1
|
Sharma U, Singh T, Agrawal V. Phytochemical Analysis, Isolation, and Characterization of Gentiopicroside from Gentiana kurroo and Cytotoxicity of Biosynthesized Silver Nanoparticles Against HeLa Cells. Appl Biochem Biotechnol 2025; 197:1831-1864. [PMID: 39621225 DOI: 10.1007/s12010-024-05114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
Abstract
Gentiana kurroo Royle, a critically endangered Himalayan herb, is valued in treating leucoderma, syphilis, bronchial asthma, hepatitis, etc. The current investigation performed quantitative and qualitative phytochemical analysis of G. kurroo root extracts prepared in chloroform, methanol, and ethyl acetate. The phenolic and flavonoid contents were the highest in methanol and chloroform extract, respectively. Several pharmacologically important compounds were identified through gas chromatography-mass spectrometry. Antioxidant analysis revealed methanolic extract to be the most efficient scavenger of 2,2-diphenyl-1-picrylhydrazyl (IC50 = 114 µg mL-1), hydrogen peroxide (IC50 = 109.9 µg mL-1), and superoxide (IC50 = 74.63 µg mL-1) radicals. Gentiopicroside was isolated from the methanolic root extract through silica-gel column-chromatography, and the characterization of concentrated fractions was achieved employing various analytical techniques. Pertaining to silver nanoparticle (GkAgNPs) synthesis, different physicochemical parameters were optimized and it was observed that root extract treated with silver-nitrate (0.5 mM) at 60 °C and incubated in dark for at least 120 min after initial color change, yielded GkAgNPs optimally. GkAgNPs were anisotropic and polydisperse and exhibited characteristic surface plasmon resonance (424 nm), crystalline face-centered cubic geometry, size (50-300 nm), and zeta-potential (- 16.3 mV). FT-IR spectra indicated the involvement of phenols and flavonoids in AgNPs synthesis. GkAgNPs were evidenced as strongly cytotoxic (IC50 = 1.964 µg mL-1) against HeLa cells and also showed deformed cellular morphology, a significant reduction in viable cell counts and colony-forming efficiency (4.08%). The findings suggest potential applications in drug development for treating serious human diseases. To the best of our knowledge, this study represents the first report on the isolation of gentiopicroside, the bio-fabrication of GkAgNPs using G.kurroo root extract, and their strong bioefficacy against HeLa cells.
Collapse
Affiliation(s)
| | - Tikkam Singh
- Department of Botany, University of Delhi, Delhi, India
| | - Veena Agrawal
- Department of Botany, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Raza MA, Kanwal Z, Riaz S, Amjad M, Rasool S, Naseem S, Abbas N, Ahmad N, Alomar SY. In-Vivo Bactericidal Potential of Mangifera indica Mediated Silver Nanoparticles against Aeromonas hydrophila in Cirrhinus mrigala. Biomedicines 2023; 11:2272. [PMID: 37626768 PMCID: PMC10452189 DOI: 10.3390/biomedicines11082272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The present study reports the green synthesis of silver nanoparticles from leaves' extract of Mangifera indica (M. indica) and their antibacterial efficacy against Aeromonas hydrophila (A. hydrophila) in Cirrhinus mrigala (C. mrigala). The prepared M. indica mediated silver nanoparticles (Mi-AgNPs) were found to be polycrystalline in nature, spherical in shapes with average size of 62 ± 13 nm. C. mrigala (n = ±15/group) were divided into six groups i.e., G1: control, G2: A. hydrophila challenged, G3: A. hydrophila challenged + Mi-AgNPs (0.01 mg/L), G4: A. hydrophila challenged + Mi-AgNPs (0.05 mg/L), G5: A. hydrophila challenged + Mi-AgNPs (0.1 mg/L) and G6: A. hydrophila challenged + M. indica extract (0.1 mg/L). Serum biochemical, hematological, histological and oxidative biomarkers were evaluated after 15 days of treatment. The liver enzyme activities, serum proteins, hematological parameters and oxidative stress markers were found to be altered in the challenged fish but showed retrieval effects with Mi-AgNPs treatment. The histological analysis of liver, gills and kidney of the challenged fish also showed regaining effects following Mi-AgNPs treatment. A CFU assay from muscle tissue provided quantitative data that Mi-AgNPs can hinder the bacterial proliferation in challenged fish. The findings of this work suggest that M. indica based silver nanoparticles can be promising candidates for the control and treatment of microbial infections in aquaculture.
Collapse
Affiliation(s)
- Muhammad Akram Raza
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan;
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Maira Amjad
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA;
| | - Shafqat Rasool
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Nadeem Abbas
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK;
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Mirsanei JS, Nazari M, Shabani R, Govahi A, Eghbali S, Ajdary M, Mehdizadeh R, Mousavi AS, Mehdizadeh M. Does Gold-Silver Core-Shell Nanostructure with Alginate Coating Induce Apoptosis in Human Lymphoblastic Tumoral (Jurkat) Cell Line? Rep Biochem Mol Biol 2023; 12:233-240. [PMID: 38317817 PMCID: PMC10838595 DOI: 10.61186/rbmb.12.2.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/24/2023] [Indexed: 02/07/2024]
Abstract
Background T-cell acute lymphoblastic leukemia (T-ALL) is known as an aggressive malignant disease resulting from the neoplastic alteration of T precursor cells. Although treatment with stringent chemotherapy regimens has achieved an 80% cure rate in children, it has been associated with lower success rates in adult treatment. Silver nanoparticles (Ag-NPs) have a toxic effect on human breast cancer cells, human glioblastoma U251 cells, and chronic myeloid leukemia cells in vitro. This study aimed to investigate the effect of Ag nanostructures (Ag-NSs) on Jurkat cells' viability and apoptosis. Methods The Jurkat cell line was acquired. Following the synthesis Ag-NSs and their characterization, they were incubated with Jurkat cells at different doses for 24, 48, and 72 hours to determine the optimal time and dose. Two groups were examined: a control group with Jurkat cells without nanostructure maintained in the same medium as the cells in the treatment group without changing the medium, and a treatment group with cells treated with the Ag nanostructure solution at a dose of 75 µg/ml for 48 hours according to the MTT results. After 48 hours, the cells from the two groups were used for the q RT-PCR of the apoptotic genes (BAX, BCL-2, and CASPASE-3). Results According to our results, the rod-shaped silver nanostructures had a size of about 50 nm, increased apoptotic markers, including BAX and CASPASE-3, and induced cell death. Conclusions Ag-NSs have anticancer properties and can induce apoptosis of cells; therefore, they may be a potential candidate for the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Jamileh Sadat Mirsanei
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- The first and the second authors contributed equally to this work.
| | - Mahsa Nazari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- The first and the second authors contributed equally to this work.
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Sahar Eghbali
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Rana Mehdizadeh
- School of Dentistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Atieh Sadat Mousavi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ogundare SA, Muungani G, Amaku JF, Ogunmoye AO, Adesetan TO, Olubomehin OO, Ibikunle AA, van Zyl WE. Mangifera indica L. stem bark used in the bioinspired formation of silver nanoparticles: catalytic and antibacterial applications. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Green biosynthesis of berberine-mediated silver nanorods: Their protective and antidiabetic effects in streptozotocin-induced diabetic rats. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
In Vitro Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Mangifera indica Aqueous Leaf Extract against Multidrug-Resistant Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11111503. [PMID: 36358157 PMCID: PMC9686697 DOI: 10.3390/antibiotics11111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
An estimated 35% of the world’s population depends on wheat as their primary crop. One fifth of the world’s wheat is utilized as animal feed, while more than two thirds are used for human consumption. Each year, 17–18% of the world’s wheat is consumed by China and India. In wheat, spot blotch caused by Bipolaris sorokiniana is one of the major diseases which affects the wheat crop growth and yield in warmer and humid regions of the world. The present work was conducted to evaluate the effect of green synthesized silver nanoparticles on the biochemical constituents of wheat crops infected with spot blotch disease. Silver nanoparticles (AgNPs) were synthesized using Mangifera indica leaf extract and their characterization was performed using UV-visible spectroscopy, SEM, XRD, and PSA. Characterization techniques confirm the presence of crystalline, spherical silver nanoparticles with an average size of 52 nm. The effect of green synthesized nanoparticles on antioxidative enzymes, e.g., Superoxide dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR), Peroxidase (POX), and phytochemical precursor enzyme Phenylalanine Ammonia-Lyase (PAL), and on primary and secondary metabolites, e.g., reducing sugar and total phenol, in Bipolaris sorokiniana infected wheat crop were studied. Inoculation of fungal spores was conducted after 40 days of sowing. Subsequently, diseased plants were treated with silver nanoparticles at different concentrations. Elevation in all biochemical constituents was recorded under silver nanoparticle application. The treatment with a concentration of nanoparticles at 50 pp min diseased plants showed the highest resistance towards the pathogen. The efficacy of the green synthesized AgNPs as antibacterial agents was evaluated against multi drug resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) and Gram-positive bacteria Methicillin resistant Staphylococcus aureus (n = 2). The results show promising antibacterial activity with significant inhibition zones observed with the disc diffusion method, thus indicating green synthesized M. indica AgNPs as an active antibacterial agent against MDR pathogens.
Collapse
|
7
|
Kumar M, Saurabh V, Tomar M, Hasan M, Changan S, Sasi M, Maheshwari C, Prajapati U, Singh S, Prajapat RK, Dhumal S, Punia S, Amarowicz R, Mekhemar M. Mango ( Mangifera indica L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Antioxidants (Basel) 2021; 10:299. [PMID: 33669341 PMCID: PMC7920260 DOI: 10.3390/antiox10020299] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/18/2023] Open
Abstract
Mangifera indica L. belongs to the family of Anacardiaceae and is an important fruit from South and Southeast Asia. India, China, Thailand, Indonesia, Pakistan, Mexico, Brazil, Bangladesh, Nigeria, and the Philippines are among the top mango producer countries. Leaves of the mango plant have been studied for their health benefits, which are attributed to a plethora of phytochemicals such as mangiferin, followed by phenolic acids, benzophenones, and other antioxidants such as flavonoids, ascorbic acid, carotenoids, and tocopherols. The extracts from mango leaves (MLs) have been studied for their biological activities, including anti-cancer, anti-diabetic, anti-oxidant, anti-microbial, anti-obesity, lipid-lowering, hepato-protection, and anti-diarrheal. In the present review, we have elaborated on the nutritional and phytochemical profile of the MLs. Further, various bioactivities of the ML extracts are also critically discussed. Considering the phytochemical profile and beneficial effects of the MLs, they can be used as a potential ingredient for the development of functional foods and pharmaceutical drugs. However, more detailed clinical trials still needed to be conducted for establishing the actual efficacy of the ML extracts.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - Maharishi Tomar
- ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India;
| | - Minnu Sasi
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Uma Prajapati
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Rakesh Kumar Prajapat
- School of Agriculture, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India;
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India;
| | - Sneh Punia
- Department of Food, Nutrition, & packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Tuwima 10, Poland;
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
8
|
Myint KZ, Yu Q, Xia Y, Qing J, Zhu S, Fang Y, Shen J. Bioavailability and antioxidant activity of nanotechnology-based botanic antioxidants. J Food Sci 2021; 86:284-292. [PMID: 33438274 DOI: 10.1111/1750-3841.15582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
Botanic bioactive substances have issues with their solubility, stability, and oral bioavailability in the application, which could be improved by nanotechnologies. In another hands, green synthesis of nanoparticles (NPs) with plant extract is also a promising technology for preparation of NPs due to its safety advantage, yet the bioactive botanic substances that could be more than the assistant of the green synthesis of NPs. Based on the above concerns, this review summarized the preparation of botanic NPs with various plant extract, their solubility, stability, and oral bioavailability; specific attention has been paid to the botanic Ag/Au NPs, their capacity of antioxidant, bioavailability, antimicrobial, anti-inflammatory, and anticancer.
Collapse
Affiliation(s)
- Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Qiannan Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jiu Qing
- Nantong Acetic Acid Chemical Co. Ltd., 968 Jiangshan Road Nantong Economic and Technological Development Zone, Nantong, Jiangsu, 226017, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jie Shen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
9
|
Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: Preparation and in-vitro characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Boomi P, Ganesan R, Poorani G, Gurumallesh Prabu H, Ravikumar S, Jeyakanthan J. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:202-210. [DOI: 10.1016/j.msec.2019.01.105] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
|
11
|
Saber MM, Mirtajani SB, Karimzadeh K. Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Evaluate the Cytotoxicity of Kojic Acid Nanocomposites on Melanoma Cells and Normal Cells of the Skin. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2018. [DOI: 10.4028/www.scientific.net/jbbbe.36.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron oxide nanoparticles (MNPs) was synthesized by coprecipitation of Fe+2and Fe+3into highly basic media, followed by coating with chitosan (CH) and polyethylene glycol (PG) to forming CH-MNPs and PG-MNPs nanoparticles, respectively. Kojic acid (Kj) drug was loaded on the CH-MNPs and PG-MNPs nanoparticles to forming Kj-CH-MNPs and Kj-PG-MNPs nanocomposites. The potential cytotoxicity of free Kj, MNPs, Kj-CH-MNPs and Kj-PG-MNPs nanocomposites was evaluated using skin cancer cells (B16-F10 melanoma cells) and normal skin cell (Human Dermal Fibroblasts murine). Kj at concentrations in the range 1.562–50 μg/mL did not affect on the viability of normal skin cell and skin cancer cells during a 72-hours incubation. The Kj-CH-MNPs and Kj-PG-MNPs nanocomposites exhibit significant cytotoxicity in skin cancer cells in a dose-dependent manner with an IC50value 47.1 and 8.4 μg/mL, respectively.
Collapse
|