1
|
Khalili MR, Ahmadloo S, Mousavi SA, Joghataei MT, Brouki Milan P, Naderi Gharahgheshlagh S, Mohebi SL, Haramshahi SMA, Hosseinpour Sarmadi V. Navigating mesenchymal stem cells doses and delivery routes in heart disease trials: A comprehensive overview. Regen Ther 2025; 29:117-127. [PMID: 40162019 PMCID: PMC11952810 DOI: 10.1016/j.reth.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, various clinical trials have been designed and implemented using mesenchymal stem cells (MSCs) for the treatment of heart diseases. Clinical trials exploring MSC-based treatments have proliferated, yet the lack of standardized protocols for MSC administration remains a significant challenge. Despite the growing popularity of MSC trials, questions persist regarding optimal dosing, administration routes, and frequency to achieve safety and efficacy, particularly in the context of cardiac regeneration. The current study has reviewed the clinical trials that have used MSCs for the treatment of heart diseases since 2009. The findings reveal diverse transplantation methods and varying MSCs quantities, highlighting the absence of a universal guideline for MSCs utilization in heart disease clinical trials.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Salma Ahmadloo
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Seyed Amin Mousavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Lena Mohebi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang T, Gong Y, Lin H, Li X, Liang J, Yuan X, Li C, Hu Z, Chen H, Xiao J, Zhang J, Liu Y, Yan X, Jiang C, Yao J, Zhang Q, Li R, Zheng J. Heat Shock Strengthens the Protective Potential of MSCs in Liver Injury by Promoting EV Release Through Upregulated Autophagosome Formation. J Extracell Vesicles 2025; 14:e70084. [PMID: 40326673 PMCID: PMC12053880 DOI: 10.1002/jev2.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) show powerful potential in the treatment of multiple diseases. However, the low yield of MSC-EVs severely restricts their clinical application. Here, heat shock (HS), a moderate external stimulus, can enhance EVs release of MSCs by upregulating autophagosome formation. Mechanistically, HS elevates TRPV2 expression to induce Ca2+ influx and then promotes the activity of two succinylases, SUCLG2 and OXCT1, followed by increasing the succinylation of YWHAZ (a 14-3-3 protein) at lysine 11 (K11). Acting as an adaptor protein, YWHAZ's succinylation at K11 inhibits its degradation, reinforcing YWHAZ-ULK1 binding, which upregulates ULK1 S555 phosphorylation to promote autophagosome formation and enhance EV release of MSCs. Additionally, the improved therapeutic efficacy of HS-treated MSCs via EV release has been shown in two liver injury models-hepatic ischemia/reperfusion injury (HIRI) and acetaminophen-induced liver injury. These findings proved that HS, an easily implementable and cost-effective method, can be used to elevate MSC-EV yield in mass production.
Collapse
Affiliation(s)
- Tingting Wang
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yihang Gong
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huizhu Lin
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xiaofeng Yuan
- Department of General Intensive Care UnitLingnan Hospital, The Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Cuiping Li
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Haitian Chen
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiaqi Xiao
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiebin Zhang
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yasong Liu
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xijing Yan
- Department of Breast and Thyroid SurgeryLingnan Hospital, The Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chenhao Jiang
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jia Yao
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Qi Zhang
- Biotherapy Centre & Cell‐gene Therapy Translational Medicine Research CentreThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jun Zheng
- Organ Transplantation Research Center of Guangdong Province, Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat‐sen UniversityGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
3
|
Gong Y, You Q, Yuan X, Zeng F, Zhang F, Xiao J, Chen H, Liu Y, Wang T, Yan X, Chen W, Zhang Y, Zhang Q, Yao J, Zhang J, Li R, Zheng J. Mesenchymal stem cell-derived extracellular vesicles attenuate ferroptosis in aged hepatic ischemia/reperfusion injury by transferring miR-1275. Redox Biol 2025; 81:103556. [PMID: 39986119 PMCID: PMC11893313 DOI: 10.1016/j.redox.2025.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
With an aging global population, the proportion of aged donor livers in graft pools is steadily increasing. Compared to young livers, aged livers exhibit heightened susceptibility to hepatic ischemia/reperfusion injury (HIRI), which significantly limits their utilisation in liver transplantation (LT) and exacerbates organ shortages. Our previous study demonstrated that ferroptosis is a pivotal trigger for HIRI vulnerability in aged livers. However, effective clinical strategies for the inhibition of ferroptosis remain elusive. Utilizing an aged mouse HIRI model, primary hepatocytes, and human liver organoids, this study provides hitherto undocumented evidence that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) effectively alleviate HIRI in aged livers by inhibiting ferroptosis. Mechanistically, miR-1275, which was significantly enriched within MSC-EVs, was transferred to hepatocytes. Subsequently, miR-1275 downregulated the expression of SLC39A14, a crucial iron transporter that is upregulated in aged livers and plays a pivotal role in promoting ferroptosis. Furthermore, we found a negative correlation between SLC39A14 levels and prognosis of aged donor liver recipients using clinical LT samples. Silencing miR-1275 in MSC-EVs or modulating SLC39A14 levels in aged livers reversed MSC-EV-mediated mitigation of ferroptosis. Collectively, these findings revealed the novel therapeutic potential of MSC-EVs in attenuating aged HIRI, suggesting a promising treatment for improving prognosis and preventing serious complications in recipients of aged liver grafts during LT.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qiang You
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaofeng Yuan
- Department of General Intensive Care Unit, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tingting Wang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Wenjie Chen
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Yang F, Ni B, Liang X, He Y, Yuan C, Chu J, Huang Y, Zhong H, Yang L, Lu J, Xu Y, Zhang Q, Chen W. Mesenchymal stromal cell-derived extracellular vesicles as nanotherapeutics for concanavalin a-induced hepatitis: modulating the gut‒liver axis. Stem Cell Res Ther 2025; 16:4. [PMID: 39773662 PMCID: PMC11706160 DOI: 10.1186/s13287-024-04013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND As cell-free nanotherapeutics, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown potential therapeutic action against liver diseases. However, their effects on autoimmune hepatitis (AIH) are not yet well understood. METHODS AND RESULTS In this study, we utilized a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model to investigate the effects of MSC-EVs on AIH. We found that MSC-EVs provide significant protection against Con A-induced hepatitis in C57BL/6 male mice, with their effectiveness being critically dependent on the gut microbiota. MSC-EVs modulate the composition of the gut microbiota, particularly by increasing the abundance of norank_f__Muribaculaceae, and impact liver metabolic profiles, leading to significant amelioration of liver injury. The identification of Acetyl-DL-Valine as a protective metabolite underscores the therapeutic potential of targeting gut‒liver axis interactions in liver diseases. CONCLUSION Overall, our data demonstrate that MSC-EVs exhibit nanotherapeutic potential in Con A-induced hepatitis and provide new insights into the treatment of autoimmune hepatitis.
Collapse
Affiliation(s)
- Fan Yang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
| | - Beibei Ni
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Xiaoqi Liang
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yizhan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University Zhaoqing hospital, Zhaoqing, 526070, P.R. China
| | - Chao Yuan
- General practice, Guangdong provincial people's hospital, Guangzhou, 510080, P.R. China
| | - Jiajie Chu
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yiju Huang
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Hongyu Zhong
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Li Yang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
| | - Jianxi Lu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
| | - Wenjie Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
| |
Collapse
|
5
|
Liu Z, Ren J, Qiu C, Wang Y, Zhang T. Application of mesenchymal stem cells in liver fibrosis and regeneration. LIVER RESEARCH 2024; 8:246-258. [PMID: 39958916 PMCID: PMC11771278 DOI: 10.1016/j.livres.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 02/18/2025]
Abstract
Liver transplantation remains the most effective treatment for end-stage liver disease (ESLD), but it is fraught with challenges such as immunosuppression, high risk and cost, and donor shortage. In recent years, stem cell transplantation has emerged as a promising new strategy for ESLD treatment, with mesenchymal stem cells (MSCs) gaining significant attention because of their unique properties. MSCs can regulate signaling pathways, including hepatocyte growth factor/c-Met, Wnt/beta (β)-catenin, Notch, transforming growth factor-β1/Smad, interleukin-6/Janus kinase/signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/PDK/Akt, thereby influencing the progression of liver fibrosis and regeneration. As a promising stem cell type, MSCs offer numerous advantages in liver disease treatment, including low immunogenicity; ease of acquisition; unlimited proliferative ability; pluripotent differentiation potential; immunomodulatory function; and anti-inflammatory, antifibrotic, and antiapoptotic biological characteristics. This review outlines the mechanisms by which MSCs reverse liver fibrosis and promote liver regeneration. MSCs are crucial in reversing liver fibrosis and repairing liver damage through the secretion of growth factors, regulation of signaling pathways, and modulation of immune responses. MSCs have shown good therapeutic effects in preclinical and clinical studies, providing new strategies for liver disease treatment. However, challenges still exist in the clinical application of MSCs, including low differentiation efficiency and limited sources. This review provides a reference for MSC application in liver disease treatment. With the continuous progress in MSC research, MSCs are expected to achieve breakthroughs in liver disease treatment, thereby improving patient treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junkai Ren
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cheng Qiu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ying Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tong Zhang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Liu L, Hao X, Zhang J, Li S, Han S, Qian P, Zhang Y, Yu H, Kang Y, Yin Y, Zhang W, Chen J, Yu Y, Jiang H, Chai J, Yin H, Chai W. The wound healing of deep partial-thickness burn in Bama miniature pigs is accelerated by a higher dose of hUCMSCs. Stem Cell Res Ther 2024; 15:437. [PMID: 39563365 PMCID: PMC11575178 DOI: 10.1186/s13287-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Deep partial-thickness burns have a significant impact on both the physical and mental health of patients. Our previous study demonstrated human Umbilical Cord Mesenchymal stem cells (hUCMSCs) could enhance the healing of severe burns in small animal burn models, such as rats. Furthermore, our team has developed a deep partial-thickness burn model in Bama miniature pigs, which can be utilized for assessing drug efficacy in preclinical trials for wound healing. Therefore, this study further determine the optimal dosage of hUCMSCs in future clinical practice by comparing the efficacy of low-to-high doses of hUCMSCs on deep partial-thickness burn wounds in Bama miniature pigs. MATERIALS AND METHODS The male Bama miniature pigs (N = 8, weight: 23-28 kg and length: 71-75 cm) were used to establish deep partial-thickness burn models, which used a continuous pressure of 1 kg and contact times of 35 s by the invented electronic burn instrument at 100℃ to prepare 10 round burn wounds with diameter of 5 cm according to our previous report. And then, 0 × 10^7, 1 × 10^7, 2 × 10^7, 5 × 10^7 and 1 × 10^8 doses of hUCMSCs were respectively injected into burn wounds of their corresponding groups. After treatment for 7, 14 and 21 days, the burned wound tissues were obtained for histological evaluation, including HE staining for histopathological changes, immunohistochemistry for neutrophil (MPO+) infiltration and microvessel (CD31+) quantity, as well as Masson staining for collagen deposition. The levels of inflammatory factors TNF-α, IL-1β, IL-10 and angiogenesis factors angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), as well as collagen type-I/type-III of the wound tissues were quantified by ELISA. RESULTS All of doses hUCMSCs can significantly increase wound healing rate and shorten healing time of the deep partial-thickness burn pigs in a dose-dependent manner. Furthermore, all of doses hUCMSCs can significantly promote epithelialization and decreased inflammatory reaction of wound, including infiltration of inflammatory cells and levels inflammatory factors. Meanwhile, the amounts of microvessel were increased in all of doses hUCMSCs group than those in the burn group. Furthermore, the collagen structure was disordered and partially necrotized, and ratios of collagen type-I and type-III were significantly decreased in burn group (4:1 in normal skin tissue), and those of all hUCMSCs groups were significantly improved in a dose-dependent manner. In a word, 1 × 10^8 dose of hUCMSCs could regenerate the deep partial-thickness burn wounds most efficaciously compared to other dosages groups and the burn group. CONCLUSION This regenerative cell therapy study using hUCMSCs demonstrates the best efficacy toward a high dose, that is dose of 1 × 10^8 of hUCMSCs was used as a reference therapeutic dose for treating 20 cm2 deep partial-thickness burns wound in future clinical practice.
Collapse
Affiliation(s)
- Lingying Liu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
| | - Xingxia Hao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Jing Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Shaozeng Li
- Department of Clinical Laboratory, The Fourth Medical Center Affiliated to PLA General Hospital, Beijing, 100037, China
| | - Shaofang Han
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Peipei Qian
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yong Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
| | - Huaqing Yu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yuxin Kang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yue Yin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Weiouwen Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, The Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Endocrinology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiake Chai
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Huinan Yin
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Wei Chai
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| |
Collapse
|
7
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
8
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
9
|
Pan W, Li S, Li K, Zhou P. Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Potential in Organ Transplantation. Stem Cells Int 2024; 2024:2043550. [PMID: 38708382 PMCID: PMC11068458 DOI: 10.1155/2024/2043550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
At present, organ transplantation remains the most appropriate therapy for patients with end-stage organ failure. However, the field of organ transplantation is still facing many challenges, including the shortage of organ donors, graft function damage caused by organ metastasis, and antibody-mediated immune rejection. It is therefore urgently necessary to find new and effective treatment. Stem cell therapy has been regarded as a "regenerative medicine technology." Mesenchymal stem cells (MSCs), as the most common source of cells for stem cell therapy, play an important role in regulating innate and adaptive immune responses and have been widely used in clinical trials for the treatment of autoimmune and inflammatory diseases. Increasing evidence has shown that MSCs mainly rely on paracrine pathways to exert immunomodulatory functions. In addition, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are the main components of paracrine substances of MSCs. Herein, an overview of the application of the function of MSCs and MSC-EVs in organ transplantation will focus on the progress reported in recent experimental and clinical findings and explore their uses for graft preconditioning and recipient immune tolerance regulation. Additionally, the limitations on the use of MSC and MSC-EVs are also discussed, covering the isolation of exosomes and preservation techniques. Finally, the opportunities and challenges for translating MSCs and MSC-EVs into clinical practice of organ transplantation are also evaluated.
Collapse
Affiliation(s)
- Wennuo Pan
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shaohan Li
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
10
|
Han L, Ma C, Wu Z, Xu H, Li H, Pan G. AhR-STAT3-HO-1/COX-2 signalling pathway may restrict ferroptosis and improve hMSC accumulation and efficacy in mouse liver. Br J Pharmacol 2024; 181:125-141. [PMID: 37538043 DOI: 10.1111/bph.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The low efficacy of mesenchymal stem cells (MSCs) has restricted their application in the treatment of liver disease. Emerging evidence suggested that ferroptosis may provoke hepatocyte dysfunction and exacerbate damage to the liver microenvironment. Here, we have investigated the contribution of liver ferroptosis to the elimination and effectiveness of human MSC (hMSC). Furthermore, potential links between liver ferroptosis and aryl hydrocarbon receptors (AhR) were explored. EXPERIMENTAL APPROACH Two mouse models, iron supplement-induced hepatic ferroptosis and hepatic ischaemia/reperfusion (I/R) injury, were used to identify effects of ferroptosis on hMSC pharmacokinetics (PK)/pharmacodynamics (PD). KEY RESULTS AhR inhibition attenuated hepatic ferroptosis and improved survival of hMSCs. hMSC viability was decreased by iron supplementation or serum from I/R mice. The AhR antagonist CH223191 reversed iron overload and oxidative stress induced by ferroptosis and increased hMSC concentration and efficacy in mouse models. Effects of CH223191 were greater than those of deferoxamine, a conventional ferroptosis inhibitor. Transcriptomic results suggested that the AhR-signal transducer and activator of transcription 3 (STAT3)-haem oxygenase 1/COX-2 signalling pathway is critical to this process. These results were confirmed in a mouse model of hepatic I/R injury. In mice pre-treated with CH223191, hMSC exhibited more potent protective effects, linked to decreased hepatic ferroptosis. CONCLUSION AND IMPLICATIONS Our findings showed that ferroptosis was a critical factor in determining the fate of hMSCs. Inhibition of AhR decreased hepatic ferroptosis, thereby increasing survival and therapeutic effects of hMSCs in mouse models of liver disease.
Collapse
Affiliation(s)
- Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Li
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Abdellateif MS, Zekri ARN. Stem cell therapy for hepatocellular carcinoma and end-stage liver disease. J Egypt Natl Canc Inst 2023; 35:35. [PMID: 37926787 DOI: 10.1186/s43046-023-00194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide, especially for patients who are suffering from end-stage liver disease (ESLD). The ESLD is considered a great challenge for clinicians due to the limited chance for liver transplantation, which is the only curative treatment for those patients. Stem cell-based therapy as a part of regenerative medicine represents a promising application for ESLD patients. Many clinical trials were performed to assess the utility of bone marrow-derived stem cells as a potential therapy for patients with liver diseases. The aim of the present study is to present and review the various types of stem cell-based therapy, including the mesenchymal stem cells (MSCs), BM-derived mononuclear cells (BM-MNCs), CD34 + hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and cancer stem cells.Though this type of therapy achieved promising results for the treatment of ESLD, however still there is a confounding data regarding its clinical application. A large body of evidence is highly required to evaluate the stem cell-based therapy after long-term follow-up, with respect to the incidence of toxicity, immunogenicity, and tumorigenesis that developed in many patients.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt.
| | - Abdel-Rahman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Cairo, 11976, Egypt
| |
Collapse
|
12
|
Wei J, Zhang Y, Chen C, Feng X, Yang Z, Feng J, Jiang Q, Fu J, Xuan J, Gao H, Liao L, Wang F. Efficacy and safety of allogeneic umbilical cord-derived mesenchymal stem cells for the treatment of complex perianal fistula in Crohn's disease: a pilot study. Stem Cell Res Ther 2023; 14:311. [PMID: 37904247 PMCID: PMC10617053 DOI: 10.1186/s13287-023-03531-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVES The aim of the study was to evaluate the efficacy and safety of allogeneic umbilical cord-derived mesenchymal stem cells (TH-SC01) for complex perianal fistula in patients with Crohn's disease (CD). METHODS This was an open-label, single-arm clinical trial conducted at Jinling Hospital. Adult patients with complex treatment-refractory CD perianal fistulas (pfCD) were enrolled and received a single intralesional injection of 120 million TH-SC01 cells. Combined remission was defined as an absence of suppuration through an external orifice, complete re-epithelization, and absence of collections larger than 2 cm measured by magnetic resonance imaging (MRI) at 24 weeks after cell administration. RESULTS A total of 10 patients were enrolled. Six patients (60.0%) achieved combined remission at 24 weeks. The number of draining fistulas decreased in 9 (90.0%) and 7 (70.0%) patients at weeks 12 and 24, respectively. Significant improvement in Perianal Crohn Disease Activity Index, Pelvic MRI-Based Score, Crohn Disease Activity Index, and quality of life score were observed at 24 weeks. No serious adverse events occurred. The probability of remaining recurrence-free was 70% at week 52. CONCLUSION The study demonstrated that local injection of TH-SC01 cells might be an effective and safe treatment for complex treatment-refractory pfCD after conventional and/or biological treatments fail (ClinicalTrials.gov ID, NCT04939337). TRIAL REGISTRATION The study was retrospectively registered on www. CLINICALTRIALS gov (NCT04939337) on June 25, 2021.
Collapse
Affiliation(s)
- Juan Wei
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China
| | - Yufei Zhang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China
| | - Chunyan Chen
- Department of Gastroenterology and Hepatology, The First School of Clinical Medicine, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, China
| | - Xiaoyue Feng
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China
| | - Jing Feng
- Department of Gastroenterology and Hepatology, The First School of Clinical Medicine, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, China
| | - Qiong Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China
| | - Jinjin Fu
- Department of Gastroenterology and Hepatology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Ji Xuan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China
| | - Hong Gao
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China
| | - Lianming Liao
- Center of Laboratory Medicine, Union Hospital of Fujian Medical University, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, People's Republic of China.
| |
Collapse
|
13
|
Mukkala AN, Jerkic M, Khan Z, Szaszi K, Kapus A, Rotstein O. Therapeutic Effects of Mesenchymal Stromal Cells Require Mitochondrial Transfer and Quality Control. Int J Mol Sci 2023; 24:15788. [PMID: 37958771 PMCID: PMC10647450 DOI: 10.3390/ijms242115788] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Due to their beneficial effects in an array of diseases, Mesenchymal Stromal Cells (MSCs) have been the focus of intense preclinical research and clinical implementation for decades. MSCs have multilineage differentiation capacity, support hematopoiesis, secrete pro-regenerative factors and exert immunoregulatory functions promoting homeostasis and the resolution of injury/inflammation. The main effects of MSCs include modulation of immune cells (macrophages, neutrophils, and lymphocytes), secretion of antimicrobial peptides, and transfer of mitochondria (Mt) to injured cells. These actions can be enhanced by priming (i.e., licensing) MSCs prior to exposure to deleterious microenvironments. Preclinical evidence suggests that MSCs can exert therapeutic effects in a variety of pathological states, including cardiac, respiratory, hepatic, renal, and neurological diseases. One of the key emerging beneficial actions of MSCs is the improvement of mitochondrial functions in the injured tissues by enhancing mitochondrial quality control (MQC). Recent advances in the understanding of cellular MQC, including mitochondrial biogenesis, mitophagy, fission, and fusion, helped uncover how MSCs enhance these processes. Specifically, MSCs have been suggested to regulate peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α)-dependent biogenesis, Parkin-dependent mitophagy, and Mitofusins (Mfn1/2) or Dynamin Related Protein-1 (Drp1)-mediated fission/fusion. In addition, previous studies also verified mitochondrial transfer from MSCs through tunneling nanotubes and via microvesicular transport. Combined, these effects improve mitochondrial functions, thereby contributing to the resolution of injury and inflammation. Thus, uncovering how MSCs affect MQC opens new therapeutic avenues for organ injury, and the transplantation of MSC-derived mitochondria to injured tissues might represent an attractive new therapeutic approach.
Collapse
Affiliation(s)
- Avinash Naraiah Mukkala
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mirjana Jerkic
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
| | - Zahra Khan
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katalin Szaszi
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Andras Kapus
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ori Rotstein
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
14
|
Li H, Yu S, Chen L, Liu H, Shen C. Immunomodulatory Role of Mesenchymal Stem Cells in Liver Transplantation: Status and Prospects. Dig Dis 2023; 42:41-52. [PMID: 37729883 DOI: 10.1159/000534003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/03/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Liver transplantation (LT) is the only effective therapy for end-stage liver diseases, but some patients usually present with serious infection and immune rejection. Those with immune rejection require long-term administration of immunosuppressants, leading to serious adverse effects. Mesenchymal stem cells (MSCs) have various advantages in immune regulation and are promising drugs most likely to replace immunosuppressants. SUMMARY This study summarized the application of MSCs monotherapy, its combination with immunosuppressants, MSCs genetic modification, and MSCs derivative therapy (cell-free therapy) in LT. This may deepen the understanding of immunomodulatory role of MSCs and promote the application of MSCs in immune rejection treatment after LT. KEY MESSAGES MSCs could attenuate ischemia-reperfusion injury and immune rejection. There is no consensus on the effects of types and concentrations of immunosuppressants on MSCs. Although genetically modified MSCs have contributed to better outcomes to some extent, the best modification is still unclear. Besides, multiple clinical complications developed frequently after LT. Unfortunately, there are still few studies on the polygenic modification of MSCs for the simultaneous treatment of these complications. Therefore, more studies should be performed to investigate the potency of multi-gene modified MSCs in treating complications after LT. Additionally, MSC derivatives mainly include exosomes, extracellular vesicles, and conditioned medium. Despite therapeutic effects, these three therapies still have some limitations such as heterogeneity between generations and that they cannot be quantified accurately.
Collapse
Affiliation(s)
- Haitao Li
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Saihua Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Conglong Shen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
16
|
Zhang J, Lu T, Xiao J, Du C, Chen H, Li R, Sui X, Pan Z, Xiao C, Zhao X, Yao J, Liu Y, Lei Y, Ruan Y, Zhang J, Li H, Zhang Q, Zhang Y, Cai J, Yang Y, Zheng J. MSC-derived extracellular vesicles as nanotherapeutics for promoting aged liver regeneration. J Control Release 2023; 356:402-415. [PMID: 36858264 DOI: 10.1016/j.jconrel.2023.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Aging is one of the critical factors to impair liver regeneration leading to a high incidence of severe complications after hepatic surgery in the elderly population without any effective treatment for clinical administration. As cell-free nanotherapeutics, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been demonstrated the therapeutic potentials on liver diseases. However, the effects of MSC-EVs on the proliferation of aged hepatocytes are largely unclear. In this study, we found MSCs could reduce the expression of senescence-associated markers in the liver and stimulate its regeneration in aged mice after receiving a two-thirds partial hepatectomy (PHx) through their secreted MSC-EVs. Using RNA-Seq and AAV9 vector, we mechanistically found that these effects of UC-MSC-EVs partially attributed to inducing Atg4B-related mitophagy. This effect repairs the mitochondrial status and functions of aged hepatocytes to promote their proliferation. And protein mass spectrum analysis uncovered that DEAD-Box Helicase 5 (DDX5) enriches in UC-MSC-EVs, which interacts with E2F1 to facilitate its nuclear translocation for activating the expression of Atg4B. Collectively, our data show that MSC-EVs act nanotherapeutic potentials in anti-senescence and promoting regeneration of aged liver by transferring DDX5 to regulate E2F1-Atg4B signaling pathway that induce mitophagy, which highlights the clinical application valuation of MSC-EVs for preventing severe complications in aged population receiving liver surgery.
Collapse
Affiliation(s)
- Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Cong Du
- Biological Treatment Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xin Sui
- Surgical ICU, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zihao Pan
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Cuicui Xiao
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xuegang Zhao
- Surgical ICU, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yunguo Lei
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Ruan
- Department of thyroid and breast surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qi Zhang
- Biological Treatment Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine. Guangzhou 510630, China; Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
17
|
Cellular Therapies in Pediatric Liver Diseases. Cells 2022; 11:cells11162483. [PMID: 36010561 PMCID: PMC9406752 DOI: 10.3390/cells11162483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Liver transplantation is the gold standard for the treatment of pediatric end-stage liver disease and liver based metabolic disorders. Although liver transplant is successful, its wider application is limited by shortage of donor organs, surgical complications, need for life long immunosuppressive medication and its associated complications. Cellular therapies such as hepatocytes and mesenchymal stromal cells (MSCs) are currently emerging as an attractive alternative to liver transplantation. The aim of this review is to present the existing world experience in hepatocyte and MSC transplantation and the potential for future effective applications of these modalities of treatment.
Collapse
|
18
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, Al-Gazally ME, Mustafa YF, Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther 2022; 13:366. [PMID: 35902958 PMCID: PMC9330677 DOI: 10.1186/s13287-022-03054-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruction, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation.,Tyumen Industrial University, Tyumen, Russian Federation
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Shokravi S, Borisov V, Zaman BA, Niazvand F, Hazrati R, Khah MM, Thangavelu L, Marzban S, Sohrabi A, Zamani A. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review. Stem Cell Res Ther 2022; 13:192. [PMID: 35527304 PMCID: PMC9080215 DOI: 10.1186/s13287-022-02825-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Recently, mesenchymal stromal cells (MSCs) and their derivative exosome have become a promising approach in the context of liver diseases therapy, in particular, acute liver failure (ALF). In addition to their differentiation into hepatocytes in vivo, which is partially involved in liver regeneration, MSCs support liver regeneration as a result of their appreciated competencies, such as antiapoptotic, immunomodulatory, antifibrotic, and also antioxidant attributes. Further, MSCs-secreted molecules inspire hepatocyte proliferation in vivo, facilitating damaged tissue recovery in ALF. Given these properties, various MSCs-based approaches have evolved and resulted in encouraging outcomes in ALF animal models and also displayed safety and also modest efficacy in human studies, providing a new avenue for ALF therapy. Irrespective of MSCs-derived exosome, MSCs-based strategies in ALF include administration of native MSCs, genetically modified MSCs, pretreated MSCs, MSCs delivery using biomaterials, and also MSCs in combination with and other therapeutic molecules or modalities. Herein, we will deliver an overview regarding the therapeutic effects of the MSCs and their exosomes in ALF. As well, we will discuss recent progress in preclinical and clinical studies and current challenges in MSCs-based therapies in ALF, with a special focus on in vivo reports.
Collapse
Affiliation(s)
- Samin Shokravi
- Department of Research and Academic Affairs, Larkin Community Hospital, Miami, FL USA
| | - Vitaliy Borisov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region Iraq
| | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Raheleh Hazrati
- Department of Medicinal Chemistry, Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Sima Marzban
- Department of Research and Academic Affairs, Larkin Community Hospital, Miami, FL USA
| | - Armin Sohrabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
22
|
Fagoonee S, Shukla SP, Dhasmana A, Birbrair A, Haque S, Pellicano R. Routes of Stem Cell Administration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:63-82. [PMID: 35389198 DOI: 10.1007/5584_2022_710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are very promising for the treatment of a plethora of human diseases. Numerous clinical studies have been conducted to assess the safety and efficacy of various stem cell types. Factors that ensure successful therapeutic outcomes in patients are cell-based parameters such as source, viability, and number, as well as frequency and timing of intervention and disease stage. Stem cell administration routes should be appropriately chosen as these can affect homing and engraftment of the cells and hence reduce therapeutic effects, or compromise safety, resulting in serious adverse events. In this chapter, we will describe the use of stem cells in organ repair and regeneration, in particular, the liver and the available routes of cell delivery in the clinic for end-stage liver diseases. Factors affecting homing and engraftment of stem cells for each administration route will be discussed.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy.
| | - Shiv Poojan Shukla
- Department of Dermatology & Cutaneous Biology, Sydney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA
- Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Nilüfer, Bursa, Turkey
| | | |
Collapse
|
23
|
Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia–reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps'. Biomaterials 2022; 284:121486. [PMID: 35447404 DOI: 10.1016/j.biomaterials.2022.121486] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
24
|
Vandermeulen M, Mohamed-Wais M, Erpicum P, Delbouille MH, Lechanteur C, Briquet A, Maggipinto G, Jouret F, Beguin Y, Detry O. Infusion of Allogeneic Mesenchymal Stromal Cells After Liver Transplantation: A 5-Year Follow-Up. Liver Transpl 2022; 28:636-646. [PMID: 34605167 DOI: 10.1002/lt.26323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 01/09/2023]
Abstract
Various properties of mesenchymal stromal cells (MSCs) might be particularly of interest after liver transplantation (LT). In this article, we report the long-term results of a prospective, controlled, and first-in-human phase 1 study evaluating the safety of a single MSC infusion after LT. A total of 10 LT recipients treated with standard immunosuppression received 1.5 to 3 × 106 /kg third-party unrelated MSCs on postoperative day 3 and were prospectively compared with a control group of 10 LT recipients. Primary endpoints were set to prospectively detect potentially delayed adverse effects of MSC infusion, particularly the occurrence of infections and cancers. Secondary endpoints of liver graft and patient survival, graft rejection and function, occurrence of bile duct complications, and development of donor-specific anti-human leukocyte antigen (HLA) antibodies (DSA) against liver or MSC donors were studied. The median follow-up was 85 months. There was no difference in overall rates of infection or cancer at 5 years of follow-up between the 2 groups. There was also no difference in secondary endpoints. The prevalence of de novo liver DSAs related to HLA mismatches was twice as high in the MSC group compared with the control group. All of the de novo class II HLA antibodies against MSCs were linked to a shared HLA mismatch between the liver and MSCs. This study confirms the safety of a single MSC infusion after LT. The potential benefits of MSC injections in the context of organ transplantation have yet to be demonstrated by larger prospective studies. The development of anti-HLA antibodies against an MSC donor should be further evaluated, especially in cases of shared HLA mismatches between graft and MSC donors, despite the fact that no deleterious effect has been detected.
Collapse
Affiliation(s)
- Morgan Vandermeulen
- Department of Abdominal Surgery and Transplantation, University of Liege Hospital (CHU ULiege), University of Liege, Liege, Belgium.,Centre de Recherche et de Developpement du Departement de Chirurgie, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - Maleyko Mohamed-Wais
- Centre de Recherche et de Developpement du Departement de Chirurgie, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - Pauline Erpicum
- Centre de Recherche et de Developpement du Departement de Chirurgie, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Cardiovascular Sciences, University of Liege, Liege, Belgium.,Department of Nephrology, CHU ULiege, University of Liege, Liege, Belgium
| | - Marie-Hélène Delbouille
- Department of Abdominal Surgery and Transplantation, University of Liege Hospital (CHU ULiege), University of Liege, Liege, Belgium
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, CHU ULiege, University of Liege, Liege, Belgium
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, CHU ULiege, University of Liege, Liege, Belgium
| | - Gianni Maggipinto
- Division of Immuno-Hematology, CHU ULiege, University of Liege, Liege, Belgium
| | - François Jouret
- Centre de Recherche et de Developpement du Departement de Chirurgie, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Cardiovascular Sciences, University of Liege, Liege, Belgium.,Department of Nephrology, CHU ULiege, University of Liege, Liege, Belgium
| | - Yves Beguin
- Laboratory of Cell and Gene Therapy, CHU ULiege, University of Liege, Liege, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA)-I3-Hematology, University of Liege, Liege, Belgium.,Department of Hematology, CHU ULiege, University of Liege, Liege, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery and Transplantation, University of Liege Hospital (CHU ULiege), University of Liege, Liege, Belgium.,Centre de Recherche et de Developpement du Departement de Chirurgie, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Cardiovascular Sciences, University of Liege, Liege, Belgium
| |
Collapse
|
25
|
Feng Y, Luo J, Cheng J, Xu A, Qiu D, He S, Zheng D, Jia C, Zhang Q, Lin N. A Small-Molecule Cocktails-Based Strategy in Culture of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 10:819148. [PMID: 35360405 PMCID: PMC8963903 DOI: 10.3389/fbioe.2022.819148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a variety of unique properties, such as stem cell multipotency and immune regulation, making them attractive for use in cell therapy. Before infusion therapy, MSCs are required to undergo tissue separation, purification, and expansion in vitro for a certain duration. During the process of in vitro expansion of MSCs, the influence of culture time and environment can lead to cell senescence, increased heterogeneity, and function attenuation, which limits their clinical applications. We used a cocktail of three small-molecule compounds, ACY (A-83-01, CHIR99021, and Y-27632), to increase the proliferation activity of MSCs in vitro and reduce cell senescence. ACY inhibited the increase in heterogeneity of MSCs and conserved their differentiation potential. Additionally, ACY maintained the phenotype of MSCs and upregulated the expression of immunomodulatory factors. These results suggest that ACY can effectively improve the quantity and quality of MSCs.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aimin Xu
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Dongbo Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sixiao He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayong Zheng
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Changchang Jia
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Yang Y, Chen Y, Zhao Y, Ji F, Zhang L, Tang S, Zhang S, Hu Q, Li Z, Zhang F, Li Q, Li L. Human menstrual blood-derived stem cell transplantation suppresses liver injury in DDC-induced chronic cholestasis. Stem Cell Res Ther 2022; 13:57. [PMID: 35123555 PMCID: PMC8817575 DOI: 10.1186/s13287-022-02734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cholestatic liver injury can lead to serious symptoms and prognoses in the clinic. Currently, an effective medical treatment is not available for cholestatic liver injury. Human menstrual blood-derived stem cells (MenSCs) are considered as an emerging treatment in various diseases. This study aimed to explore the treatment effect of MenSCs in cholestatic liver injury. METHODS The treatment effect of MenSCs on chronic cholestatic liver injury was verified in 3,5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC)-induced C57/BL6 mice. Pathological, fibrosis area in the liver tissue and serum liver enzymes were tested. Proteomics and western blot were used to explore the related targets and molecular mechanisms. Adeno-associated virus (AAV) 9-infected mice were applied for verification. RESULTS MenSCs markedly improved the survival rate of the DDC-treated mice (60% vs. 100%), and decreased the mouse serum aspartate aminotransferase (AST) (169.4 vs. 108.0 U/L, p < 0.001), alanine aminotransferase (ALT) (279.0 vs. 228.9 U/L, p < 0.01), alkaline phosphatase (ALP) (45.6 vs. 10.6 U/L, p < 0.0001), direct bilirubin (DBIL) (108.3 vs. 14.0 μmol/L, p < 0.0001) and total bilirubin (TBIL) (179.2 vs. 43.3 μmol/L, p < 0.0001) levels as well as intrahepatic cholestasis, bile duct dilation and fibrotic areas (16.12 vs. 6.57%, p < 0.05). The results further indicated that MenSCs repaired the DDC-induced liver tight junction (TJ) pathway and bile transporter (OATP2, BSEP and NTCP1) injury, thereby inhibiting COL1A1, α-SMA and TGF-β1 activation by upregulating liver β-catenin expression. CONCLUSIONS MenSC transplantation could be an effective treatment method for cholestatic liver injury in mice. MenSCs may exhibit therapeutic effects by regulating β-catenin expression.
Collapse
Affiliation(s)
- Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Sainan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Qingqing Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
27
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
28
|
Yang Y, Zhao Y, Zhang L, Zhang F, Li L. The Application of Mesenchymal Stem Cells in the Treatment of Liver Diseases: Mechanism, Efficacy, and Safety Issues. Front Med (Lausanne) 2021; 8:655268. [PMID: 34136500 PMCID: PMC8200416 DOI: 10.3389/fmed.2021.655268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a novel treatment for liver diseases due to the roles of MSCs in regeneration, fibrosis inhibition and immune regulation. However, the mechanisms are still not completely understood. Despite the significant efficacy of MSC therapy in animal models and preliminary clinical trials, issues remain. The efficacy and safety of MSC-based therapy in the treatment of liver diseases remains a challenging issue that requires more investigation. This article reviews recent studies on the mechanisms of MSCs in liver diseases and the associated challenges and suggests potential future applications.
Collapse
Affiliation(s)
- Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Liver transplantation is the gold standard for the treatment of end-stage liver disease. However, a shortage of donor organs, high cost, and surgical complications limit the use of this treatment. Cellular therapies using hepatocytes, hematopoietic stem cells, bone marrow mononuclear cells, and mesenchymal stem cells (MSCs) are being investigated as alternative treatments to liver transplantation. The purpose of this review is to describe studies using MSC transplantation for liver diseases based on the reported literature and to discuss prospective research designed to improve the efficacy of MSC therapy. RECENT FINDINGS MSCs have several properties that show potential to regenerate injured tissues or organs, such as homing, transdifferentiation, immunosuppression, and cellular protective capacity. Additionally, MSCs can be noninvasively isolated from various tissues and expanded ex vivo in sufficient numbers for clinical evaluation. SUMMARY Currently, there is no approved MSC therapy for the treatment of liver disease. However, MSC therapy is considered a promising alternative treatment for end-stage liver diseases and is reported to improve liver function safely with no side effects. Further robust preclinical and clinical studies will be needed to improve the therapeutic efficacy of MSC transplantation.
Collapse
|
30
|
Zhang Y, Zhang J, Yi H, Zheng J, Cai J, Chen W, Lu T, Chen L, Du C, Liu J, Yao J, Zhao H, Wang G, Fu B, Zhang T, Zhang J, Wang G, Li H, Xiang AP, Chen G, Yi S, Zhang Q, Yang Y. A novel MSC-based immune induction strategy for ABO-incompatible liver transplantation: a phase I/II randomized, open-label, controlled trial. Stem Cell Res Ther 2021; 12:244. [PMID: 33863383 PMCID: PMC8050996 DOI: 10.1186/s13287-021-02246-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND ABO-incompatible liver transplantation (ABO-i LT) has become a rescue therapeutic option for patients with severe hepatic failure. Although the use of rituximab greatly reduces the morbidity of antibody-mediated rejection (AMR), severe adverse effects, such as infection and biliary complications, still seriously threaten the survival of transplant recipients. The aim of this study was to evaluate the safety and feasibility of using mesenchymal stem cells (MSCs) to replace rituximab in ABO-i LT. METHODS Twenty-two patients with severe hepatic failure undergoing ABO-i LT were enrolled and randomly divided into two groups: the MSC group and the rituximab group. The safety of the application of MSCs and the incidence of allograft rejection, including antibody-mediated rejection (AMR) and acute cellular rejection (ACR), were evaluated in both groups at the 2-year follow-up period as primary endpoints. Recipients and graft survival and other postoperative complications were compared as secondary endpoints. RESULTS No severe MSC-related adverse events were observed during the trial. MSC treatment yielded comparable, if not better, results than rituximab at decreasing the incidence of acute rejection (9.1% vs 27.3%). Inspiringly, compared to those in the rituximab group, the rates of biliary complications (0% vs 45.5%) and infection (9.1% vs 81.8%) were significantly decreased in the MSC group. In addition, there were no significant differences in 2-year graft and recipient survival between the two groups (81.8% vs 72.7%). CONCLUSIONS Our data show that MSC transfusion is comparable to rituximab treatment for AMR prophylaxis following ABO-i LT. Additionally, the results indicate that MSCs are more beneficial to the prevention of infection and biliary complications and may be introduced as a novel immunosuppressive approach for ABO-i LT. TRIAL REGISTRATION Trial registration: chictr.org.cn , ChiCTR2000037732. Registered 31 August 2020- Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=57074 .
Collapse
Affiliation(s)
- Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenjie Chen
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cong Du
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Jianrong Liu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hui Zhao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guoying Wang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Binsheng Fu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tong Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Genshu Wang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
- Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
31
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
32
|
Hoogduijn MJ, Issa F, Casiraghi F, Reinders MEJ. Cellular therapies in organ transplantation. Transpl Int 2021; 34:233-244. [PMID: 33207013 PMCID: PMC7898347 DOI: 10.1111/tri.13789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular therapy is a promising tool for improving the outcome of organ transplantation. Various cell types with different immunoregulatory and regenerative properties may find application for specific transplant rejection or injury-related indications. The current era is crucial for the development of cellular therapies. Preclinical models have demonstrated the feasibility of efficacious cell therapy in transplantation, early clinical trials have shown safety of several of these therapies, and the first steps towards efficacy studies in humans have been made. In this review, we address the current state of the art of cellular therapies in clinical transplantation and discuss monitoring tools and endpoints for these studies.
Collapse
Affiliation(s)
- Martin J. Hoogduijn
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| | - Fadi Issa
- Transplantation Research and Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Marlies E. J. Reinders
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
33
|
Yang X, Meng Y, Han Z, Ye F, Wei L, Zong C. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci 2020; 10:123. [PMID: 33117520 PMCID: PMC7590738 DOI: 10.1186/s13578-020-00480-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Liver disease is a major health problem that endangers human health worldwide. Currently, whole organ allograft transplantation is the gold standard for the treatment of end-stage liver disease. A shortage of suitable organs, high costs and surgical complications limit the application of liver transplantation. Mesenchymal stem cell therapy has been considered as a promising alternative approach for end-stage liver disease. Some clinical trials have confirmed the effectiveness of MSC therapy for liver disease, but its application has not been promoted and approved. There are still many issues that should be solved prior to using MSC therapy in clinical applications. The types of liver disease that are most suitable for MSC application should be determined, and the preparation and engraftment of MSCs should be standardized. These may be bottlenecks that limit the use of MSCs. We investigated 22 completed and several ongoing clinical trials to discuss these questions from a clinical perspective. We also discussed the important mechanisms by which MSCs play a therapeutic role in liver disease. Finally, we also proposed novel prospective approaches that can improve the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| |
Collapse
|
34
|
Abstract
Over the past decade, the clinical application of mesenchymal stromal cells (MSCs) has generated growing enthusiasm as an innovative cell-based approach in solid organ transplantation (SOT). These expectations arise from a significant number of both transplant- and non-transplant-related experimental studies investigating the complex anti-inflammatory, immunomodulatory, and tissue-repair properties of MSCs. Promising preclinical results have prompted clinical trials using MSC-based therapy in SOT. In the present review, the general properties of MSCs are summarized, with a particular emphasis on MSC-mediated impact on the immune system and in the ischemic conditioning strategy. Next, we chronologically detail all clinical trials using MSCs in the field of SOT. Finally, we envision the challenges and perspectives of MSC-based cell therapy in SOT.
Collapse
|
35
|
Zaki AKA, Almundarij TI, Abo-Aziza FAM. Comparative characterization and osteogenic / adipogenic differentiation of mesenchymal stem cells derived from male rat hair follicles and bone marrow. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:13. [PMID: 32778979 PMCID: PMC7417469 DOI: 10.1186/s13619-020-00051-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/11/2023]
Abstract
Clinical applications of cell therapy and tissue regeneration under different conditions need a multiplicity of adult stem cell sources. Up to date, little is available on the comparative isolation, characterization, proliferation, rapid amplification, and osteogenic/adipogenic differentiation of rat mesenchymal stem cells (MSCs) isolated from living bulge cells of the hair follicle (HF) and bone marrow (BM) from the same animal. This work hopes to use HF-MSCs as an additional adult stem cell source for research and application. After reaching 80% confluence, the cell counting, viability %, and yields of HF-MSCs and BM-MSCs were nearly similar. The viability % was 91.41 ± 2.98 and 93.11 ± 3.06 while the cells yield of initial seeding was 33.15 ± 2.76 and 34.22 ± 3.99 and of second passage was 28.76 ± 1.01 and 29.56 ± 3.11 for HF-MSCs and BM-MSCs respectively. Clusters of differentiation (CDs) analysis revealed that HF-MSCs were positively expressed CD34, CD73 and CD200 and negatively expressed CD45. BM-MSCs were positively expressed CD73 and CD200 and negatively expressed of CD34 and CD45. The proliferation of HF-MSCs and BM-MSCs was determined by means of incorporation of Brd-U, population doubling time (PDT) assays and the quantity of formazan release. The percentage of Brd-U positive cells and PDT were relatively similar in both types of cells. The proliferation, as expressed by the quantity of formazan assay in confluent cells, revealed that the quantity of release by BM-MSCs was slightly higher than HF-MSCs. Adipogenic differentiated BM-MSCs showed moderate accumulation of oil red-O stained lipid droplets when compared to that of HF-MSCs which exhibited high stain. The total lipid concentration was significantly higher in adipogenic differentiated HF-MSCs than BM-MSCs (P < 0.05). It was found that activity of bone alkaline phosphatase and calcium concentration were significantly higher (P < 0.01 and P < 0.05 respectively) in osteogenic differentiated BM-MSCs than that of HF-MSCs. The present findings demonstrate that the HF-MSCs are very similar in most tested characteristics to BM-MSCs with the exception of differentiation. Additionally; no issues have been reported during the collection of HF-MSCs. Therefore, the HF may represent a suitable and accessible source for adult stem cells and can be considered an ideal cell source for adipogenesis research.
Collapse
Affiliation(s)
- Abdel Kader A Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Tariq I Almundarij
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Faten A M Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
36
|
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal Stromal Cells and Exosomes: Progress and Challenges. Front Cell Dev Biol 2020; 8:665. [PMID: 32766255 PMCID: PMC7379234 DOI: 10.3389/fcell.2020.00665] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their robust immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) have been used as a cellular therapy for a number of human diseases. Part of the mechanism of action of MSCs is the production of extracellular vesicles (EVs) that contain proteins, nucleic acids, and lipids that transmit signals to recipient cells that change their biologic behavior. This review briefly summarizes the development of MSCs as a treatment for human diseases as well as describes our present understanding of exosomes; how they exert their effects on target cells, and how they are differentiated from other EVs. The current treatment paradigm for acute radiation syndrome (ARS) is discussed, and how MSCs and MSC derived exosomes are emerging as treatment options for treating patients after radiation exposure. Other conditions such as graft-versus-host disease and cardiovascular disease/stroke are discussed as examples to highlight the immunomodulatory and regenerative capacity of MSC-exosomes. Finally, a consideration is given to how these cell-based therapies could possibly be deployed in the event of a catastrophic radiation exposure event.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Christian M Capitini
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
37
|
Jia Y, Shu X, Yang X, Sun H, Cao H, Cao H, Zhang K, Xu Q, Li G, Yang Y. Enhanced therapeutic effects of umbilical cord mesenchymal stem cells after prolonged treatment for HBV-related liver failure and liver cirrhosis. Stem Cell Res Ther 2020; 11:277. [PMID: 32650827 PMCID: PMC7350639 DOI: 10.1186/s13287-020-01787-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Umbilical cord mesenchymal stem cells (UCMSCs) have been demonstrated to have good therapeutic effects in the treatment of HBV-related liver diseases. However, the therapeutic effect of UCMSCs on HBV-related liver failure and liver cirrhosis and the variations in the efficacy of UCMSCs after different treatment courses remain poorly understood. Therefore, this study was designed to answer these two questions. Methods This was an observational study that retrospectively considered a 3-year period during which 513 patients who received stem cell infusion and met the criteria of hepatic failure and liver cirrhosis were identified from the databases of the Third Affiliated Hospital of Sun Yat-sen University. The eligible patients were categorized into the liver failure group and liver cirrhosis group. The two groups were divided into different subgroups according to the duration of stem cell therapy. In the liver failure group, group A received more than 4 weeks and group B received less than 4 weeks of stem cell therapy. In the liver cirrhosis group, patients who received more than 4 weeks of stem cell therapy belonged to group C, and the patients in group D received less than 4 weeks of stem cell therapy. The patients were followed up for 24 weeks. The demographics, clinical characteristics, biochemical factors, and model for end-stage liver disease (MELD) scores were recorded and compared among different groups. Results A total of 64 patients met the criteria for liver failure, and 59 patients met the criteria for liver cirrhosis. After UCMSC treatment, the levels of alanine aminotransferase (ALT), glutamic-oxaloacetic transaminase (AST), and total bilirubin (TBIL) at all postbaseline time points were significantly lower than those at baseline in the liver failure group and liver cirrhosis group; the prothrombin activity (PTA) and MELD scores gradually improved in only the liver failure group. Four weeks after UCMSC treatment, patients who received prolonged treatment with UCMSCs had a larger decrease in TBIL levels than patients who terminated treatment with UCMSCs. After more than 4 weeks of UCMSC treatment, there were no statistically significant differences in the changes in ALT, AST, TBIL, and PTA values and MELD scores between patients with liver failure who received prolonged treatment with UCMSCs and patients with liver cirrhosis who received prolonged treatment with UCMSCs at any time point. However, the median decrease and cumulative decrease in the TBIL level of patients with liver failure with a standard 4-week treatment course were larger than those of patients with liver cirrhosis with a standard 4-week treatment course. Conclusion Peripheral infusion of UCMSCs showed good therapeutic effects for HBV-related liver failure and liver cirrhosis. Prolonging the treatment course can increase the curative effect of UCMSCs for end-stage liver disease, especially for patients with cirrhosis.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijuan Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Qihuan Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Gang Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
Fan D, Zeng M, Xia Q, Wu S, Ye S, Rao J, Lin D, Zhang H, Ma H, Han Z, Guo X, Liu Z. Efficacy and safety of umbilical cord mesenchymal stem cells in treatment of cesarean section skin scars: a randomized clinical trial. Stem Cell Res Ther 2020; 11:244. [PMID: 32586366 PMCID: PMC7316165 DOI: 10.1186/s13287-020-01695-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pathological skin scars, caused by cesarean section, affected younger mothers esthetically and psychosocially and to some extent frustrated obstetricians and dermatologists. Umbilical cord mesenchymal stem cells (UC-MSCs), as a population of multipotent cells, are abundant in human tissues, providing several possibilities for their effects on skin scar tissues. Herein, we performed a randomized, double-blind, placebo-controlled, three-arm clinical trial, aiming to assess the efficacy and safety of UC-MSCs in the treatment of cesarean section skin scars among primiparous singleton pregnant women. METHODS Ninety primiparous singleton pregnant women undergoing elective cesarean section were randomly allocated to receive placebo, low-dose (3 × 106 cells), or high-dose (6 × 106 cells) transdermal hydrogel UC-MSCs on the surface of the skin incision. The primary outcome was cesarean section skin scars followed after the sixth month, assessed by the Vancouver Scar Scale (VSS). RESULTS All the participants completed their trial of the primary outcome according to the protocol. The mean score of estimated total VSS was 5.52 in all participants at the sixth-month follow-up, with 6.43 in the placebo group, 5.18 in the low-dose group, and 4.71 in the high-dose group, respectively. No significant difference was found between-group in the mean scores for VSS at the sixth month. Additional prespecified secondary outcomes were not found with significant differences among groups either. No obvious side effects or adverse effects were reported in any of the three arms. CONCLUSION This randomized clinical trial showed that UC-MSCs did not demonstrate the effects of improvement of cesarean section skin scars. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT02772289. Registered on 13 May 2016.
Collapse
Affiliation(s)
- Dazhi Fan
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China.,Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Meng Zeng
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Qing Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.,Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Shuzhen Wu
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Shaoxin Ye
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China.,Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Jiaming Rao
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Dongxin Lin
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Huishan Zhang
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Huiting Ma
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Xiaoling Guo
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China. .,Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China.
| | - Zhengping Liu
- Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China. .,Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, 528000, Guangdong, China.
| |
Collapse
|
39
|
Dai H, Zheng Y, Thomson AW, Rogers NM. Transplant Tolerance Induction: Insights From the Liver. Front Immunol 2020; 11:1044. [PMID: 32582167 PMCID: PMC7289953 DOI: 10.3389/fimmu.2020.01044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
A comparison of pre-clinical transplant models and of solid organs transplanted in routine clinical practice demonstrates that the liver is most amenable to the development of immunological tolerance. This phenomenon arises in the absence of stringent conditioning regimens that accompany published tolerizing protocols for other organs, particularly the kidney. The unique immunologic properties of the liver have assisted our understanding of the alloimmune response and how it can be manipulated to improve graft function and survival. This review will address important findings following liver transplantation in both animals and humans, and how these have driven the understanding and development of therapeutic immunosuppressive options. We will discuss the liver's unique system of immune and non-immune cells that regulate immunity, yet maintain effective responses to pathogens, as well as mechanisms of liver transplant tolerance in pre-clinical models and humans, including current immunosuppressive drug withdrawal trials and biomarkers of tolerance. In addition, we will address innovative therapeutic strategies, including mesenchymal stem cell, regulatory T cell, and regulatory dendritic cell therapy to promote liver allograft tolerance or minimization of immunosuppression in the clinic.
Collapse
Affiliation(s)
- Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Yawen Zheng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China.,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal Division, Westmead Hospital, Westmead, NSW, Australia.,Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
40
|
Zheng J, Chen L, Lu T, Zhang Y, Sui X, Li Y, Huang X, He L, Cai J, Zhou C, Liang J, Chen G, Yao J, Yang Y. MSCs ameliorate hepatocellular apoptosis mediated by PINK1-dependent mitophagy in liver ischemia/reperfusion injury through AMPKα activation. Cell Death Dis 2020; 11:256. [PMID: 32312955 PMCID: PMC7171190 DOI: 10.1038/s41419-020-2424-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Hepatocyte apoptosis is the main pathophysiological process underlying liver ischemia/reperfusion (I/R) injury. Mitochondrial abnormalities have a vital role in hepatocellular damage. The hepatoprotective effects of mesenchymal stem cells (MSCs) have been previously demonstrated. In this study, we aim to investigate the effect and potential mechanism of MSCs against liver I/R injury. Effects of MSCs were studied in mice liver I/R injury model and in a hypoxia/reoxygenation (H/R) model of L02 hepatocytes. The potential mechanisms of MSCs on these in vivo and in vitro I/R-induced hepatocellular apoptosis models were studies. Accompanied by the improvement of hepatic damage, MSCs exhibited capabilities of controlling mitochondrial quality, shown by reduced mitochondrial reactive oxygen species (mtROS) overproduction, decreased the accumulation of mitochondrial fragmentation, restored ATP generation and upregulated mitophagy. Furthermore, we descripted a potential mechanism of MSCs on upregulating mitophagy and found that the reduced Parkin and PINK1 expression and inactivated AMPKα pathway were observed in the liver tissue in I/R model. These effects were reversed by MSCs treatment. In vitro study showed that MSC-conditioned medium (MSC-CM) suppressed hepatocellular apoptosis and inhibited mtROS accumulation in the H/R environment. And these effects of MSC-CM were partially blocked after the cells were transfected with PINK1 siRNA or added with dorsomorphin. Collectively, our findings provide a novel pharmacological mechanism that MSCs exert hepatoprotective effect in liver I/R injury via upregulating PINK1-dependent mitophagy. In addition, this effect might be attributed to the modulation of AMPKα activation.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xin Sui
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xuna Huang
- Central Experimental Room of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Liying He
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, 510630, Guangzhou, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China. .,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China. .,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China. .,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
41
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives. AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research. METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation. RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells. CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
42
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
43
|
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11:548-564. [PMID: 31523373 PMCID: PMC6716089 DOI: 10.4252/wjsc.v11.i8.548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver; in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis; advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
44
|
Niu J, Wang Y, Liu B, Yao Y. Mesenchymal stem cells prolong the survival of orthotopic liver transplants by regulating the expression of TGF-β1. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 29:601-609. [PMID: 30260784 DOI: 10.5152/tjg.2018.17395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Recent studies have shown that transforming growth factor-β1 (TGF-β1) is prominently associated with acute rejection. This study aimed to explore the role of mesenchymal stem cells (MSCs) in the maintenance of the long-term survival of orthotopic liver transplants (OLTs) via the regulation of TGF-β1 in an experimental rat model. MATERIALS AND METHODS We used Lewis rats as donors and ACI rats as recipients. Hematoxylin and eosin staining was performed to evaluate histomorphological changes, and Western blot was performed to measure protein expression. RESULTS The expression of TGF-β1 in the liver allografts and spleen and protein levels of forkhead box P3 (FoxP3), interleukin-10 (IL-10), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) were measured using Western blot. The suppressive capacity of CD4+CD25+ regulatory T cells was evaluated using the MTT assay. Cell-mediated immunotoxicity was evaluated using the mixed lymphocyte reaction of CD4+ T cells and cytotoxic T lymphocyte (CTL) assay of CD8+ T cells. The results showed that MSCs prolonged the survival of the OLT mice by regulating the expression of TGF-β1 at different time points. The administration of MSCs promoted a prolonged survival in the ACI recipients (105±6.6 d) compared with the MSC-untreated recipients (16.2±4.0 d). On the postoperative day (POD) 7, the MSC-treated recipients showed a significantly higher expression of TGF-β1, FoxP3, IL-10, and CTLA-4 than the MSC-untreated recipients. However, on POD 100, the MSC-treated recipients showed a lower expression of TGF-β1 and FOxP3 than that on POD 7. Moreover, on POD 7, CD4+CD25+ regulatory T cells extracted from the MSC-treated recipients showed a higher expression of FoxP3, IL-10, CTLA-4, and suppressive capacity. On POD 7, CD4+ T cells from the MSC-treated recipients showed more significantly diminished proliferative functions than the MSC-untreated recipients; further, a reduced allospecific CTL activity of CD8+ T cells was observed in the MSC-treated recipients. CONCLUSION MSCs may represent a promising cell therapeutic approach for inducing immunosuppression or transplant tolerance.
Collapse
Affiliation(s)
- Jian Niu
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Yue Wang
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Bin Liu
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Yuanhu Yao
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| |
Collapse
|
45
|
Zheng J, Li H, He L, Huang Y, Cai J, Chen L, Zhou C, Fu H, Lu T, Zhang Y, Yao J, Yang Y. Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis. Cell Prolif 2018; 52:e12546. [PMID: 30537044 PMCID: PMC6496237 DOI: 10.1111/cpr.12546] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives Transfusion of umbilical cord‐derived mesenchymal stem cells (UC‐MSCs) is a novel strategy for treatment of various liver diseases. However, the therapeutic effect of UC‐MSCs is limited because only a few UC‐MSCs migrate towards the damaged regions. In this study, we observed the effects of autophagy on the migration of UC‐MSCs in vitro and in a model of liver ischaemia/reperfusion (I/R) injury. Materials and Methods We investigated the effects of autophagy on the status of the cell, release of anti‐inflammatory factors and migration of UC‐MSCs in vitro. The therapeutic effects and in vivo migration of rapamycin‐preconditioned UC‐MSCs were observed in a C57/B6 mouse model of liver I/R injury. Results Induction of autophagy by rapamycin enhanced the ability of UC‐MSCs to migrate and release anti‐inflammatory cytokines as well as increased expression of CXCR4 without affecting cell viability. Inhibition of CXCR4 activation markedly decreased migration of these cells. In a mouse model of liver I/R injury, we found significantly upregulated expression of CXCR12 in the damaged liver. More rapamycin‐preconditioned UC‐MSCs migrated towards the ischaemic regions than 3‐methyladenine‐preconditioned or non‐preconditioned UC‐MSCs, leading to improvement in hepatic performance, pathological changes and levels of inflammatory cytokines. These effects were abolished by AMD3100. Conclusions Preconditioning of UC‐MSCs by rapamycin afforded increased protection against liver I/R injury by enhancing immunosuppression and strengthening the homing and migratory capacity of these cells via the CXCR4/CXCL12 axis.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liying He
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yiming Huang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyuan Fu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Fiore EJ, Domínguez LM, Bayo J, García MG, Mazzolini GD. Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: Cells and extracellular vesicles as therapeutic strategies. World J Gastroenterol 2018; 24:2427-2440. [PMID: 29930465 PMCID: PMC6010941 DOI: 10.3748/wjg.v24.i23.2427] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapies for acute and chronic liver diseases are under continuous progress. Mesenchymal stem/stromal cells (MSCs) are multipotent cells able to migrate selectively to damaged tissue and contribute to its healing and regeneration. The MSC pro-regenerative effect occurs due to their immunomodulatory capacity and their ability to produce factors that promote cell protection and survival. Likewise, it has been observed that part of their paracrine effect is mediated by MSC-derived extracellular vesicles (EVs). EVs contain proteins, lipids and nucleic acids (DNA, mRNA, miRNA, lncRNA) from the cell of origin, allowing for intercellular communication. Recently, different studies have demonstrated that MSC-derived EVs could reproduce, at least in part, the biological effects obtained by MSC-based therapies. Moreover, due to EVs' stability for long periods of time and easy isolation methods they have become a therapeutic option to MSCs treatments. This review summarizes the latest results achieved in clinical trials using MSCs as cell therapy for liver regeneration, the role of EVs in liver physiopathology and the potential of MSCderived EVs as intercellular mediators and therapeutic tools in liver diseases.
Collapse
Affiliation(s)
- Esteban Juan Fiore
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina
| | - Luciana María Domínguez
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina
| | - Juan Bayo
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina
| | - Mariana Gabriela García
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina
| | - Guillermo Daniel Mazzolini
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina
| |
Collapse
|
47
|
Xue P, Wang M, Yan G. Mesenchymal stem cell transplantation as an effective treatment strategy for ischemic stroke in Asia: a meta-analysis of controlled trials. Ther Clin Risk Manag 2018; 14:909-928. [PMID: 29785117 PMCID: PMC5957058 DOI: 10.2147/tcrm.s161326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective The aim of this study was to evaluate the efficacy and safety of the mesenchymal stem cell (MSC) therapy in patients with ischemic stroke (IS). Materials and methods Clinical trials involved in this research were searched from PubMed, Web of Science, Cochrane Library, Embase, Wanfang and CNKI database. Therapeutic effects of MSC therapy were assessed according to National Institutes of Health Stroke Scale (NIHSS), Barthel index (BI), Fugl-Meyer Assessment (FMA) and Functional Independence Measure (FIM), and its safety was evaluated based on adverse events. Results This research covered 23 trials including 1,279 IS patients. Based on our analysis, the overall condition of IS patients significantly improved after MSC therapy, indicated by decreased NIHSS and increased BI, FMA and FIM scores. Our analysis also showed that the treatment effects in the MSC transplantation group were superior to those in the control group (routine medication therapy) with statistical significance for NIHSS (1 month after therapy: odds ratio [OR]=-1.92, CI=-3.49 to -0.34, P=0.02; 3 months after therapy: OR=-2.65, CI=-3.40 to -1.90, P<0.00001), BI (1 month after therapy: OR=0.99, CI=0.19-1.79, P=0.02; 6 months after therapy: OR=10.10, CI=3.07-17.14, P=0.005), FMA (3 months after therapy: OR=10.20, CI=3.70-16.70, P=0.002; 6 months after therapy: OR=10.82, CI=6.45-15.18, P<0.00001) and FIM (1 month after therapy: OR=15.61, CI=-0.02 to 31.24, P=0.05; 6 months after therapy: OR=16.56, CI=9.06-24.06, P<0.0001). No serious adverse events were reported during MSC therapy. Conclusion MSC therapy is safe and effective in treating IS by improving the neurological deficits, motor function and daily life quality of patients.
Collapse
Affiliation(s)
- Ping Xue
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, People's Republic of China
| | - Min Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, People's Republic of China
| | - Guanhua Yan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, People's Republic of China
| |
Collapse
|
48
|
Shi R, Liu T, Liu Z, Zhang Y, Shen Z. Clinical Analysis of Classification and Prognosis of Ischemia-Type Biliary Lesions After Liver Transplantation. Ann Transplant 2018. [PMID: 29555897 PMCID: PMC6248068 DOI: 10.12659/aot.907240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to classify ischemia-type biliary lesions after liver transplantation according to their imaging findings and severity of clinical manifestations and to analyze the relationship between such classification and prognosis. MATERIAL AND METHODS We collected clinical data of patients with ischemia-type biliary lesions (ITBL) after liver transplantation in the Organ Transplantation Center, the First Central Hospital of Tianjin, from August 2012 to July 2013; all patients were classified according to their imaging findings and relevant clinical data to analyze the relationship between their classification and prognosis. RESULTS The mean postoperative survival time, as well as the 1-, 3-, and 5-year survival rate, in Group ITBL showed statistical significance when compared with those in Group NITBL (log rank=12.13, P<0.001), but the mean postoperative survival times among the mild, moderate, and severe ITBL cases showed no statistical significance. The incidence rates of 1-, 3-, and 5-year adverse prognosis in Group ITBL showed statistical significance when compared with Group NITBL with <2% patients who had anastomotic biliary obstruction (log rank=277.06, P<0.001), among which the difference in the incidence rate of adverse prognosis between severe and moderate ITBL cases showed no statistical significance. The difference in the incidence rate of adverse prognosis between mild and moderate ITBL cases showed statistical significance (log rank=6.01, P=0.014), and the difference in the incidence rate of adverse prognosis between mild and severe ITBL cases showed statistical significance (log rank=10.98, P=0.001). CONCLUSIONS ITBL classification based on the severity of biliary imaging and bilirubin level can predict the prognosis of ITBL.
Collapse
Affiliation(s)
- Rui Shi
- Organ Transplantation Center, The First Central Hospital of Tianjin, Tianjin, China (mainland)
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zirong Liu
- Organ Transplantation Center, The First Central Hospital of Tianjin, Tianjin, China (mainland)
| | - Yamin Zhang
- Organ Transplantation Center, The First Central Hospital of Tianjin, Tianjin, China (mainland)
| | - Zhongyang Shen
- Organ Transplantation Center, The First Central Hospital of Tianjin, Tianjin, China (mainland)
| |
Collapse
|
49
|
Goyal U, Jaiswal C, Ta M. Isolation and Establishment of Mesenchymal Stem Cells fromWharton's Jelly of Human Umbilical Cord. Bio Protoc 2018; 8:e2735. [PMID: 34179263 DOI: 10.21769/bioprotoc.2735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are currently considered as 'medicinal signaling cells' and a promising resource in regard to cell-based regenerative therapy. Umbilical cord is a human term perinatal tissue which is easily attainable, and a promising source of stem cells with no associated ethical concerns. MSCs have been isolated from different regions of the umbilical cord and Wharton's jelly (WJ) is the gelatinous matrix that surrounds and provides protection to the umbilical cord blood vessels. Being more primitive, MSCs from human umbilical cord exhibit greater proliferative capacity and immunosuppressive ability as compared to adult stem cells which gives them a therapeutic advantage. To meet the requirements for cell therapy, it is important to generate MSCs at a clinical scale by following steps which are not time consuming or labor intensive. Here we present a simple, efficient protocol for isolation of MSCs from WJ of human umbilical cord by explant culture method which is reproducible and also, cost effective.
Collapse
Affiliation(s)
- Umesh Goyal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, West Bengal, India
| | - Chitra Jaiswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, West Bengal, India
| | - Malancha Ta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
50
|
Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy 2017; 19:1351-1382. [PMID: 28964742 DOI: 10.1016/j.jcyt.2017.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
The advances and success of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) in experimental disease animal models have fueled the development of targeted therapies in humans. The therapeutic potential of allogeneic transplantation of UC-MSCs has been under examination since 2009. The purpose of this systematic analysis was to review the published results, limitations and obstacles for UC-MSC transplantation. An extensive search strategy was applied to the published literature, 93 peer-reviewed full-text articles and abstracts were found published by early August 2017 that investigated the safety, efficacy and feasibility of UC-MSCs in 2001 patients with 53 distinct pathologies including many systemic/local, acute/chronic conditions. Few data were extracted from the abstracts and/or Chinese-written articles (n = 7, 8%). Importantly, no long-term adverse effects, tumor formation or cell rejection were reported. All studies noted certain degrees of therapeutic benefit as evidenced by clinical symptoms and/or laboratory findings. Thirty-seven percent (n = 34) of studies were found published as a single case (n = 10; 11%) or 2-10 case reports (n = 24; 26%) with no control group. Due to the nature of many stem cell-based studies, the majority of patients also received conventional therapy regimens, which obscured the pure efficacy of the cells transplanted. Randomized, blind, phase 1/2 trials with control groups (placebo-controlled) showed more plausible results. Given that most UC-MSC trials are early phase, the internationally recognized cell isolation and preparation standards should be extended to future phase 2/3 trials to reach more convincing conclusions regarding the safety and efficacy of UC-MSC therapies.
Collapse
Affiliation(s)
- Alp Can
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey.
| | - Ferda Topal Celikkan
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey
| | - Ozgur Cinar
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey
| |
Collapse
|