1
|
Gomes de Sousa VB, Costa VDD, Motta-Castro ARC, Miguel JC, Uehara S, Bandeira LM, Nukui Y, Puga MAM, Villar LM. Optimization of human T-cell lymphotropic virus type 1 (HTLV-1) serological and molecular diagnosis for alternative blood samples. J Virol Methods 2025; 337:115187. [PMID: 40374014 DOI: 10.1016/j.jviromet.2025.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/25/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
HTLV-1 is a bloodborne virus that poses diagnostic challenges and can cause severe complications. Diagnosis is made by serological and molecular assays that are laborious in some conditions. This study aims to optimize methods for molecular and serological diagnosis using less invasive samples and rapid assays. A total of 125 individuals donated whole blood, dried blood spots (DBS), and serum samples. Loop mediated isothermal amplification (LAMP) was used for HTLV-1 detection in whole blood (extracted, in natura, and inactivated) and DBS samples while electrochemiluminescence assay (ECLIA) was used to detect anti-HTLV1/2 in serum and DBS. HTLV LAMP presented the highest performance in whole blood (extracted) with sensitivity of 92 % and specificity of 100 %. LAMP for inactivated samples had a sensitivity of 47.4 % and specificity of 100 %, whereas in natura samples had a sensitivity of 50 % and specificity of 100 %. The whole blood HTLV-1 LAMP had a limit detection of 0.02 ng/µL and 100 % precision. DBS LAMP carried out after DNA extraction yielded similar results, with a sensitivity 43 of 90 % (36/40). The average DNA concentration was 5.05 ± 5.2 ng/µL. For anti-HTLV1/2 testing, DBS yielded sensitivity of 97.6 % (86/88) and total specificity (0/29). The mean SD of optical density to cut off (OD/CO) value was 37.2 ± 36.8 in reactive samples and 0.3 ± 0.05 in negative samples. In conclusion, DBS testing demonstrated high sensitivity and specificity for detecting anti-HTLV-1 and HTLV DNA, which could facilitate the diagnosis of this infection.
Collapse
Affiliation(s)
| | - Vanessa Duarte da Costa
- Brazilian Reference Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Juliana Custódio Miguel
- Brazilian Reference Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Silvia Uehara
- Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Youko Nukui
- Medicine Faculty, São Paulo University, São Paulo, Brazil
| | | | - Livia Melo Villar
- Brazilian Reference Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Feddema JJ, Fernald KDS, Keijser BJF, Kieboom J, van de Burgwal LHM. Commercial Opportunity or Addressing Unmet Needs-Loop-Mediated Isothermal Amplification (LAMP) as the Future of Rapid Diagnostic Testing? Diagnostics (Basel) 2024; 14:1845. [PMID: 39272630 PMCID: PMC11394392 DOI: 10.3390/diagnostics14171845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Loop-Mediated Isothermal Amplification (LAMP) technology is emerging as a rapid pathogen testing method, potentially challenging the RT-PCR "gold standard". Despite recent advancements, LAMP's widespread adoption remains limited. This study provides a comprehensive market overview and assesses future growth prospects to aid stakeholders in strategic decision-making and policy formulation. Using a dataset of 1134 LAMP patent documents, we analyzed lifecycle and geographic distribution, applicant profiles, CPC code classifications, and patent claims. Additionally, we examined clinical developments from 21 curated clinical trials, focusing on trends, geographic engagement, sponsor types, and the conditions and pathogens investigated. Our analysis highlights LAMP's potential as a promising rapid pathogen testing alternative, especially in resource-limited areas. It also reveals a gap between clinical research, which targets bacterial and parasitic diseases like malaria, leishmaniasis, and tuberculosis, and basic research and commercial efforts that prioritize viral diseases such as SARS-CoV-2 and influenza. European stakeholders emphasize the societal impact of addressing unmet needs in resource-limited areas, while American and Asian organizations focus more on research, innovation, and commercialization.
Collapse
Affiliation(s)
- Jelle J Feddema
- Athena Institute, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Kenneth D S Fernald
- Athena Institute, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Bart J F Keijser
- TNO Healthy Living and Work, Microbiology and Systems Biology, Sylviusweg 71, 2333 BE Leiden, The Netherlands
| | - Jasper Kieboom
- TNO Healthy Living and Work, Microbiology and Systems Biology, Sylviusweg 71, 2333 BE Leiden, The Netherlands
| | - Linda H M van de Burgwal
- Athena Institute, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Claeys M, Al Obaidi S, Bruyland K, Vandecandelaere I, Vandesompele J. Assessment of DNA/RNA Defend Pro: An Inactivating Sample Collection Buffer for Enhanced Stability, Extraction-Free PCR, and Rapid Antigen Testing of Nasopharyngeal Swab Samples. Int J Mol Sci 2024; 25:9097. [PMID: 39201783 PMCID: PMC11354787 DOI: 10.3390/ijms25169097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
This study comprehensively evaluated the DNA/RNA Defend Pro (DRDP) sample collection buffer, designed to inactivate and stabilize patient samples. The primary objectives were to assess DRDP's efficacy in ensuring sample stability, facilitating extraction-free polymerase chain reaction (PCR), and ensuring compatibility with rapid antigen testing (RAT). Ninety-five diagnostic nasopharyngeal swab samples tested for influenza virus (influenza A), respiratory syncytial virus (RSV A), and/or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were 10-fold diluted with DRDP and anonymized. Initial characterization and retesting of these samples using cobas Liat confirmed 88 samples as positive, validating the presence of viral targets. Results from rapid antigen testing showed lower sensitivity compared to nucleic acid amplification testing (NAAT) but maintained perfect specificity, with 40 out of 88 positive samples by cobas Liat also testing positive for RAT. Direct RT-qPCR of DRDP-diluted samples demonstrated robust compatibility, with 72 out of 88 samples positive for cobas Liat also testing positive by direct RT-qPCR. Non-concordant results could be explained by the 200-fold lower input of extraction-free NAAT. Stability testing involved incubating 31 positive samples at 4 °C, 20 °C, and 37 °C for 7 days, with extraction-free NAAT. DRDP guaranteed viral RNA stability at all temperatures for influenza A, SARS-CoV-2, and RSV A, showing stability up to 7 days at 4 °C. In conclusion, DRDP is an effective stabilizing medium compatible with direct RT-qPCR and rapid antigen testing and shows great potential for optimizing diagnostic processes, particularly in resource-limited or time-sensitive scenarios.
Collapse
Affiliation(s)
- Mikhail Claeys
- InActiv Blue, Industriepark Oost 2A, 8730 Beernem, Belgium; (M.C.); (S.A.O.)
| | - Saif Al Obaidi
- InActiv Blue, Industriepark Oost 2A, 8730 Beernem, Belgium; (M.C.); (S.A.O.)
- Campus Brugge Station, Howest University of Applied Sciences, Rijselstraat 5, 8200 Brugge, Belgium
| | - Karen Bruyland
- Medisch Labo Bruyland, Beneluxpark 2, 8500 Kortrijk, Belgium (I.V.)
| | | | - Jo Vandesompele
- InActiv Blue, Industriepark Oost 2A, 8730 Beernem, Belgium; (M.C.); (S.A.O.)
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Gent, Belgium
| |
Collapse
|
4
|
Pourakbari R, Gholami M, Shakerimoghaddam A, Khiavi FM, Mohammadimehr M, Khomartash MS. Comparison of RT-LAMP and RT-qPCR assays for detecting SARS-CoV-2 in the extracted RNA and direct swab samples. J Virol Methods 2024; 324:114871. [PMID: 38103738 DOI: 10.1016/j.jviromet.2023.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients is critical for infection control. Loop-mediated isothermal amplification (LAMP) has been demonstrated to be a rapid, simple, reliable, cost-effective and sensitive method to detect SARS-CoV-2 in a variety of samples in considerably less time than Real-Time PCR. In this study, we developed and optimized a rapid detection method for SARS-CoV-2 based on RT-LAMP method utilizing a specific primer set targeting the ORF1a gene and then examined its sensitivity and efficiency using a serially diluted viral RNA sample with a known concentration. Furthermore, the sensitivity of the RT-LAMP to detect SARS-CoV-2 in direct swab samples with varying Ct values were compared to a commercial molecular RT-qPCR based detection kit. According to our findings the optimal incubation time for RT-LAMP assay was 45 min. There was a complete agreement between RT-LAMP and RT-qPCR in diagnosing the viral genome in the diluted extracted RNA sample. However, it had a lower sensitivity (71%) to detect the viral genome in direct swab samples compared to RT-qPCR. In conclusion, due to its simplicity, rapidness, sensitivity, and specificity, RT-LAMP has tremendous potential as a point-of-care tool; nevertheless, more research is needed to utilize it for detecting SARS-CoV-2, particularly in direct swab samples.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.; Medical Biotechnology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mohammad Gholami
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Ali Shakerimoghaddam
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.; Medical Biotechnology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Farhad Motavalli Khiavi
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.; Medical Biotechnology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mojgan Mohammadimehr
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakouri Khomartash
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.; Medical Biotechnology Research Center, Aja University of Medical Sciences, Tehran, Iran..
| |
Collapse
|
5
|
Egerer R, Edel B, Hornung F, Deinhardt-Emmer S, Baier M, Lewejohann JC, Pfister W, Löffler B, Rödel J. SARS-CoV-2 Testing of Emergency Department Patients Using cobas ® Liat ® and eazyplex ® Rapid Molecular Assays. Diagnostics (Basel) 2023; 13:2245. [PMID: 37443639 DOI: 10.3390/diagnostics13132245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Rapid testing for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) of patients presenting to emergency departments (EDs) facilitates the decision for isolation on admission to hospital wards. Differences in the sensitivity of molecular assays have implications for diagnostic workflows. This study evaluated the performance of the cobas® Liat® RT-PCR, which is routinely used as the initial test for ED patients in our hospitals, compared with the eazyplex® RT-LAMP. A total of 378 oropharyngeal and nasal swabs with positive Liat® results were analysed. Residual sample aliquots were tested using NeuMoDx™, cobas® RT-PCR, and the eazyplex® assay. Patients were divided into asymptomatic (n = 157) and symptomatic (n = 221) groups according to the WHO case definition. Overall, 14% of positive Liat® results were not confirmed by RT-PCR. These samples were mainly attributed to 26.8% of asymptomatic patients, compared to 3.8% of the symptomatic group. Therefore, positive Liat® results were used to provisionally isolate patients in the ED until RT-PCR results were available. The eazyplex® assay identified 62% and 90.6% of RT-PCR-confirmed cases in asymptomatic and symptomatic patients, respectively. False-negative eazyplex® results were associated with RT-PCR Ct values > 30, and were more frequent in the asymptomatic group than in the symptomatic group (38.1% vs. 5.1%, respectively). Both the Liat® and eazyplex® assays are suitable for testing symptomatic patients. Their use in screening asymptomatic patients depends on the need to exclude any infection or identify those at high risk of transmission.
Collapse
Affiliation(s)
- Renate Egerer
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Birgit Edel
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Michael Baier
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Jan-Christoph Lewejohann
- Department of Emergency Medicine, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Wolfgang Pfister
- Department of Hospital Hygiene, Sophien- und Hufeland-Klinikum, 99425 Weimar, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
6
|
Jin X, Li M, Mao Z, Deng A, Lv W, Huang L, Zhong H, Yang H, Zhang L, Liao Q, Huang G. An Integrated and Multi-Target Nucleic Acid Isothermal Analysis System for Rapid Diagnosis of Vulvovaginal Candidiasis. BIOSENSORS 2023; 13:bios13050559. [PMID: 37232920 DOI: 10.3390/bios13050559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Rapid identification of Candida species is significant for the diagnosis of vulvovaginal candidiasis (VVC). An integrated and multi-target system for the rapid, high-specificity, and high-sensitivity detection of four Candida species was developed. The system consists of a rapid sample processing cassette and a rapid nucleic acid analysis device. The cassette could process the Candida species to release nucleic acids in 15 min. The released nucleic acids were analyzed by the device as fast as within 30 min, using the loop-mediated isothermal amplification method. The four Candida species could be simultaneously identified, with each reaction using only 1.41 µL of reaction mixture, which was low cost. The RPT (rapid sample processing and testing) system could detect the four Candida species with high sensitivity (<2 CFU/reaction) and high specificity. The system also processed and analyzed 32 clinical samples, giving the results with high clinical sensitivity and specificity. Hence, the system was a significant and effective platform for the diagnosis of VVC. Furthermore, the period of validity of the reagents and chips used in the system was >90 days, and the system could also be used for the detection of bacteria.
Collapse
Affiliation(s)
- Xiangyu Jin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Li
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Zeyin Mao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Anni Deng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenqi Lv
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Leyang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hao Zhong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Han Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| |
Collapse
|
7
|
Zhang X, Zhao Y, Zeng Y, Zhang C. Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection. Diagnostics (Basel) 2023; 13:diagnostics13091530. [PMID: 37174922 PMCID: PMC10177487 DOI: 10.3390/diagnostics13091530] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Loop-mediated isothermal amplification (LAMP), as the rank one alternative to a polymerase chain reaction (PCR), has been widely applied in point-of-care testing (POCT) due to its rapid, simple, and cost-effective characteristics. However, it is difficult to achieve real-time monitoring and multiplex detection with the traditional LAMP method. In addition, these approaches that use turbidimetry, sequence-independent intercalating dyes, or pH-sensitive indicators to indirectly reflect amplification can result in false-positive results if non-specific amplification occurs. To fulfill the needs of specific target detection and one-pot multiplex detection, a variety of probe-based LAMP assays have been developed. This review focuses on the principles of these assays, summarizes their applications in pathogen detection, and discusses their features and advantages over the traditional LAMP methods.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yongjuan Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yi Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
8
|
Ferreira MDP, Yamada-Ogatta SF, Teixeira Tarley CR. Electrochemical and Bioelectrochemical Sensing Platforms for Diagnostics of COVID-19. BIOSENSORS 2023; 13:336. [PMID: 36979548 PMCID: PMC10046778 DOI: 10.3390/bios13030336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Rapid transmission and high mortality rates caused by the SARS-CoV-2 virus showed that the best way to fight against the pandemic was through rapid, accurate diagnosis in parallel with vaccination. In this context, several research groups around the world have endeavored to develop new diagnostic methods due to the disadvantages of the gold standard method, reverse transcriptase polymerase chain reaction (RT-PCR), in terms of cost and time consumption. Electrochemical and bioelectrochemical platforms have been important tools for overcoming the limitations of conventional diagnostic platforms, including accuracy, accessibility, portability, and response time. In this review, we report on several electrochemical sensors and biosensors developed for SARS-CoV-2 detection, presenting the concepts, fabrication, advantages, and disadvantages of the different approaches. The focus is devoted to highlighting the recent progress of electrochemical devices developed as next-generation field-deployable analytical tools as well as guiding future researchers in the manufacture of devices for disease diagnosis.
Collapse
Affiliation(s)
| | | | - César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina (UEL), Londrina 86051-990, Brazil
- National Institute of Science and Technology in Bioanalysis (INCTBio), Institute of Chemistry, State University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| |
Collapse
|
9
|
Szobi A, Buranovská K, Vojtaššáková N, Lovíšek D, Özbaşak HÖ, Szeibeczederová S, Kapustian L, Hudáčová Z, Kováčová V, Drobná D, Putaj P, Bírová S, Čirková I, Čarnecký M, Kilián P, Jurkáček P, Čabanová V, Boršová K, Sláviková M, Vaňová V, Klempa B, Čekan P, Paul ED. Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system. Commun Biol 2023; 6:233. [PMID: 36864129 PMCID: PMC9979146 DOI: 10.1038/s42003-023-04612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Sensitive and rapid point-of-care assays have been crucial in the global response to SARS-CoV-2. Loop-mediated isothermal amplification (LAMP) has emerged as an important diagnostic tool given its simplicity and minimal equipment requirements, although limitations exist regarding sensitivity and the methods used to detect reaction products. We describe the development of Vivid COVID-19 LAMP, which leverages a metallochromic detection system utilizing zinc ions and a zinc sensor, 5-Br-PAPS, to circumvent the limitations of classic detection systems dependent on pH indicators or magnesium chelators. We make important strides in improving RT-LAMP sensitivity by establishing principles for using LNA-modified LAMP primers, multiplexing, and conducting extensive optimizations of reaction parameters. To enable point-of-care testing, we introduce a rapid sample inactivation procedure without RNA extraction that is compatible with self-collected, non-invasive gargle samples. Our quadruplexed assay (targeting E, N, ORF1a, and RdRP) reliably detects 1 RNA copy/µl of sample (=8 copies/reaction) from extracted RNA and 2 RNA copies/µl of sample (=16 copies/reaction) directly from gargle samples, making it one of the most sensitive RT-LAMP tests and even comparable to RT-qPCR. Additionally, we demonstrate a self-contained, mobile version of our assay in a variety of high-throughput field testing scenarios on nearly 9,000 crude gargle samples. Vivid COVID-19 LAMP can be an important asset for the endemic phase of COVID-19 as well as preparing for future pandemics.
Collapse
Affiliation(s)
- Adrián Szobi
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Daniel Lovíšek
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Halil Önder Özbaşak
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Sandra Szeibeczederová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Liudmyla Kapustian
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Zuzana Hudáčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
- Stanford University, 730 Escondido Rd., Stanford, CA, 94305, USA
| | - Viera Kováčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
- University of Cologne, Institute for Biological Physics, Zülpicher Str. 77, 50937, Köln, Germany
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Piotr Putaj
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Stanislava Bírová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Ivana Čirková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Martin Čarnecký
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Peter Kilián
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Peter Jurkáček
- AstonITM s.r.o., Račianska 153, 831 54, Bratislava, Slovakia
| | - Viktória Čabanová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Kristína Boršová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Veronika Vaňová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia.
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA.
| | - Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia.
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA.
| |
Collapse
|
10
|
Tarim EA, Oksuz C, Karakuzu B, Appak O, Sayiner AA, Tekin HC. Electromechanical RT-LAMP device for portable SARS-CoV-2 detection. Talanta 2023; 254:124190. [PMID: 36521325 PMCID: PMC9733968 DOI: 10.1016/j.talanta.2022.124190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Rapid point-of-care tests for infectious diseases are essential, especially in pandemic conditions. We have developed a point-of-care electromechanical device to detect SARS-CoV-2 viral RNA using the reverse-transcription loop-mediated isothermal amplification (RT-LAMP) principle. The developed device can detect SARS-CoV-2 viral RNA down to 103 copies/mL and from a low amount of sample volumes (2 μL) in less than an hour of standalone operation without the need for professional labor and equipment. Integrated Peltier elements in the device keep the sample at a constant temperature, and an integrated camera allows automated monitoring of LAMP reaction in a stirring sample by using colorimetric analysis of unfocused sample images in the hue/saturation/value color space. This palm-fitting, portable and low-cost device does not require a fully focused sample image for analysis, and the operation could be stopped automatically through image analysis when the positive test results are obtained. Hence, viral infections can be detected with the portable device produced without the need for long, expensive, and labor-intensive tests and equipment, which can make the viral tests disseminated at the point-of-care.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Ozgur Appak
- Department of Medical Microbiology, Dokuz Eylul University, Faculty of Medicine, Izmir 35330, Turkey
| | - Ayca Arzu Sayiner
- Department of Medical Microbiology, Dokuz Eylul University, Faculty of Medicine, Izmir 35330, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey,METU MEMS Center, Ankara 06520, Turkey,Corresponding author. Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| |
Collapse
|
11
|
Abstract
INTRODUCTION The SARS-CoV-2 pandemic, and the subsequent limitations on standard diagnostics, has vastly expanded the user base of Reverse Transcription Loop-mediated isothermal Amplification (RT-LAMP) in fundamental research and development. RT-LAMP has also penetrated commercial markets, with emergency use authorizations for clinical diagnosis. AREAS COVERED This review discusses the role of RT-LAMP within the context of other technologies like RT-qPCR and rapid antigen tests, progress in sample preparation strategies to enable simplified workflow for RT-LAMP directly from clinical specimens, new challenges with primer and assay design for the evolving pandemic, prominent detection modalities including colorimetric and CRISPR-mediated methods, and translational research and commercial development of RT-LAMP for clinical applications. EXPERT OPINION RT-LAMP occupies a middle ground between RT-qPCR and rapid antigen tests. The simplicity approaches that of rapid antigen tests, making it suitable for point-of-care use, but the sensitivity nears that of RT-qPCR. RT-LAMP still lags RT-qPCR in fundamental understanding of the mechanism, and the interplay between sample preparation and assay performance. Industry is now beginning to address issues around scalability and usability, which could finally enable LAMP and RT-LAMP to find future widespread application as a diagnostic for other conditions, including other pathogens with pandemic potential.
Collapse
Affiliation(s)
- Gihoon Choi
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Taylor J Moehling
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Robert J Meagher
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| |
Collapse
|
12
|
El Sharif HF, Dennison SR, Tully M, Crossley S, Mwangi W, Bailey D, Graham SP, Reddy SM. Evaluation of electropolymerized molecularly imprinted polymers (E-MIPs) on disposable electrodes for detection of SARS-CoV-2 in saliva. Anal Chim Acta 2022; 1206:339777. [PMID: 35473858 PMCID: PMC8974637 DOI: 10.1016/j.aca.2022.339777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
We investigate electropolymerized molecularly imprinted polymers (E-MIPs) for the selective recognition of SARS-CoV-2 whole virus. E-MIPs imprinted with SARS-CoV-2 pseudoparticles (pps) were electrochemically deposited onto screen printed electrodes by reductive electropolymerization, using the water-soluble N-hydroxmethylacrylamide (NHMA) as functional monomer and crosslinked with N,N'-methylenebisacrylamide (MBAm). E-MIPs for SARS-CoV-2 showed selectivity for template SARS-CoV-2 pps, with an imprinting factor of 3:1, and specificity (significance = 0.06) when cross-reacted with other respiratory viruses. E-MIPs detected the presence of SARS-CoV-2 pps in <10 min with a limit of detection of 4.9 log10 pfu/mL, suggesting their suitability for detection of SARS-CoV-2 with minimal sample preparation. Using electrochemical impedance spectroscopy (EIS) and principal component analysis (PCA), the capture of SARS-CoV-2 from real patient saliva samples was also evaluated. Fifteen confirmed COVID-19 positive and nine COVID-19 negative saliva samples were compared against the established loop-mediated isothermal nucleic acid amplification (LAMP) technique used by the UK National Health Service. EIS data demonstrated a PCA discrimination between positive and negative LAMP samples. A threshold real impedance signal (ZRe) ≫ 4000 Ω and a corresponding charge transfer resistance (RCT) ≫ 6000 Ω was indicative of absence of virus (COVID-19 negative) in agreement with values obtained for our control non-imprinted polymer control. A ZRe at or below a threshold value of 600 Ω with a corresponding RCT of <1200 Ω was indicative of a COVID-19 positive sample. The presence of virus was confirmed by treatment of E-MIPs with a SARS-CoV-2 specific monoclonal antibody.
Collapse
Affiliation(s)
- H F El Sharif
- Department of Chemistry, UCLan Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - S R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - M Tully
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - S Crossley
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - W Mwangi
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - D Bailey
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - S P Graham
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - S M Reddy
- Department of Chemistry, UCLan Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| |
Collapse
|
13
|
Gärtner K, Meleke H, Kamdolozi M, Chaima D, Samikwa L, Paynter M, Nyirenda Nyang’Wa M, Cloutman-Green E, Nastouli E, Klein N, Nyirenda T, Msefula C, Alber DG. A fast extraction-free isothermal LAMP assay for detection of SARS-CoV-2 with potential use in resource-limited settings. Virol J 2022; 19:77. [PMID: 35501862 PMCID: PMC9059459 DOI: 10.1186/s12985-022-01800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background To retain the spread of SARS-CoV-2, fast, sensitive and cost-effective testing is essential, particularly in resource limited settings (RLS). Current standard nucleic acid-based RT-PCR assays, although highly sensitive and specific, require transportation of samples to specialised laboratories, trained staff and expensive reagents. The latter are often not readily available in low- and middle-income countries and this may significantly impact on the successful disease management in these settings. Various studies have suggested a SARS-CoV-2 loop mediated isothermal amplification (LAMP) assay as an alternative method to RT-PCR. Methods Four previously published primer pairs were used for detection of SARS-CoV-2 in the LAMP assay. To determine optimal conditions, different temperatures, sample input and incubation times were tested. Ninety-three extracted RNA samples from St. George's Hospital, London, 10 non-extracted nasopharyngeal swab samples from Great Ormond Street Hospital for Children, London, and 92 non-extracted samples from Queen Elisabeth Central Hospital (QECH), Malawi, which have previously been tested for SARS-Cov-2 by quantitative reverse-transcription RealTime PCR (qRT-PCR), were analysed in the LAMP assay. Results In this study we report the optimisation of an extraction-free colourimetric SARS-CoV-2 LAMP assay and demonstrated that a lower limit of detection (LOD) between 10 and 100 copies/µL of SARS-CoV-2 could be readily detected by a colour change of the reaction within as little as 30 min. We further show that this assay could be quickly established in Malawi, as no expensive equipment is necessary. We tested 92 clinical samples from QECH and showed the sensitivity and specificity of the assay to be 86.7% and 98.4%, respectively. Some viral transport media, used routinely to stabilise RNA in clinical samples during transportation, caused a non-specific colour-change in the LAMP reaction and therefore we suggest collecting samples in phosphate buffered saline (which did not affect the colour) as the assay allows immediate sample analysis on-site. Conclusion SARS-CoV-2 LAMP is a cheap and reliable assay that can be readily employed in RLS to improve disease monitoring and management. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01800-7.
Collapse
|
14
|
DeFina SM, Wang J, Yang L, Zhou H, Adams J, Cushing W, Tuohy B, Hui P, Liu C, Pham K. SaliVISION: a rapid saliva-based COVID-19 screening and diagnostic test with high sensitivity and specificity. Sci Rep 2022; 12:5729. [PMID: 35388102 PMCID: PMC8986854 DOI: 10.1038/s41598-022-09718-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic-caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)– has posed a global threat and presented with it a multitude of economic and public-health challenges. Establishing a reliable means of readily available, rapid diagnostic testing is of paramount importance in halting the spread of COVID-19, as governments continue to ease lockdown restrictions. The current standard for laboratory testing utilizes reverse transcription quantitative polymerase chain reaction (RT-qPCR); however, this method presents clear limitations in requiring a longer run-time as well as reduced on-site testing capability. Therefore, we investigated the feasibility of a reverse transcription looped-mediated isothermal amplification (RT-LAMP)-based model of rapid COVID-19 diagnostic testing which allows for less invasive sample collection, named SaliVISION. This novel, two-step, RT-LAMP assay utilizes a customized multiplex primer set specifically targeting SARS-CoV-2 and a visual report system that is ready to interpret within 40 min from the start of sample processing and does not require a BSL-2 level testing environment or special laboratory equipment. When compared to the SalivaDirect and Thermo Fisher Scientific TaqPath RT-qPCR testing platforms, the respective sensitivities of the SaliVISION assay are 94.29% and 98.28% while assay specificity was 100% when compared to either testing platform. Our data illustrate a robust, rapid diagnostic assay in our novel RT-LAMP test design, with potential for greater testing throughput than is currently available through laboratory testing and increased on-site testing capability.
Collapse
Affiliation(s)
- Samuel M DeFina
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jianhui Wang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Lei Yang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Han Zhou
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jennifer Adams
- Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - William Cushing
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA.,Yale New Haven Hospital, New Haven, CT, USA
| | - Beth Tuohy
- Yale University Health Services, Yale University, New Haven, CT, USA
| | - Pei Hui
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Kien Pham
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Londono-Avendano MA, Libreros G, Osorio L, Parra B. A Rapid RT-LAMP Assay for SARS-CoV-2 with Colorimetric Detection Assisted by a Mobile Application. Diagnostics (Basel) 2022; 12:diagnostics12040848. [PMID: 35453896 PMCID: PMC9032071 DOI: 10.3390/diagnostics12040848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Loop-mediated amplification has been promoted for SARS-CoV-2 screening, however, antigen tests are preferred in low-income countries and remote zones. Poor training in molecular biology, plus the need for RNA purification or reading instruments to overcome issues of sensitivity in colorimetric detection, are some of the reasons limiting the use of this technique. In this study, nasopharyngeal swabs, aspirates and saliva were amplified in an in-house LAMP assay and subject to colorimetric detection, achieved by the naked eye and by image analysis with a mobile application. Accuracy of detection by the naked eye ranged from 61–74% but improved to 75–86% when using the application. Sensitivity of the digital approach was 81% and specificity 83%, with poor positive predictive value, and acceptable negative predictive value. Additionally to the reported effect of some transport media’s pH, the presence of mucus and warming up of reagents while setting up the reaction critically affected performance. Accuracy per type of sample was 55, 70 and 80%, for swabs, aspirates and saliva, respectively, suggesting potential to improve the test in saliva. This assay, carried out in a closed tube, reduces contamination, has few pipetting steps and requires minimal equipment. Strategies to improve performance and implications of the use this sort of colorimetric LAMP for massive testing are discussed.
Collapse
Affiliation(s)
- María Aurora Londono-Avendano
- Departamento de Microbiología, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Calle 4B # 36-00, edificio 120, oficina 223/229, Cali 760043, Colombia; (G.L.); (B.P.)
- Correspondence: ; Tel.: +573-3212100 (ext. 5205)
| | - Gerardo Libreros
- Departamento de Microbiología, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Calle 4B # 36-00, edificio 120, oficina 223/229, Cali 760043, Colombia; (G.L.); (B.P.)
| | - Lyda Osorio
- Escuela de Salud Pública, Facultad de Salud, Universidad del Valle, Calle 4B # 36-00, edificio 120, oficina 223/229, Cali 760043, Colombia;
| | - Beatriz Parra
- Departamento de Microbiología, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Calle 4B # 36-00, edificio 120, oficina 223/229, Cali 760043, Colombia; (G.L.); (B.P.)
| |
Collapse
|
16
|
Affiliation(s)
- Nicole V Tolan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Cotran 2, Boston, MA 01752, USA.
| | - Gary L Horowitz
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
17
|
Gangula A, Kim B, Casey B, Hamill A, Regunath H, Upendran A. Point-of-Care Testing of COVID-19: Current Status, Clinical Impact, and Future Therapeutic Perspectives. SPRINGERBRIEFS IN APPLIED SCIENCES AND TECHNOLOGY 2022:1-70. [DOI: 10.1007/978-981-19-4957-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Hristov DR, Gomez-Marquez J, Wade D, Hamad-Schifferli K. SARS-CoV-2 and approaches for a testing and diagnostic strategy. J Mater Chem B 2021; 9:8157-8173. [PMID: 34494642 DOI: 10.1039/d1tb00674f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has led to an unprecedented global health challenge, creating sudden, massive demands for diagnostic testing, treatment, therapies, and vaccines. In particular, the development of diagnostic assays for SARS-CoV-2 has been pursued as they are needed for quarantine, disease surveillance, and patient treatment. One of the major lessons the pandemic highlighted was the need for fast, cheap, scalable and reliable diagnostic methods, such as paper-based assays. Furthermore, it has previously been suggested that paper-based tests may be more suitable for settings with lower resource availability and may help alleviate some supply chain challenges which arose during the COVID-19 pandemic. Therefore, we explore how such devices may fit in a comprehensive diagnostic strategy and how some of the challenges to the technology, e.g. low sensitivity, may be addressed. We discuss the properties of the SARS-CoV-2 virus itself, the COVID-19 disease pathway, and the immune response. We then describe the different diagnostic strategies that have been pursued, focusing on molecular strategies for viral genetic material, antigen tests, and serological assays, and innovations for improving the diagnostic sensitivity and capabilities. Finally, we discuss pressing issues for the future, and what needs to be addressed for the ongoing pandemic and future outbreaks.
Collapse
Affiliation(s)
- Delyan R Hristov
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA.
| | - Jose Gomez-Marquez
- Little Devices Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Djibril Wade
- iLEAD (Innovation in Laboratory Engineered Accelerated Diagnostics), Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF), Dakar, Senegal
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA. .,School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
19
|
Tanimoto Y, Mori A, Miyamoto S, Ito E, Arikawa K, Iwamoto T. Comparison of RT-PCR, RT-LAMP, and antigen quantification assays for the detection of SARS-CoV-2. Jpn J Infect Dis 2021; 75:249-253. [PMID: 34588370 DOI: 10.7883/yoken.jjid.2021.476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A rapid and simple alternative test to real-time reverse transcription polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required to help curb the spread of this infection. In this study, we compared the RT-PCR method with the chemiluminescent enzyme immunoassay (CLEIA) and reverse transcription loop mediated isothermal amplification (RT-LAMP) methods. The results for the number of SARS-CoV-2 RNA copies and the CLEIA antigen quantification values were highly correlated. The detection limit for antigen quantification was 42.8 RNA copies for saliva samples and 23.4 copies for nasopharyngeal swab (NPS) samples. The number of RNA copies and RT-LAMP threshold time (Tt) values were inversely correlated for both purified RNA and purification-free crude RNA. RT-LAMP with purified RNA detected low copy numbers of RNA (5-50 copies) whereas fewer than 250 RNA copies could not be detected using crude RNA. CLEIA antigen quantification is potentially useful for large scale screening because it is compatible with high throughput testing. RT-LAMP with crude RNA samples is applicable to rapid point-of-care testing because it can directly use the patient specimen. It is important to select a diagnostic method that is simple and rapid compared to RT-PCR, depending on the situation.
Collapse
Affiliation(s)
| | - Ai Mori
- Department of Infectious Diseases, Kobe Institute of Health, Japan
| | - Sonoko Miyamoto
- Department of Infectious Diseases, Kobe Institute of Health, Japan
| | - Erika Ito
- Department of Infectious Diseases, Kobe Institute of Health, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Japan
| |
Collapse
|
20
|
Moore KJM, Cahill J, Aidelberg G, Aronoff R, Bektaş A, Bezdan D, Butler DJ, Chittur SV, Codyre M, Federici F, Tanner NA, Tighe SW, True R, Ware SB, Wyllie AL, Afshin EE, Bendesky A, Chang CB, Dela Rosa R, Elhaik E, Erickson D, Goldsborough AS, Grills G, Hadasch K, Hayden A, Her SY, Karl JA, Kim CH, Kriegel AJ, Kunstman T, Landau Z, Land K, Langhorst BW, Lindner AB, Mayer BE, McLaughlin LA, McLaughlin MT, Molloy J, Mozsary C, Nadler JL, D'Silva M, Ng D, O'Connor DH, Ongerth JE, Osuolale O, Pinharanda A, Plenker D, Ranjan R, Rosbash M, Rotem A, Segarra J, Schürer S, Sherrill-Mix S, Solo-Gabriele H, To S, Vogt MC, Yu AD, Mason CE. Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. J Biomol Tech 2021; 32:228-275. [PMID: 35136384 PMCID: PMC8802757 DOI: 10.7171/jbt.21-3203-017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.
Collapse
Affiliation(s)
- Keith J M Moore
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | | | - Guy Aidelberg
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
| | - Rachel Aronoff
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- Action for Genomic Integrity Through Research! (AGiR!), Lausanne, Switzerland
- Association Hackuarium, Lausanne, Switzerland
| | - Ali Bektaş
- Oakland Genomics Center, Oakland, CA 94609, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, 72076 Tübingen, Germany
- Poppy Health, Inc, San Francisco, CA 94158, USA
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, 72076 Tübingen, Germany
| | - Daniel J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sridar V Chittur
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | - Martin Codyre
- GiantLeap Biotechnology Ltd, Wicklow A63 Kv91, Ireland
| | - Fernan Federici
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | | | | | - Randy True
- FloodLAMP Biotechnologies, San Carlos, CA 94070, USA
| | - Sarah B Ware
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- BioBlaze Community Bio Lab, 1800 W Hawthorne Ln, Ste J-1, West Chicago, IL 60185, USA
- Blossom Bio Lab, 1800 W Hawthorne Ln, Ste K-2, West Chicago, IL 60185, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, 59717, USA
| | - Richard Dela Rosa
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Eran Elhaik
- Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - George Grills
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Kathrin Hadasch
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
- IANUS Verein für Friedensorientierte Technikgestaltung eV, 64289 Darmstadt, Germany
| | - Andrew Hayden
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | | | - Julie A Karl
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | | | | | | | - Zeph Landau
- Department of Computer Science, University of California, Berkeley, Berkeley, 94720, USA
| | - Kevin Land
- Mologic, Centre for Advanced Rapid Diagnostics, (CARD), Bedford Technology Park, Thurleigh MK44 2YA, England
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, 0028 Pretoria, South Africa
| | | | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Benjamin E Mayer
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
| | | | - Matthew T McLaughlin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, England
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - Melinee D'Silva
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - David Ng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jerry E Ongerth
- University of Wollongong, Environmental Engineering, Wollongong NSW 2522, Australia
| | - Olayinka Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | - Shaina To
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Albert D Yu
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
21
|
Kobayashi GS, Brito LA, Moreira DDP, Suzuki AM, Hsia GSP, Pimentel LF, de Paiva APB, Dias CR, Lourenço NCV, Oliveira BA, Manuli ER, Corral MA, Cavaçana N, Mitne-Neto M, Sales MM, Dell’ Aquila LP, Filho AR, Parrillo EF, Mendes-Corrêa MC, Sabino EC, Costa SF, Leal FE, Sgro GG, Farah CS, Zatz M, Passos-Bueno MR. A Novel Saliva RT-LAMP Workflow for Rapid Identification of COVID-19 Cases and Restraining Viral Spread. Diagnostics (Basel) 2021; 11:1400. [PMID: 34441334 PMCID: PMC8391450 DOI: 10.3390/diagnostics11081400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid diagnostics is pivotal to curb SARS-CoV-2 transmission, and saliva has emerged as a practical alternative to naso/oropharyngeal (NOP) specimens. We aimed to develop a direct RT-LAMP (reverse transcription loop-mediated isothermal amplification) workflow for viral detection in saliva, and to provide more information regarding its potential in curbing COVID-19 transmission. Clinical and contrived specimens were used to optimize formulations and sample processing protocols. Salivary viral load was determined in symptomatic patients to evaluate the clinical performance of the test and to characterize saliva based on age, gender and time from onset of symptoms. Our workflow achieved an overall sensitivity of 77.2% (n = 90), with 93.2% sensitivity, 97% specificity, and 0.895 Kappa for specimens containing >102 copies/μL (n = 77). Further analyses in saliva showed that viral load peaks in the first days of symptoms and decreases afterwards, and that viral load is ~10 times lower in females compared to males, and declines following symptom onset. NOP RT-PCR data did not yield relevant associations. This work suggests that saliva reflects the transmission dynamics better than NOP specimens, and reveals gender differences that may reflect higher transmission by males. This saliva RT-LAMP workflow can be applied to track viral spread and, to maximize detection, testing should be performed immediately after symptoms are presented, especially in females.
Collapse
Affiliation(s)
- Gerson Shigeru Kobayashi
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Luciano Abreu Brito
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Danielle de Paula Moreira
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Angela May Suzuki
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Gabriella Shih Ping Hsia
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Lylyan Fragoso Pimentel
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Ana Paula Barreto de Paiva
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Carolina Regoli Dias
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Naila Cristina Vilaça Lourenço
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Beatriz Araujo Oliveira
- Instituto de Medicina Tropical, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (B.A.O.); (E.R.M.); (M.C.M.-C.); (E.C.S.); (S.F.C.)
| | - Erika Regina Manuli
- Instituto de Medicina Tropical, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (B.A.O.); (E.R.M.); (M.C.M.-C.); (E.C.S.); (S.F.C.)
| | - Marcelo Andreetta Corral
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Natale Cavaçana
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Miguel Mitne-Neto
- Grupo Fleury, Research and Development, São Paulo 04344-070, Brazil;
| | - Maria Mirtes Sales
- Instituto de Ensino e Pesquisa Prevent Senior, São Paulo 04547-100, Brazil; (M.M.S.); (L.P.D.A.); (A.R.F.); (E.F.P.)
| | - Luiz Phellipe Dell’ Aquila
- Instituto de Ensino e Pesquisa Prevent Senior, São Paulo 04547-100, Brazil; (M.M.S.); (L.P.D.A.); (A.R.F.); (E.F.P.)
| | - Alvaro Razuk Filho
- Instituto de Ensino e Pesquisa Prevent Senior, São Paulo 04547-100, Brazil; (M.M.S.); (L.P.D.A.); (A.R.F.); (E.F.P.)
| | - Eduardo Fagundes Parrillo
- Instituto de Ensino e Pesquisa Prevent Senior, São Paulo 04547-100, Brazil; (M.M.S.); (L.P.D.A.); (A.R.F.); (E.F.P.)
| | - Maria Cássia Mendes-Corrêa
- Instituto de Medicina Tropical, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (B.A.O.); (E.R.M.); (M.C.M.-C.); (E.C.S.); (S.F.C.)
| | - Ester Cerdeira Sabino
- Instituto de Medicina Tropical, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (B.A.O.); (E.R.M.); (M.C.M.-C.); (E.C.S.); (S.F.C.)
| | - Silvia Figueiredo Costa
- Instituto de Medicina Tropical, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (B.A.O.); (E.R.M.); (M.C.M.-C.); (E.C.S.); (S.F.C.)
| | - Fabio Eudes Leal
- Faculdade de Medicina, Universidade Municipal de São Caetano do Sul (USCS), São Paulo 09521-160, Brazil;
| | - Germán Gustavo Sgro
- Instituto de Química, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil; (G.G.S.); (C.S.F.)
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Chuck Shaker Farah
- Instituto de Química, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil; (G.G.S.); (C.S.F.)
| | - Mayana Zatz
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| | - Maria Rita Passos-Bueno
- Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil; (L.A.B.); (D.d.P.M.); (A.M.S.); (G.S.P.H.); (L.F.P.); (A.P.B.d.P.); (C.R.D.); (N.C.V.L.); (M.A.C.); (N.C.); (M.Z.)
| |
Collapse
|