1
|
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M, Dimitrova VS, Vasileva A, Calenic B, Constantinescu I, Perlea P, Ishkitiev N. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int Dent J 2024; 74:1129-1141. [PMID: 38582718 PMCID: PMC11561491 DOI: 10.1016/j.identj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.
Collapse
Affiliation(s)
- Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Zornitsa Mihaylova
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Evgeniy Aleksiev
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Pavel Stanimirov
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Maria Praskova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Violeta S Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Anelia Vasileva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania.
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania
| | - Paula Perlea
- Department of Endodontics, UMF Carol Davila, Bucharest, Romania.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| |
Collapse
|
2
|
Hung M, Sadri M, Katz M, Schwartz C, Mohajeri A. A Systematic Review of Stem Cell Applications in Maxillofacial Regeneration. Dent J (Basel) 2024; 12:315. [PMID: 39452443 PMCID: PMC11505667 DOI: 10.3390/dj12100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Regenerative medicine is revolutionizing oral and maxillofacial surgeries with stem cells, particularly mesenchymal stem cells, for tissue and bone regeneration. Despite promising in-vitro results, human trials are limited. A systematic review is needed to evaluate stem cell efficacy in maxillofacial issues, aiming to improve surgical outcomes and patient satisfaction. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines, this review included peer-reviewed articles (2013-2023) on stem cells in oral surgery, excluding non-English publications, abstracts, reviews, and opinion pieces. Searches were conducted in PubMed, Web of Science, OVID, Cochrane, Dentistry & Oral Sciences Source-Ebscohost, and Scopus. Two authors independently screened titles and abstracts, resolving disagreements by consensus. Full-text analysis involved extracting key data, verified by a secondary reviewer and additional quality checks. RESULTS From 3540 initial articles, 2528 were screened after removing duplicates, and 7 met the inclusion criteria after excluding irrelevant studies. Key themes included the safety and efficacy of stem cell therapy, and bone regeneration and quality. Studies predominantly used mesenchymal stem cells. Findings showed positive outcomes in clinical safety and effectiveness and significant potential for bone regeneration. CONCLUSIONS This systematic review highlights the potential of stem cell therapies in maxillofacial applications, supporting their safety, efficacy, and bone regeneration capabilities. Further research is needed to standardize protocols and confirm long-term benefits.
Collapse
Affiliation(s)
- Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Division of Public Health, University of Utah, Salt Lake City, UT 84108, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahsa Sadri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Melanie Katz
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Connor Schwartz
- Library, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Amir Mohajeri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| |
Collapse
|
3
|
Sun Q, Bai R, Chen S, Zhuang Z, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine demethylase 3A promotes chondrogenic differentiation of aged human dental pulp stem cells. J Dent Sci 2024; 19:86-91. [PMID: 38303882 PMCID: PMC10829671 DOI: 10.1016/j.jds.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND/PURPOSE Aging severely impairs the beneficial effects of human dental pulp stem cells (hDPSCs) on cartilage regeneration. Lysine demethylase 3A (KDM3A) is involved in regulating mesenchymal stem cells (MSCs) senescence and bone aging. In this study, we investigated the role of KDM3A in hDPSCs aging and whether KDM3A could rejuvenate aged hDPSCs to enhance their chondrogenic differentiation capacity. MATERIALS AND METHODS The cellular aging of hDPSCs was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Protein levels were determined using Western blot analysis. KDM3A was overexpressed in aged hDPSCs by lentivirus infection. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were used to determine the mRNA levels of stemness markers. Toluidine blue staining was used to evaluate the effect of KDM3A overexpression on the chondrogenic differentiation of aged hDPSCs. RESULTS hDPSCs at passage 12 or treated with etoposide exhibited augmented cellular senescence as evidenced by increased SA-β-gal activity. KDM3A was significantly increased during senescence of hDPSCs. Overexpression of KDM3A did not affect the stemness properties but significantly promoted the chondrogenic differentiation of aged hDPSCs. CONCLUSION Our findings indicate that KDM3A plays an important role in the maintenance of the chondrogenic differentiation capacity of aged hDPSCs and suggest that therapies targeting KDM3A may be a novel strategy to rejuvenate aged hDPSCs.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
4
|
Roi A, Roi C, Negruțiu ML, Rusu LC, Riviș M. Mesenchymal Stem Cells Derived from Human Periapical Cysts and Their Implications in Regenerative Medicine. Biomedicines 2023; 11:2436. [PMID: 37760877 PMCID: PMC10525783 DOI: 10.3390/biomedicines11092436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells currently play an important role in the tissue engineering field in developing new regenerative approaches. The oral cavity is a rich source of mesenchymal stem cells, and introducing the use of dental stem cells, characterized by a multilineage differentiation potential, immunomodulatory activity and repair capacity, offers a good perspective for clinical dentistry. Human periapical cyst mesenchymal stem cells (hPCy-MSCs) represent a new category of dental stem cells, being collected from pathological tissue and exhibiting MSCs-like properties. As studies have described, these new identified cells possess the same characteristics as those described in MSCs, exhibiting plasticity, a high proliferation rate and the potential to differentiate into osteogenic, adipogenic and neural lineages. Reusing the biological tissue that is considered pathologic offers a new perspective for the development of further clinical applications. The identification and characterization of MSCs in the human periapical cysts allows for a better understanding of the molecular interactions, the potential healing capacity and the mechanisms of inducing the local osteogenic process, integrated in the microenvironment. Although their involvement in regenerative medicine research is recent, they exhibit important properties that refer them for the development of clinical applications in dentistry.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.R.); (L.C.R.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Ciprian Roi
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department of Anesthesiology and Oral Surgery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Meda Lavinia Negruțiu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Laura Cristina Rusu
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.R.); (L.C.R.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Mircea Riviș
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department of Anesthesiology and Oral Surgery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
5
|
Sun Q, Zhuang Z, Bai R, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine 68 Methylation-Dependent SOX9 Stability Control Modulates Chondrogenic Differentiation in Dental Pulp Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206757. [PMID: 37386801 PMCID: PMC10460901 DOI: 10.1002/advs.202206757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Indexed: 07/01/2023]
Abstract
Dental pulp stem cells (DPSCs), characterized by easy availability, multi-lineage differentiation ability, and high proliferation ability, are ideal seed cells for cartilage tissue engineering. However, the epigenetic mechanism underlying chondrogenesis in DPSCs remains elusive. Herein, it is demonstrated that KDM3A and G9A, an antagonistic pair of histone-modifying enzymes, bidirectionally regulate the chondrogenic differentiation of DPSCs by controlling SOX9 (sex-determining region Y-type high-mobility group box protein 9) degradation through lysine methylation. Transcriptomics analysis reveals that KDM3A is significantly upregulated during the chondrogenic differentiation of DPSCs. In vitro and in vivo functional analyses further indicate that KDM3A promotes chondrogenesis in DPSCs by boosting the SOX9 protein level, while G9A hinders the chondrogenic differentiation of DPSCs by reducing the SOX9 protein level. Furthermore, mechanistic studies indicate that KDM3A attenuates the ubiquitination of SOX9 by demethylating lysine (K) 68 residue, which in turn enhances SOX9 stability. Reciprocally, G9A facilitates SOX9 degradation by methylating K68 residue to increase the ubiquitination of SOX9. Meanwhile, BIX-01294 as a highly specific G9A inhibitor significantly induces the chondrogenic differentiation of DPSCs. These findings provide a theoretical basis to ameliorate the clinical use of DPSCs in cartilage tissue-engineering therapies.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Zimeng Zhuang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Tianyi Xin
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
6
|
Sugiaman VK, Jeffrey, Naliani S, Pranata N, Djuanda R, Saputri RI. Polymeric Scaffolds Used in Dental Pulp Regeneration by Tissue Engineering Approach. Polymers (Basel) 2023; 15:1082. [PMID: 36904323 PMCID: PMC10007583 DOI: 10.3390/polym15051082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Currently, the challenge in dentistry is to revitalize dental pulp by utilizing tissue engineering technology; thus, a biomaterial is needed to facilitate the process. One of the three essential elements in tissue engineering technology is a scaffold. A scaffold acts as a three-dimensional (3D) framework that provides structural and biological support and creates a good environment for cell activation, communication between cells, and inducing cell organization. Therefore, the selection of a scaffold represents a challenge in regenerative endodontics. A scaffold must be safe, biodegradable, and biocompatible, with low immunogenicity, and must be able to support cell growth. Moreover, it must be supported by adequate scaffold characteristics, which include the level of porosity, pore size, and interconnectivity; these factors ultimately play an essential role in cell behavior and tissue formation. The use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix in dental tissue engineering has recently received a lot of attention because it shows great potential with good biological characteristics for cell regeneration. This review describes the latest developments regarding the usage of natural or synthetic scaffold polymers that have the ideal biomaterial properties to facilitate tissue regeneration when combined with stem cells and growth factors in revitalizing dental pulp tissue. The utilization of polymer scaffolds in tissue engineering can help the pulp tissue regeneration process.
Collapse
Affiliation(s)
- Vinna K. Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Jeffrey
- Department of Pediatric Dentistry, Faculty of Dentistry, Jenderal Achmad Yani University, Cimahi 40531, West Java, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rosalina Intan Saputri
- College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| |
Collapse
|
7
|
Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, Mafi AR, Nikandish M, Shouroki FF, Arjmand B, Larijani B. Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:83-110. [PMID: 35999347 DOI: 10.1007/5584_2022_734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA- CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ghosh S, Qiao W, Yang Z, Orrego S, Neelakantan P. Engineering Dental Tissues Using Biomaterials with Piezoelectric Effect: Current Progress and Future Perspectives. J Funct Biomater 2022; 14:8. [PMID: 36662055 PMCID: PMC9867283 DOI: 10.3390/jfb14010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Dental caries and traumatic injuries to teeth may cause irreversible inflammation and eventual death of the dental pulp. Nevertheless, predictably, repair and regeneration of the dentin-pulp complex remain a formidable challenge. In recent years, smart multifunctional materials with antimicrobial, anti-inflammatory, and pro-regenerative properties have emerged as promising approaches to meet this critical clinical need. As a unique class of smart materials, piezoelectric materials have an unprecedented advantage over other stimuli-responsive materials due to their inherent capability to generate electric charges, which have been shown to facilitate both antimicrobial action and tissue regeneration. Nonetheless, studies on piezoelectric biomaterials in the repair and regeneration of the dentin-pulp complex remain limited. In this review, we summarize the biomedical applications of piezoelectric biomaterials in dental applications and elucidate the underlying molecular mechanisms contributing to the biological effect of piezoelectricity. Moreover, we highlight how this state-of-the-art can be further exploited in the future for dental tissue engineering.
Collapse
Affiliation(s)
- Sumanta Ghosh
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengbao Yang
- Department of Mechanical Engineering & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Santiago Orrego
- Oral Health Sciences Department, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19140, USA
| | | |
Collapse
|
9
|
Kurenkova AD, Romanova IA, Kibirskiy PD, Timashev P, Medvedeva EV. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int J Mol Sci 2022; 23:11169. [PMID: 36232468 PMCID: PMC9570095 DOI: 10.3390/ijms231911169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Irina A. Romanova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| |
Collapse
|
10
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
11
|
Ghandforoushan P, Hanaee J, Aghazadeh Z, Samiei M, Navali AM, Khatibi A, Davaran S. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro. Int J Biol Macromol 2022; 201:270-287. [PMID: 34998887 DOI: 10.1016/j.ijbiomac.2021.12.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
In the current study, a novel nanocomposite hydrogel scaffold comprising of natural-based gelatin and synthetic-based (poly D, L (lactide-co-glycolide) -b- poly (ethylene glycol)-b- poly D, L (lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was developed and loaded with transforming growth factor- β1 (TGF-β1). Synthesized scaffolds' chemical structure was examined by 1H NMR and ATR-FTIR. Scanning electron microscopy (SEM) confirmed particle size and morphology of the prepared nanoparticles as well as the scaffolds. The morphology analysis revealed a porous interconnected structure throughout the scaffold with a pore size dimension of about 202.05 µm. The swelling behavior, in vitro degradation, mechanical properties, density, and porosity were also evaluated. Phalloidin/DAPI staining was utilized for confirming the extended cytoskeleton of the chondrocytes. Alcian blue staining was conducted to determine cartilaginous matrix sulfated glycosaminoglycan (sGAG) synthesis. Eventually, over a period of 21 days, a real-time RT-PCR analysis was applied to measure the mRNA expression of chondrogenic marker genes, type-II collagen, SOX 9, and aggrecan, in hDPSCs cultured for up to 21 days to study the influence of gelatin/PLGA-PEG-PLGA-TGF-β1 hydrogels on hDPSCs. The findings of the cell-encapsulating hydrogels analysis suggested that the adhesion, viability, and chondrogenic differentiation of hDPSCs improved by gelatin/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogels. These data supported the conclusion that gelatin/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogels render the features that allow thein vitrofunctionality of encapsulated hDPSCs and hence can contribute the basis for new effective strategies for the treatment of cartilage injuries.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medicinal Science, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Oral Medicine department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Khatibi
- Department of biotechnology, Alzahra University, Tehran, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Staniowski T, Zawadzka-Knefel A, Skośkiewicz-Malinowska K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021; 26:7423. [PMID: 34946506 PMCID: PMC8707085 DOI: 10.3390/molecules26247423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cells are unspecialised cells capable of perpetual self-renewal, proliferation and differentiation into more specialised daughter cells. They are present in many tissues and organs, including the stomatognathic system. Recently, the great interest of scientists in obtaining stem cells from human teeth is due to their easy availability and a non-invasive procedure of collecting the material. Three key components are required for tissue regeneration: stem cells, appropriate scaffold material and growth factors. Depending on the source of the new tissue or organ, there are several types of transplants. In this review, the following division into four transplant types is applied due to genetic differences between the donor and the recipient: xenotransplantation, allotransplantation, autotransplantation and isotransplantation (however, due to the lack of research, type was not included). In vivo studies have shown that Dental Pulp Stem Cells (DPSCs)can form a dentin-pulp complex, nerves, adipose, bone, cartilage, skin, blood vessels and myocardium, which gives hope for their use in various biomedical areas, such as immunotherapy and regenerative therapy. This review presents the current in vivo research and advances to provide new biological insights and therapeutic possibilities of using DPSCs.
Collapse
Affiliation(s)
| | - Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, 50-425 Wrocław, Poland; (T.S.); (K.S.-M.)
| | | |
Collapse
|
13
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
14
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
15
|
Salkın H, Gönen ZB, Özcan S, Bahar D, Lekesizcan A, Taheri S, Kütük N, Alkan A. Effects of combination TGF-B1 transfection and platelet rich plasma (PRP) on three-dimension chondrogenic differentiation of rabbit dental pulp-derived mesenchymal stem cells. Connect Tissue Res 2021; 62:226-237. [PMID: 31581853 DOI: 10.1080/03008207.2019.1675649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: The aim of this study was to evaluate the effects of standard culture medium and chondrogenic differentiation medium with PRP on chondrogenic differentiation of rabbit dental pulp-derived mesenchymal stem cells (rabbit DPSCs) that are transfected with transforming growth factor-beta 1 (TGF-B1) gene, based on the hypothesis of TGF- B1 and PRP can be effective on the chondrogenesis of stem cells. Materials and Methods: Rabbit DPSCs were characterized by using flow cytometry, immunofluorescent staining, quantitative Real Time Polymerase Chain Reaction (qRT-PCR) and differentiation tests. For the characterization, CD29, CD44 and CD45 mesenchymal cell markers were used. Rabbit DPSCs were transfected with TGF-B1 gene using electroporation technique in group 1; with PRP 10% in group 2; with chondrogenic medium in group 3; with both chondrogenic medium and PRP in group 4. DPSCs were cultured in medium with 10% inactive PRP in group 5, chondrogenic medium in group 6, chondrogenic medium with PRP 10% in group 7. SOX9, MMP13 and Aggrecan gene expression levels were evaluated in 3, 6, 12. and 24. days by qRT-PCR. Results: The expression levels of SOX9, MMP13 and Aggrecan were higher in group 2, 3 and group 7 in 3th day however in 24th day group 7 and group 2 were found higher. The expression levels changed by time-dependent. The extracellular matrix of the cells in experimental groups were positively stained with safranin O and toluidine blue. Conclusion: The combination in culture medium of TGF-B1 gene transfection and 10% PRP accelerates the chondrogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Hasan Salkın
- Department of Pathology Laboratory Techniques, Vocational School, Beykent University , Istanbul, Turkey.,Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | | | - Servet Özcan
- Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey
| | - Dilek Bahar
- Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey
| | - Ayça Lekesizcan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Nükhet Kütük
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, BezmiAlem University , İstanbul, Turkey
| | - Alper Alkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, BezmiAlem University , İstanbul, Turkey
| |
Collapse
|
16
|
Deszcz I, Lis-Nawara A, Grelewski P, Dragan S, Bar J. Utility of direct 3D co-culture model for chondrogenic differentiation of mesenchymal stem cells on hyaluronan scaffold (Hyaff-11). Regen Biomater 2020; 7:543-552. [PMID: 33365140 PMCID: PMC7748442 DOI: 10.1093/rb/rbaa026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
This study presents direct 2D and 3D co-culture model of mesenchymal stem cells (MSCs) line with chondrocytes isolated from patients with osteoarthritis (unaffected area). MSCs differentiation into chondrocytes after 14, 17 days was checked by estimation of collagen I, II, X, aggrecan expression using immunohistochemistry. Visualization, localization of cells on Hyaff-11 was performed using enzymatic technique and THUNDER Imaging Systems. Results showed, that MSCs/chondrocytes 3D co-culture induced suitable conditions for chondrocytes grow and MSCs differentiation than 2D monoculture. Despite that differentiated cells on Hyaff-11 expressed collagen X, they showed high collagen II (80%) and aggrecan (60%) expression with simultaneous decrease of collagen I expression (10%). The high concentration of differentiated cells on Hyaff-11, indicate that this structure has an impact on cells cooperation and communication. In conclusion, we suggest that high expression of collagen II and aggrecan in 3D co-culture model, indicate that cooperation between different subpopulations may have synergistic impact on MSCs chondrogenic potential. Revealed the high concentration and localization of cells growing in deeper layers of membrane in 3D co-culture, indicate that induced microenvironmental enhance cell migration within scaffold. Additionally, we suggest that co-culture model might be useful for construction a bioactive structure for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Anna Lis-Nawara
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Piotr Grelewski
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Szymon Dragan
- Department and Clinic of Orthopedic and Traumatologic Surgery, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
17
|
Dissanayaka WL, Zhang C. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. J Endod 2020; 46:S81-S89. [DOI: 10.1016/j.joen.2020.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Lo Monaco M, Gervois P, Beaumont J, Clegg P, Bronckaers A, Vandeweerd JM, Lambrichts I. Therapeutic Potential of Dental Pulp Stem Cells and Leukocyte- and Platelet-Rich Fibrin for Osteoarthritis. Cells 2020; 9:cells9040980. [PMID: 32326610 PMCID: PMC7227024 DOI: 10.3390/cells9040980] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative and inflammatory joint disorder with cartilage loss. Dental pulp stem cells (DPSCs) can undergo chondrogenic differentiation and secrete growth factors associated with tissue repair and immunomodulation. Leukocyte- and platelet-rich fibrin (L-PRF) emerges in regenerative medicine because of its growth factor content and fibrin matrix. This study evaluates the therapeutic application of DPSCs and L-PRF in OA via immunomodulation and cartilage regeneration. Chondrogenic differentiation of DPSCs, with or without L-PRF exudate (ex) and conditioned medium (CM), and of bone marrow-mesenchymal stem cells was compared. These cells showed differential chondrogenesis. L-PRF was unable to increase cartilage-associated components. Immature murine articular chondrocytes (iMACs) were cultured with L-PRF ex, L-PRF CM, or DPSC CM. L-PRF CM had pro-survival and proliferative effects on unstimulated and cytokine-stimulated iMACs. L-PRF CM stimulated the release of IL-6 and PGE2, and increased MMP-13, TIMP-1 and IL-6 mRNA levels in cytokine-stimulated iMACs. DPSC CM increased the survival and proliferation of unstimulated iMACs. In cytokine-stimulated iMACs, DPSC CM increased TIMP-1 gene expression, whereas it inhibited nitrite release in 3D culture. We showed promising effects of DPSCs in an in vitro OA model, as they undergo chondrogenesis in vitro, stimulate the survival of chondrocytes and have immunomodulatory effects.
Collapse
Affiliation(s)
- Melissa Lo Monaco
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
- Department of Veterinary Medicine, Integrated Veterinary Research Unit (IVRU) - Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium;
- Correspondence: ; Tel.: +32-(0)-26-92-09
| | - Pascal Gervois
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| | - Joel Beaumont
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
- Maastricht Radiation Oncology (MaastRO) Lab, GROW—School for Oncology and Developmental Biology, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Peter Clegg
- Department of Musculoskeletal and Ageing Sciences, Institute of Lifecourse and Medical Sciences, University of Liverpool, L7 8TX Liverpool, UK;
| | - Annelies Bronckaers
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| | - Jean-Michel Vandeweerd
- Department of Veterinary Medicine, Integrated Veterinary Research Unit (IVRU) - Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium;
| | - Ivo Lambrichts
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| |
Collapse
|
19
|
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9:445-464. [PMID: 31943813 PMCID: PMC7103623 DOI: 10.1002/sctm.19-0398] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Human pulp stem cells (PSCs) include dental pulp stem cells (DPSCs) isolated from dental pulp tissues of human extracted permanent teeth and stem cells from human exfoliated deciduous teeth (SHED). Depending on their multipotency and sensitivity to local paracrine activity, DPSCs and SHED exert therapeutic applications at multiple levels beyond the scope of the stomatognathic system. This review is specifically concentrated on PSC-updated biological characteristics and their promising therapeutic applications in (pre)clinical practice. Biologically, distinguished from conventional mesenchymal stem cell markers in vitro, NG2, Gli1, and Celsr1 have been evidenced as PSC markers in vivo. Both perivascular cells and glial cells account for PSC origin. Therapeutically, endodontic regeneration is where PSCs hold the most promises, attributable of PSCs' robust angiogenic, neurogenic, and odontogenic capabilities. More recently, the interplay between cell homing and liberated growth factors from dentin matrix has endowed a novel approach for pulp-dentin complex regeneration. In addition, PSC transplantation for extraoral tissue repair and regeneration has achieved immense progress, following their multipotential differentiation and paracrine mechanism. Accordingly, PSC banking is undergoing extensively with the intent of advancing tissue engineering, disease remodeling, and (pre)clinical treatments.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of OrthodonticsPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| |
Collapse
|
20
|
Fernandes TL, Cortez de SantAnna JP, Frisene I, Gazarini JP, Gomes Pinheiro CC, Gomoll AH, Lattermann C, Hernandez AJ, Franco Bueno D. Systematic Review of Human Dental Pulp Stem Cells for Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:1-12. [PMID: 31744404 DOI: 10.1089/ten.teb.2019.0140] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Symptomatic cartilage lesions and early osteoarthritis produce significant clinical and economic burdens. Cartilage repair can improve the symptoms and delay arthroplasty. The complete healing of damaged cartilage with the consistent reproduction of normal hyaline cartilage has not yet been achieved. The choice of harvesting site might influence the cells' abilities to modulate immunologic and inflammatory responses. Recently, dental pulp has been shown to contain a stem cell niche consisting of dental pulp stem cells (DPSCs) that maintain their self-renewal capacity due to the active environment in the dental pulp of deciduous teeth. Objective: The aim of this study was to critically review the current literature on the potential and limitations of the use of dental pulp-derived mesenchymal stem cells in cell-based therapies for cartilage regeneration. Methods: An electronic, customized search of scientific articles was conducted using the PubMed/MEDLINE and EMBASE databases from their inception to December 2018. The inclusion criteria were applied, and the articles that described the use of DPSC in cartilage treatment were selected for complete evaluation. The articles were classified according to the scaffold used, experimental model, chondrogenic differentiation features, defect location, cartilage evaluation, and results. After the application of the eligibility criteria, a total of nine studies were selected and fully analyzed. Results: A variety of animal models were used, including mice, rats, rabbits, and miniature pigs, to evaluate the quality and safety of human DPSCs in the repair of cartilage defects. Among the articles, two studies focused on preclinical models of cartilage tissue engineering. Five studies implanted DPSCs in other animal sites. Conclusion: The use of DPSCs is a potential new stem cell therapy for articular cartilage repair. The preclinical evidence discussed in this article provides a solid foundation for future clinical trials. Impact statement Osteoarthritis presents an ever-increasing clinical and socioeconomic burden. While cartilage repair has the potential to improve symptoms and delay joint replacement, complete regeneration of hyaline cartilage has been an elusive goal. Dental pulp has been shown to contain a niche that protects dental pulp stem cells (DPSCs) from the cumulative effects of genetic and environmental factors and maintains their self-renewal capacity due to the active environment. Transplantation and preclinical trials have demonstrated the strong potential of regenerative tissue-engineering protocols using DPSCs.
Collapse
Affiliation(s)
- Tiago Lazzaretti Fernandes
- Sports Medicine Division, Institute of Orthopedics and Traumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil.,Department of Orthopedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - João Paulo Cortez de SantAnna
- Sports Medicine Division, Institute of Orthopedics and Traumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Igor Frisene
- Sports Medicine Division, Institute of Orthopedics and Traumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - João Paulo Gazarini
- Sports Medicine Division, Institute of Orthopedics and Traumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Christian Lattermann
- Department of Orthopedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arnaldo Jose Hernandez
- Sports Medicine Division, Institute of Orthopedics and Traumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | | |
Collapse
|
21
|
Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine, Chaikovsky Y, Herashchenko S, Department of Histology, Cytology and Embryology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine, Deltsova O, Department of Histology, Cytology and Embryology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. Problems and Perspectives of Using Stem Cells of Cartilage Tissues. PROBLEMS OF CRYOBIOLOGY AND CRYOMEDICINE 2019; 29:303-316. [DOI: 10.15407/cryo29.04.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 2019; 302:19-41. [PMID: 30922946 DOI: 10.1016/j.jconrel.2019.03.020] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
|
23
|
Yanasse RH, De Lábio RW, Marques L, Fukasawa JT, Segato R, Kinoshita A, Matsumoto MA, Felisbino SL, Solano B, Dos Santos RR, Payão SLM. Xenotransplantation of human dental pulp stem cells in platelet-rich plasma for the treatment of full-thickness articular cartilage defects in a rabbit model. Exp Ther Med 2019; 17:4344-4356. [PMID: 31186677 PMCID: PMC6507499 DOI: 10.3892/etm.2019.7499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Stem cells in platelet-rich plasma (PRP) scaffolds may be a promising treatment for cartilage repair. Human dental pulp stem cell (hDPSC) subpopulations have been identified to have substantial angiogenic, neurogenic and regenerative potential when compared with other stem cell sources. The present study evaluated the potential of hDPSCs in a PRP scaffold to regenerate full-thickness cartilage defects in rabbits. Full-thickness articular cartilage defects were created in the patellar groove of the femur of 30 rabbits allocated into three experimental groups: Those with an untreated critical defect (CTL), those treated with PRP (PRP) and those treated with stem cells in a PRP scaffold (PRP+SC). The patellar grooves of the femurs from the experimental groups were evaluated macroscopically and histologically at 6 and 12 weeks post-surgery. The synovial membranes were also collected and evaluated for histopathological analysis. The synovial lining cell layer was enlarged in the CTL group compared with the PRP group at 6 weeks (P=0.037) but not with the PRP+SC group. All groups exhibited low-grade synovitis at 6 weeks and no synovitis at 12 weeks. Notably, macroscopic grades for the area of articular cartilage repair for the PRP+SC group were significantly improved compared with those in the CTL (P=0.001) and PRP (P=0.049) groups at 12 weeks. Furthermore, histological scores (modified O'Driscoll scoring system) of the patellar groove articular cartilage in the PRP+SC and PRP groups, in which the articular cartilage was primarily hyaline-like, were significantly higher compared with those in the CTL group at 12 weeks (P=0.002 and P=0.007, respectively). The present results support the therapeutic use of hDPSCs for the treatment of full-thickness articular cartilage defects.
Collapse
Affiliation(s)
- Ricardo Hideki Yanasse
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Roger William De Lábio
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Leonardo Marques
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Josianne Tomazini Fukasawa
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Rosimeire Segato
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil
| | - Angela Kinoshita
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Mariza Akemi Matsumoto
- Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| | - Sergio Luis Felisbino
- Department of Morphology, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP 17519-050, Brazil
| | - Bruno Solano
- Center for Biotechnology and Cell Therapy, Monte Tabor Hospital São Rafael, Salvador, BA 17519-050, Brazil
| | - Ricardo Ribeiro Dos Santos
- Center for Biotechnology and Cell Therapy, Monte Tabor Hospital São Rafael, Salvador, BA 17519-050, Brazil
| | - Spencer Luiz Marques Payão
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP 17519-050, Brazil.,Department of Health Sciences, Universidade do Sagrado Coração, Bauru, SP 17519-050, Brazil
| |
Collapse
|
24
|
Alici-Garipcan A, Korkusuz P, Bilgic E, Askin K, Aydin HM, Ozturk E, Inci I, Ozkizilcik A, Kamile Ozturk K, Piskin E, Vargel I. Critical-size alveolar defect treatment via TGF-ß3 and BMP-2 releasing hybrid constructs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:415-436. [DOI: 10.1080/09205063.2019.1571397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aybuke Alici-Garipcan
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Elif Bilgic
- Faculty of Medicine Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Kerem Askin
- Faculty of Dentistry Department of Endodontics, Hacettepe University, Ankara, Turkey
| | - Halil M. Aydin
- Faculty of Engineering Environmental Engineering Department & Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Eda Ozturk
- Faculty of Medicine Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | - Ilyas Inci
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Asya Ozkizilcik
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University, Ankara, Turkey
| | | | - Erhan Piskin
- Department of Chemical Engineering and Bioengineering Division, Hacettepe University Ankara, Ankara, Turkey
| | - Ibrahim Vargel
- Faculty of Medicine Department of Plastic Reconstructive and Aesthetic Surgery & Bioengineering Division, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
Head to Knee: Cranial Neural Crest-Derived Cells as Promising Candidates for Human Cartilage Repair. Stem Cells Int 2019; 2019:9310318. [PMID: 30766608 PMCID: PMC6350557 DOI: 10.1155/2019/9310318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/04/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
A large array of therapeutic procedures is available to treat cartilage disorders caused by trauma or inflammatory disease. Most are invasive and may result in treatment failure or development of osteoarthritis due to extensive cartilage damage from repeated surgery. Despite encouraging results of early cell therapy trials that used chondrocytes collected during arthroscopic surgery, these approaches have serious disadvantages, including morbidity associated with cell harvesting and low predictive clinical outcomes. To overcome these limitations, adult stem cells derived from bone marrow and subsequently from other tissues are now considered as preferred sources of cells for cartilage regeneration. Moreover, with new evidence showing that the choice of cell source is one of the most important factors for successful cell therapy, there is growing interest in neural crest-derived cells in both the research and clinical communities. Neural crest-derived cells such as nasal chondrocytes and oral stem cells that exhibit chondrocyte-like properties seem particularly promising in cartilage repair. Here, we review the types of cells currently available for cartilage cell therapy, including articular chondrocytes and various mesenchymal stem cells, and then highlight recent developments in the use of neural crest-derived chondrocytes and oral stem cells for repair of cartilage lesions.
Collapse
|
26
|
Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules 2016; 18:1-26. [PMID: 27966916 DOI: 10.1021/acs.biomac.6b01619] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively. Extracellular matrix glycosaminoglycans analogous polysaccharides are major class of hydrogels investigated for restoration of functional cartilage. Recently, injectable hydrogels have gained momentum as it offers patient compliance, tunable mechanical properties, cell deliverability, and facile administration at physiological condition with long-term functionality and hyaline cartilage construction. Interestingly, facile modifiable functional groups in carbohydrate polymers impart tailorability of desired physicochemical properties and versatile injectable chemistry for the development of highly potent biomimetic in situ forming scaffold. The scaffold design strategies have also evolved from single component to bi- or multilayered and graded constructs with osteogenic properties for deep subchondral regeneration. This review highlights the significance of polysaccharide structure-based functions in engineering cartilage tissue, injectable chemistries, strategies for combining analogous matrices with cells/stem cells and biomolecules and multicomponent approaches for osteochondral mimetic constructs. Further, the rheology and precise spatiotemporal positioning of cells in hydrogel bioink for rapid prototyping of complex three-dimensional anisotropic cartilage have also been discussed.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| |
Collapse
|
27
|
Colombo JS, Moore AN, Hartgerink JD, D'Souza RN. Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod 2016; 40:S6-12. [PMID: 24698696 DOI: 10.1016/j.joen.2014.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In dentistry, the maintenance of a vital dental pulp is of paramount importance because teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. Although the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis because of their ability to switch to a proresolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a proresolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented.
Collapse
Affiliation(s)
- John S Colombo
- School of Dentistry, University of Utah, Salt Lake City, Utah; Department of Chemistry and Bioengineering, Rice University, Houston, Texas
| | - Amanda N Moore
- Department of Chemistry and Bioengineering, Rice University, Houston, Texas
| | | | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, Utah. RD'
| |
Collapse
|
28
|
Paduano F, Marrelli M, Palmieri F, Tatullo M. CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties. Stem Cell Rev Rep 2016; 12:592-603. [DOI: 10.1007/s12015-016-9674-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:9762465. [PMID: 26989423 PMCID: PMC4773578 DOI: 10.1155/2016/9762465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/28/2016] [Indexed: 12/12/2022] Open
Abstract
The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.
Collapse
|
30
|
Heng BC, Zhu S, Xu J, Yuan C, Gong T, Zhang C. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Cell 2015; 48:133-43. [PMID: 26796232 DOI: 10.1016/j.tice.2015.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/24/2022]
Abstract
A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions.
Collapse
Affiliation(s)
- Boon Chin Heng
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shaoyue Zhu
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianguang Xu
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Changyong Yuan
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ting Gong
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chengfei Zhang
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
31
|
Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:89-99. [PMID: 25506228 PMCID: PMC4260683 DOI: 10.2147/sccaa.s51009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adult mesenchymal stem cells (MSCs) and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs), and mesenchymal stem cells from gingiva (GMSCs). They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, The Nippon Dental University, Tokyo, Japan
| | - Masanori Nasu
- Research Center, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Carriel V, Scionti G, Alaminos M. Cell viability and proliferation capability of long-term human dental pulp stem cell cultures. Cytotherapy 2014; 16:266-77. [PMID: 24438904 DOI: 10.1016/j.jcyt.2013.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/30/2013] [Accepted: 10/31/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Evaluation of cell viability is one of the most important steps of the quality control process for therapeutic use of cells. The aim of this study was to evaluate the long-term cell viability profile of human dental pulp stem cell (hDPSC) subcultures (beyond 10 passages) to determine which of these passages are suitable for clinical use and to identify the cell death processes that may occur in the last passages. METHODS Four different cell viability assays were combined to determine the average cell viability levels at each cell passage: trypan blue exclusion test, water-soluble tetrazolium 1 (WST-1), LIVE/DEAD Viability/Cytotoxicity Kit and electron probe x-ray microanalysis (EPXMA). Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase 4 and BCL7C Western blotting, and cell proliferation was analyzed by WST-1 and proliferating cell nuclear antigen protein detection. RESULTS hDPSCs showed high average cell viability levels from passages 11-14, with adequate cytoplasmic and mitochondrial functionality at these subcultures. A non-significant trend to decreased cell proliferation was found from passages 16-20. EPXMA and TUNEL analyses suggested that a pre-apoptotic process could be activated from passages 15-20 (P < 0.001), with a correlation with caspase 4 and BCL7C expression. CONCLUSIONS hDPSCs corresponding to passages 11-14 show adequate cell function, proliferation and viability. These cells could be considered as potentially useful for clinical applications.
Collapse
Affiliation(s)
- Miguel Angel Martin-Piedra
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain
| | - Ingrid Garzon
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain
| | - Ana Celeste Oliveira
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Victor Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain
| | - Giuseppe Scionti
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain
| | - Miguel Alaminos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
33
|
|
34
|
Feng R, Lengner C. Application of Stem Cell Technology in Dental Regenerative Medicine. Adv Wound Care (New Rochelle) 2013; 2:296-305. [PMID: 24527351 DOI: 10.1089/wound.2012.0375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 12/19/2022] Open
Abstract
SIGNIFICANCE In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. RECENT ADVANCES Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. CRITICAL ISSUES We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. FUTURE DIRECTIONS From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.
Collapse
Affiliation(s)
- Ruoxue Feng
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chistopher Lengner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|