track and monitor its epidemiological trends and genomic variations to prevent potential large-scale outbreaks in the post-SARS-CoV-2 era.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Zhang
- Yantai Center for Disease Control and Prevention, Yantai 264003, China; (Y.S.); (L.H.)
| | - Zhenlu Sun
- Yantai Center for Disease Control and Prevention, Yantai 264003, China; (Y.S.); (L.H.)
| |
Collapse
|
2
|
Frazer JL, Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J Med Microbiol 2024; 73. [PMID: 38722305 DOI: 10.1099/jmm.0.001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.
Collapse
Affiliation(s)
| | - Robert Norton
- Pathology Queensland, Townsville QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Prommool T, Sethanant P, Phaenthaisong N, Tangthawornchaikul N, Songjaeng A, Avirutnan P, Mairiang D, Luangaram P, Srisawat C, Kasinrerk W, Vasanawathana S, Sriruksa K, Limpitikul W, Malasit P, Puttikhunt C. High performance dengue virus antigen-based serotyping-NS1-ELISA (plus): A simple alternative approach to identify dengue virus serotypes in acute dengue specimens. PLoS Negl Trop Dis 2021; 15:e0009065. [PMID: 33635874 PMCID: PMC7946175 DOI: 10.1371/journal.pntd.0009065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/10/2021] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Dengue hemorrhagic fever (DHF) is caused by infection with dengue virus (DENV). Four different serotypes (DENV1-4) co-circulate in dengue endemic areas. The viral RNA genome-based reverse-transcription PCR (RT-PCR) is the most widely used method to identify DENV serotypes in patient specimens. However, the non-structural protein 1 (NS1) antigen as a biomarker for DENV serotyping is an emerging alternative method. We modified the serotyping-NS1-enzyme linked immunosorbent assay (stNS1-ELISA) from the originally established assay which had limited sensitivity overall and poor specificity for the DENV2 serotype. Here, four biotinylated serotype-specific antibodies were applied, including an entirely new design for detection of DENV2. Prediction of the infecting serotype of retrospective acute-phase plasma from dengue patients revealed 100% concordance with the standard RT-PCR method for all four serotypes and 78% overall sensitivity (156/200). The sensitivity of DENV1 NS1 detection was greatly improved (from 62% to 90%) by the addition of a DENV1/DENV3 sub-complex antibody pair. Inclusive of five antibody pairs, the stNS1-ELISA (plus) method showed an overall increased sensitivity to 85.5% (171/200). With the same clinical specimens, a commercial NS1 rapid diagnostic test (NS1-RDT) showed 72% sensitivity (147/200), significantly lower than the stNS1-ELISA (plus) performance. In conclusion, the stNS1-ELISA (plus) is an improved method for prediction of DENV serotype and for overall sensitivity. It could be an alternative assay not only for early dengue diagnosis, but also for serotype identification especially in remote resource-limited dengue endemic areas. Four serotypes of DENV co-circulate in dengue endemic areas. Secondary infection with a different DENV serotype is beleived to involve with severe dengue disease. Standard laboratory diagnosis to identify DENV serotypes in dengue patient specimens is performed by sophisticated genome-based RT-PCR method with serotype-specific oligoprimers. We have previously established an alternative protein-based NS1 assay for DENV serotyping namely, a serotyping-NS1-ELISA (stNS1-ELISA), with the use of serotype-specific monoclonal antibodies (Mabs) to NS1 protein. Due to its unsatisfactory performance, the stNS1-ELISA was modified in this study. The biotinylated serotype-specific detection Mabs were introduced to enhance the overall sensitivity. A new DENV2-specific antibody was applied to improve DENV serotype identification. Prediction of infecting serotype from NS1-positive samples by our modified assay was 100% concordant with the standard RT-PCR method for all four serotypes. The overall sensitivity was greatly improved by an additional DENV1/DENV3 sub-complex antibody. This modified assay is efficient not only for early dengue diagnosis, but also for serotype identification in epidemiological studies and disease surveillance.
Collapse
Affiliation(s)
- Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Pongpawan Sethanant
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narodom Phaenthaisong
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dumrong Mairiang
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Luangaram
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watchara Kasinrerk
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
4
|
Tsuji I, Dominguez D, Egan MA, Dean HJ. Development of a novel assay to assess the avidity of dengue virus-specific antibodies elicited in response to a tetravalent dengue vaccine. J Infect Dis 2021; 225:1533-1544. [PMID: 33534885 PMCID: PMC9071338 DOI: 10.1093/infdis/jiab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 11/28/2022] Open
Abstract
Antibody affinity maturation is a critical step in development of functional antiviral immunity; however, accurate measurement of affinity maturation of polyclonal serum antibody responses to particulate antigens such as virions is challenging. We describe a novel avidity assay employing biolayer interferometry and dengue virus-like particles. After validation using anti-dengue monoclonal antibodies, the assay was used to assess avidity of antibody responses to a tetravalent dengue vaccine candidate (TAK-003) in children, adolescents, and adults during two phase 2 clinical trials conducted in dengue-endemic regions. Vaccination increased avidity index and avidity remained high through 1 year postvaccination. Neutralizing antibody titers and avidity index did not correlate overall; however, a correlation was observed between neutralizing antibody titer and avidity index in those subjects with the highest degree of antibody affinity maturation. Therefore, vaccination with TAK-003 stimulates polyclonal affinity maturation and functional antibody responses, including neutralizing antibodies.
Collapse
|
5
|
Gore MM. Vaccines Against Dengue and West Nile Viruses in India: The Need of the Hour. Viral Immunol 2020; 33:423-433. [PMID: 32320353 DOI: 10.1089/vim.2019.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of flaviviruses, dengue (DEN), Japanese encephalitis (JE) and West Nile (WN) viruses, and others, is generating a major concern in many countries. Both JE along with DEN have been endemic in large regions of India. WN virus infection, although circulating in southern regions for many years, in recent years, WN encephalitis patients have been demonstrated. While vaccines against JE have been developed and decrease outbreaks, in case of DEN and WN, vaccines are still in developing level, especially, it has been difficult to achieve the long-term protective immune response. The first licensed DEN vaccine, which is a live attenuated vaccine, was administered in countries where the virus is endemic, and has a potential to cause serious side effects, especially when administered to younger population as observed in the Philippines vaccination drive. In the case of WN, although the purified inactivated virion-based vaccine worked effectively as a veterinary vaccine for horses, no effective vaccine has yet been licensed for humans. The induction of CD4+ and CD8+ T cell responses is essential to complete protection by these viruses, as evidenced by responses to asymptomatic infections. Many studies have shown that neutralizing antibody (NAb) response is against surface structural proteins; CD4+ and CD8+ responses are mainly directed against nonstructural proteins rather than NAb response. New data suggest that encapsulating virus vaccines in nanoparticles (NPs) will direct antigen in cytoplasmic compartment by antigen-presenting cells, which will improve presentation to CD4+ and CD8+ T cells. Since tissue culture-derived, purified inactivated viruses are easier to manufacture and safer than developing live virus vaccines, inclusion of NP provides an attractive alternative for generating robust flaviviral vaccines that are affordable with long-lived protection.
Collapse
Affiliation(s)
- Milind M Gore
- Emeritus Scientist, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
6
|
Lin TH, Chen HW, Hsiao YJ, Yan JY, Chiang CY, Chen MY, Hu HM, Wu SH, Pan CH. Immunodomination of Serotype-Specific CD4+ T-Cell Epitopes Contributed to the Biased Immune Responses Induced by a Tetravalent Measles-Vectored Dengue Vaccine. Front Immunol 2020; 11:546. [PMID: 32300346 PMCID: PMC7145397 DOI: 10.3389/fimmu.2020.00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue is an emerging mosquito-borne disease, and the use of prophylactic vaccines is still limited. We previously developed a tetravalent dengue vaccine (rMV-TDV) by a recombinant measles virus (MV) vector expressing envelope protein domain III (ED3). In this study, we used dengue-susceptible AG129 mice to evaluate the protective and/or pathogenic immune responses induced by rMV-TDV. Consistent with the previous study, rMV-TDV-immunized mice developed a significant neutralizing antibody response against all serotypes of DENV, as well as a significant IFN-γ response biased to DENV-3, compared to the vector controls. We further demonstrated that this DENV-3-specific IFN-γ response was dominated by one CD4+ T-cell epitope located in E349-363. After DENV-2 challenge, rMV-TDV-immunized mice showed a significantly lower viremia and no inflammatory cytokine increase compared to the vector controls, which had an ~100 times higher viremia and a significant increase in IFN-γ and TNF-α. As a correlate of protection, a robust memory IFN-γ response specific to DENV-2 was boosted in rMV-TDV-immunized mice after challenge. This result suggested that pre-existing DENV-3-dominated T-cell responses did not cross-react, but a DENV-2-specific IFN-γ response, which was undetectable during immunization, was recalled. Interestingly, this recalled T-cell response recognized the epitope in the same position as the E349-363 but in the DENV-2 serotype. This result suggested that immunodomination occurred in the CD4+ T-cell epitopes between dengue serotypes after rMV-TDV vaccination and resulted in a DENV-3-dominated CD4+ T-cell response. Although the significant increase in IgG against both DENV-2 and -3 suggested that cross-reactive antibody responses were boosted, the increased neutralizing antibodies and IgG avidity still remained DENV-2 specific, consistent with the serotype-specific T cell response post challenge. Our data reveal that immunodomination caused a biased T-cell response to one of the dengue serotypes after tetravalent dengue vaccination and highlight the roles of cross-reactive T cells in dengue protection.
Collapse
Affiliation(s)
- Tsung-Han Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ju Hsiao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Ying Yan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Mei Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Hsien Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Abstract
This is a selective review of recent publications on dengue clinical features, epidemiology, pathogenesis, and vaccine development placed in a context of observations made over the past half century. Four dengue viruses (DENVs) are transmitted by urban cycle mosquitoes causing diseases whose nature and severity are influenced by interacting factors such as virus, age, immune status of the host, and human genetic variability. A phenomenon that controls the kinetics of DENV infection, antibody-dependent enhancement, best explains the correlation of the vascular permeability syndrome with second heterotypic DENV infections and infection in the presence of passively acquired antibodies. Based on growing evidence in vivo and in vitro, the tissue-damaging DENV non-structural protein 1 (NS1) is responsible for most of the pathophysiological features of severe dengue. This review considers the contribution of hemophagocytic histiocytosis syndrome to cases of severe dengue, the role of movement of humans in dengue epidemiology, and modeling and planning control programs and describes a country-wide survey for dengue infections in Bangladesh and efforts to learn what controls the clinical outcome of dengue infections. Progress and problems with three tetravalent live-attenuated vaccines are reviewed. Several research mysteries remain: why is the risk of severe disease during second heterotypic DENV infection so low, why is the onset of vascular permeability correlated with defervescence, and what are the crucial components of protective immunity?
Collapse
Affiliation(s)
- Scott Halstead
- Emeritus Professor, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
8
|
Collins MH, Waggoner JJ. Detecting Vertical Zika Transmission: Emerging Diagnostic Approaches for an Emerged Flavivirus. ACS Infect Dis 2019; 5:1055-1069. [PMID: 30951637 DOI: 10.1021/acsinfecdis.9b00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zika virus (Zika) was recently responsible for a massive epidemic that spread throughout Latin America and beyond. Though Zika is typically asymptomatic or self-limiting, the sheer numbers of Zika infections led to the identification of unexpected phenotypes including sexual transmission, Guillain-Barré syndrome, and teratogenicity. Thousands of infants in South, Central, and North America have now been born with microcephaly or one of a number of fetal anomalies constituting the congenital Zika syndrome (CZS). Diagnosing CZS is based on a combination of clinical risk assessment and laboratory testing (which includes determining whether the mother has experienced a possible Zika infection during her pregnancy). A newborn suspected of having congenital Zika infection (due to maternal Zika infection or a birth defect described in association with congenital Zika infection) is then specifically tested for presence of Zika virus in neonatal tissue or anti-Zika IgM in the blood or cerebrospinal fluid. Though the guidelines are clear, there is room for considerable practice variation to emerge from individualized patient-provider encounters, largely due to limitations in diagnostic testing for Zika. The natural history of Zika further obscures our ability to know who, when, and how to test. Molecular diagnostics are highly specific but may not serve well those with asymptomatic infection. Serologic assays expand the diagnostic window but are complicated by cross-reactivity among related flaviviruses and passive immunity transferred from mother to baby. Furthermore, existing and emerging diagnostic tools may not be widely available due to limitations in resources and infrastructure of health systems in affected areas. Improvements in assay parameters as well as advances in platforms and deployability hold promise for optimizing diagnostic approaches for congenital Zika infection. The diagnostic tools and technologies under development must be integrated with forthcoming clinical knowledge of congenital Zika infection to fully realize the value that laboratory testing holds for diagnosing in utero mother to child transmission but also for understanding, predicting, and managing the health outcomes due to congenital Zika infection.
Collapse
Affiliation(s)
- Matthew H. Collins
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jesse J. Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Chekanova TA, Shpynov SN, Tarasevich IV. AVIDITY OF IGG TO RICKETTSIA PROWAZEKII AS AN ADDITIONAL CRITERION FOR THE SEROLOGICAL DIFFERENTIAL DIAGNOSIS OF THE EPIDEMIC TYPH AND ITS RECRUDESCENT FORM - BRILL-ZINSSER DISEASE. JOURNAL OF MICROBIOLOGY EPIDEMIOLOGY IMMUNOBIOLOGY 2018. [DOI: 10.36233/0372-9311-2018-5-73-80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim: to investigate the diagnostic significance of avidity index (AI) for IgG toR. prowazekii with the determination of specific G and M class antibodies. Materials and methods. IgG/IgM to R. prowazekii, their titers and AI of IgG were measured in ELISA in 112 serum samples (47 sera from typhus-vaccinated individuals and 65 samples from patients and/or convalescents of epidemic typhus and/or Brill-Zinsser disease, including 18 sera collected during Lipetsk epidemic typhus outbreak in 1998).Results. Methodological approaches for estimation of AI for IgG toR. prowazekii have been determined. The initial period (or acute) of epidemic typhus we serologically detected in 8 cases by identifying of IgM toR. prowazekii only in two sera and IgM as well as IgG toR. prowazekii with low or medium values of AI in 6 samples. In 19 samples from patients we indicated Brill-Zinsser disease due to the presence in them specific IgM and IgG to R. prowazekii with high values AI. In 2 sera from vaccinated persons was established a low AI of IgG at significant diagnostic titers. Conclusion. AI of IgG to R. prowazekii has high prognostic information for differential diagnosis of epidemic typhus and Brill-Zinsser disease.
Collapse
Affiliation(s)
- T. A. Chekanova
- Gamaleya National Research Centre of Epidemiology and Microbiology
| | - S. N. Shpynov
- Gamaleya National Research Centre of Epidemiology and Microbiology
| | - I. V. Tarasevich
- Gamaleya National Research Centre of Epidemiology and Microbiology
| |
Collapse
|
10
|
Luo S, Cui W, Li C, Ling F, Fu T, Liu Q, Ren J, Sun J. Seroprevalence of dengue IgG antibodies in symptomatic and asymptomatic individuals three years after an outbreak in Zhejiang Province, China. BMC Infect Dis 2018; 18:92. [PMID: 29471783 PMCID: PMC5824482 DOI: 10.1186/s12879-018-3000-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cross-reacting antibodies enhanced dengue infection in humans and antibody dependent enhancement (ADE) have been proposed as early mechanisms underlying DHF/DSS. However, the duration of dengue IgG antibodies in the body as well as factors associated with said duration remain unclear. METHODS Blood samples from 59 dengue symptomatic persons and 48 asymptomatic individuals were collected. Study participant demographic information (including age in 2009, gender, and place of residence) were also collected. Serum samples were tested for dengue specific IgG by Panbio dengue IgG indirect enzyme-linked immunosorbent assay (ELISA). Chi-square tests and logistic regression analysis of dengue IgG antibodies seroprevalence divided by gender, age groups, and symptomatic or asymptomatic infection were conducted using the Statistical Package for the Social Sciences. RESULTS Overall, 70 (65.42%) blood samples were seropositive for dengue IgG antibodies with similar seroprevalences found when dividing by gender and different age groups. However, seroprevalence of dengue IgG antibodies in samples from dengue symptomatic persons was significantly higher than that in samples from asymptomatic individuals (96.61% vs 27.08%) according to multivariable logistic regression analysis, the odds ratio (OR) of the factor was 76.731. CONCLUSIONS Dengue IgG antibodies were detectable in samples from most individuals three years after infection. Dengue symptomatic persons had a higher dengue IgG prevalence compared to asymptomatic individuals.
Collapse
Affiliation(s)
- Shuying Luo
- Yiwu Municipal Center for Disease Control and Prevention, Yiwu, China
| | - Weihong Cui
- Yantai Municipal Center for Disease Control and Prevention, Yantai, China
| | - Chan Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Ling
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tao Fu
- Yiwu Municipal Center for Disease Control and Prevention, Yiwu, China
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiangping Ren
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China. .,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
11
|
Chiang CY, Pan CH, Chen MY, Hsieh CH, Tsai JP, Liu HH, Liu SJ, Chong P, Leng CH, Chen HW. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice. Sci Rep 2016; 6:30648. [PMID: 27470096 PMCID: PMC4965760 DOI: 10.1038/srep30648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|