1
|
Meng ZN, Chen JY, Yu C, Zheng AH, Reddy OS, Liu KY, Su YR, Zhang ST, Wang YS, Gu HY, Wang FW, Xu SC, Sun LT, Chen BC, Lai WF, Wu GQ, Zhang DH. A gelable polymer loaded with curcumin and apatinib absorbed in gelatin sponge delays postoperative residual tumor growth. Sci Rep 2025; 15:16375. [PMID: 40350449 PMCID: PMC12066724 DOI: 10.1038/s41598-025-97732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Surgical resection of the tumor remains the preferred treatment for most solid tumors at an early stage, however, residual tumor cells after surgical resection poses a considerable obstacle in cancer treatment. Here, we developed a gel carrier using a cellulose-based gel-forming polymer (CT) combined with gelatin sponge (GS) to fill the resection cavity and delay postoperative residual tumor growth. The fabricated gel exhibited a porous nature along with gradual swelling and erosion over time. Curcumin (Cur) and apatinib (Apa) were loaded into CT gel (CT-CA), and a sustained release behavior was observed at pH 7.4 and 6.4 at 37 °C. The preclinical studies indicated that the mouse weight and tissue exhibited no apparent change after administration of the GS-CT compared with the control. The in vivo fluorescence images showed that GS-CT has the capability to regulate the release of Cur and Apa, facilitating the accumulation of these two agents at the surgical tumor site. Moreover, GS-CT loaded Cur and Apa (GS-CT-CA) delayed postoperative residual tumor growth in intraperitoneal and subcutaneous postoperative mouse models. These findings demonstrated that our gel carrier system significantly prevents postoperative residual tumor growth because of enhanced drug accumulation and sustained drug release at the tumor site.
Collapse
Affiliation(s)
- Zhuo-Nan Meng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jian-Yuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chong Yu
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Ai-Hong Zheng
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - O Sreekanth Reddy
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Kai-Yan Liu
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Yong-Rui Su
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shi-Tai Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yin-Shuang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang Province, China
| | - Hang-Yu Gu
- Department of Oncology and Hematology, Beilun District People's Hospital, Ningbo, China
| | - Fu-Wei Wang
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Song-Cheng Xu
- Department of Ultrasound, Zhejiang Provincial People's Hospital (Affiliated People'sHospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Li-Tao Sun
- Department of Ultrasound, Zhejiang Provincial People's Hospital (Affiliated People'sHospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China
| | - Bing-Chen Chen
- Department of Anal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wing-Fu Lai
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China.
- School of Food Science and Nutrition, University of Leeds, Leeds, LS29JT, UK.
| | - Guo-Qing Wu
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), No. 138 ShangTang Road, Hangzhou, 310014, China.
| | - Da-Hong Zhang
- Department of Urology, Urology & Nephrology Center, Zhejiang Provincial People'sHospital, Affiliated People's Hospital, Hangzhou Medical College, No. 138 ShangTang Road, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Sakhno TV, Sakhno YE, Kuchmiy SY. Clusteroluminescence of Unconjugated Polymers: A Review. THEOR EXP CHEM+ 2023; 59:75-106. [DOI: 10.1007/s11237-023-09768-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 01/06/2025]
|
3
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [PMID: 36465185 PMCID: PMC9662284 DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 05/29/2025] Open
Abstract
Aging can lead to changes in the cellular milieu of the brain. These changes may exacerbate, resulting in pathological phenomena (including impaired bioenergetics, aberrant neurotransmission, compromised resilience and neuroplasticity, mitochondrial dysfunction, and the generation of free radicals) and the onset of neurodegenerative diseases. Furthermore, alterations in the energy-sensing pathways can accelerate neuronal aging but the exact mechanism of neural aging is still elusive. In recent decades, the use of plant-derived compounds, including astragaloside IV, to treat neuronal aging and its associated diseases has been extensively investigated. This article presents the current understanding of the roles and mechanisms of astragaloside IV in combating neuronal aging. The ability of the agent to suppress oxidative stress, to attenuate inflammatory responses and to maintain mitochondrial integrity will be discussed. Important challenges to be tacked for further development of astragaloside IV-based pharmacophores will be highlighted for future research.
Collapse
Affiliation(s)
- Qumar Zaman
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
| | - Obireddy Sreekanth Reddy
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur 515003, India.
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China,
| |
Collapse
|
4
|
Constructing an Intelligent Model Based on Support Vector Regression to Simulate the Solubility of Drugs in Polymeric Media. Pharmaceuticals (Basel) 2022; 15:ph15111405. [DOI: 10.3390/ph15111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study constructs a machine learning method to simultaneously analyze the thermodynamic behavior of many polymer–drug systems. The solubility temperature of Acetaminophen, Celecoxib, Chloramphenicol, D-Mannitol, Felodipine, Ibuprofen, Ibuprofen Sodium, Indomethacin, Itraconazole, Naproxen, Nifedipine, Paracetamol, Sulfadiazine, Sulfadimidine, Sulfamerazine, and Sulfathiazole in 1,3-bis[2-pyrrolidone-1-yl] butane, Polyvinyl Acetate, Polyvinylpyrrolidone (PVP), PVP K12, PVP K15, PVP K17, PVP K25, PVP/VA, PVP/VA 335, PVP/VA 535, PVP/VA 635, PVP/VA 735, Soluplus analyzes from a modeling perspective. The least-squares support vector regression (LS-SVR) designs to approximate the solubility temperature of drugs in polymers from polymer and drug types and drug loading in polymers. The structure of this machine learning model is well-tuned by conducting trial and error on the kernel type (i.e., Gaussian, polynomial, and linear) and methods used for adjusting the LS-SVR coefficients (i.e., leave-one-out and 10-fold cross-validation scenarios). Results of the sensitivity analysis showed that the Gaussian kernel and 10-fold cross-validation is the best candidate for developing an LS-SVR for the given task. The built model yielded results consistent with 278 experimental samples reported in the literature. Indeed, the mean absolute relative deviation percent of 8.35 and 7.25 is achieved in the training and testing stages, respectively. The performance on the largest available dataset confirms its applicability. Such a reliable tool is essential for monitoring polymer–drug systems’ stability and deliverability, especially for poorly soluble drugs in polymers, which can be further validated by adopting it to an actual implementation in the future.
Collapse
|
5
|
Feng M, Yao W, An J, Yao Y. Synthesis, characterization and catalytic activity of copper (II) complex immobilized on magnetic nanoparticles (Fe 3O 4@SiO 2-(Imine-Thiazole)-Cu(OAc) 2 nanomaterial) for synthesis of diaryl sulfides and benzothiophenes. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2127365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Meili Feng
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| | - Wenjun Yao
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| | - Jingjing An
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| | - Yuze Yao
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Harismah K, Shahrtash S, Arabi A, Khadivi R, Mirzaei M, Akhavan-Sigari R. Favipiravir attachment to a conical nanocarbon: DFT assessments of the drug delivery approach. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Xing L, Haddao KM, Emami N, Nalchifard F, Hussain W, Jasem H, Dawood AH, Toghraie D, Hekmatifar M. Fabrication of HKUST-1/ZnO/SA nanocomposite for Doxycycline and Naproxen adsorption from contaminated water. SUSTAINABLE CHEMISTRY AND PHARMACY 2022; 29:100757. [PMID: 35990754 PMCID: PMC9380997 DOI: 10.1016/j.scp.2022.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Doxycycline and Naproxen are among the most widely used drugs in the therapy of CoVID 19 disease found in surface water. Water scarcity in recent years has led to research to treat polluted water. One of the easy and low-cost methods for treatment is adsorption. The utilize of Metal-Organic Frameworks (MOFs) to evacuate pharmaceutical contaminants from water sources has been considered by researchers in the last decade. In this research, HKUST-1/ZnO/SA composite with high adsorption capacity, chemical and water stability, recovery, and reuse properties has been synthesized and investigated. By adding 10 wt% of ZnO and 50 wt% of sodium alginate to HKUST-1, at 25 °C and pH = 7, the specific surface area is reduced by 60%. The parameters of drugs concentration C0 =(5,80) mg/L, time=(15,240) min, and pH= (2,12) were investigated, and the results showed that the HKUST-1/ZnO/SA is stable in water for 14 days and it can be used in 10 cycles with 80% removal efficiency. The maximum Adsorption loading of doxycycline and Naproxen upon HKUST-1/ZnO/SA is 97.58 and 80.04 mg/g, respectively. Based on the correlation coefficient (R2), the pseudo-second-order and the Langmuir isotherm models were selected for drug adsorption. The proposed mechanism of drug uptake is by MOFs, hydrogen bonding, electrostatic bonding, and acid-base interaction.
Collapse
Affiliation(s)
- Lihua Xing
- School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng, Inner Mongolia, 024000, China
| | | | - Nafiseh Emami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Fereshteh Nalchifard
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | | - Hadeer Jasem
- Medical Instrumentation Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Ashour H Dawood
- Department of Pharmacy, Al-Esraa University College, Baghdad, Iraq
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Maboud Hekmatifar
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Das SS, Tambe S, Prasad Verma PR, Amin P, Singh N, Singh SK, Gupta PK. Molecular insights and therapeutic implications of nanoengineered dietary polyphenols for targeting lung cancer: part II. Nanomedicine (Lond) 2022; 17:1799-1816. [PMID: 36636965 DOI: 10.2217/nnm-2022-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Flavonoids represent a major group of polyphenolic compounds. Their capacity to inhibit tumor proliferation, cell cycle, angiogenesis, migration and invasion is substantially responsible for their chemotherapeutic activity against lung cancer. However, their clinical application is limited due to poor aqueous solubility, low permeability and quick blood clearance, which leads to their low bioavailability. Nanoengineered systems such as liposomes, nanoparticles, micelles, dendrimers and nanotubes can considerably enhance the targeted action of the flavonoids with improved efficacy and pharmacokinetic properties, and flavonoids can be successfully translated from bench to bedside through various nanoengineering approaches. This review addresses the therapeutic potential of various flavonoids and highlights the cutting-edge progress in the nanoengineered systems that incorporate flavonoids for treating lung cancer.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.,School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Srushti Tambe
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Priya Ranjan Prasad Verma
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Purnima Amin
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Neeru Singh
- Department of Biomedical Laboratory Technology, University Polytechnic, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India.,Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| |
Collapse
|
9
|
Baig MW, Majid M, Nasir B, Hassan SSU, Bungau S, Haq IU. Toxicity evaluation induced by single and 28-days repeated exposure of withametelin and daturaolone in Sprague Dawley rats. Front Pharmacol 2022; 13:999078. [PMID: 36225589 PMCID: PMC9549072 DOI: 10.3389/fphar.2022.999078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Safe preclinical dose determination is predictive of human toxicity and can have a profound impact on the overall progress of the compound in early drug discovery process. In this respect, current study sought to investigate for the first time the acute and subacute oral toxicity of two pharmacologically active natural compounds i.e., withametelin and daturaolone in Sprague Dawley rats following OECD guideline 420 and 407, respectively. As per acute toxicity studies, withametelin and daturaolone were characterized as Globally Harmonized System (GHS) category 4 and 5 compounds, respectively. Sub-acute daily dose of withametelin was 5, 2.5, and 1.25 mg/kg but, for daturaolone, it was 10, 5, and 2.5 mg/kg. High dose (5 and 2.5 mg/kg) withametelin groups showed dose dependent changes in the general, hematological, biochemical and histopathological parameters in both sexes, the most prominent being hyperthyroidism while no toxicity was observed at lower doses (1.25 and 0.75 mg/kg), No Observable Adverse Effect Level (NOAEL) being 1.25 mg/kg. Daturaolone was comparatively safer and showed dose dependent significant changes in hepatic enzyme (Alanine Transaminase), bilirubin, creatinine, and glucose levels while histological changes in testes were also observed. Lower doses (5, 2.5, and 1.25 mg/kg) of daturaolone showed no significant toxic effects and 5 mg/kg was declared as its NOAEL. Depending upon our findings, starting effective oral dose levels of 1.25 mg/kg/day for withametelin and 5 mg/kg/day for daturaolone are proposed for repeated dose (up to 28 days) preclinical pharmacological evaluation models. Long term studies with more behavioral, biochemical, histopathological and hormonal parameters are proposed to strengthen the findings.
Collapse
Affiliation(s)
| | - Muhammad Majid
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Bakht Nasir
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Ihsan-ul Haq, ,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- *Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Ihsan-ul Haq, ,
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- *Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Ihsan-ul Haq, ,
| |
Collapse
|
10
|
Liu Z, Zeng N, Yu J, Huang C, Huang Q. A novel dual MoS 2/FeGA quantum dots endowed injectable hydrogel for efficient photothermal and boosting chemodynamic therapy. Front Bioeng Biotechnol 2022; 10:998571. [PMID: 36110320 PMCID: PMC9468328 DOI: 10.3389/fbioe.2022.998571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Due to its responsiveness to the tumour microenvironment (TME), chemodynamic therapy (CDT) based on the Fenton reaction to produce cytotoxic reactive oxygen species (ROS) to destroy tumor has drawn more interest. However, the Fenton's reaction potential for therapeutic use is constrained by its modest efficacy. Here, we develop a novel injectable hydrogel system (FMH) on the basis of FeGA/MoS2 dual quantum dots (QDs), which uses near-infrared (NIR) laser in order to trigger the synergistic catalysis and photothermal effect of FeGA/MoS2 for improving the efficiency of the Fenton reaction. Mo4+ in MoS2 QDs can accelerate the conversion of Fe3+ to Fe2+, thereby promoting the efficiency of Fenton reaction, and benefiting from the synergistically enhanced CDT/PTT, FMH combined with NIR has achieved good anti-tumour effects in vitro and in vivo experiments. Furthermore, the quantum dots are easily metabolized after treatment because of their ultrasmall size, without causing any side effects. This is the first report to study the co-catalytic effect of MoS2 and Fe3+ at the quantum dot level, as well as obtain a good PTT/CDT synergy, which have implications for future anticancer research.
Collapse
Affiliation(s)
- Zeming Liu
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Huang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Alhomaidi E, Jasim SA, Amin HIM, Lima Nobre MA, Khatami M, Jalil AT, Hussain Dilfy S. Biosynthesis of silver nanoparticles using Lawsonia inermis and their biomedical application. IET Nanobiotechnol 2022; 16:284-294. [PMID: 36039655 PMCID: PMC9469786 DOI: 10.1049/nbt2.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Developing biosynthesis of silver nanoparticles (Ag‐NPs) using plant extract is an environmentally friendly method to reduce the use of harmful chemical substances. The green synthesis of Ag‐NPs by Lawsonia inermis extract and its cellular toxicity and the antimicrobial effect was studied. The physical and chemical properties of synthesised Ag‐NPs were investigated using UV‐visible spectroscopy, infrared spectroscopy, X‐ray diffraction (XRD), scanning, and transmission electron microscopy. The average size of Ag‐NPs was 40 nm. The XRD result shows peaks at 2θ = 38.07°, 44.26°, 64.43°, and 77.35° are related to the FCC structure of Ag‐NPs. Cytotoxicity of synthesised nanoparticles was evaluated by MTT toxicity test on breast cancer MCF7 cell line. Observations showed that the effect of cytotoxicity of nanoparticles on the studied cell line depended on concentration and time. The obtained IC50 was considered for cells at a dose of 250 μg/ml. Growth and survival rates decreased exponentially with the dose. Antimicrobial properties of Ag‐NPs synthesised with extract were investigated against Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus to calculate the minimum inhibitory concentration and the minimum bactericidal concentration of (MBC). The results showed that the synthesised Ag‐NPs and the plant extract have antimicrobial properties. The lowest concentration of Ag‐NPs that can inhibit the growth of bacterial strains was 25 μg/ml.
Collapse
Affiliation(s)
- Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq.,Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Marcos Augusto Lima Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, Sao Paulo, Brazil
| | - Mehrdad Khatami
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang, China
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Saja Hussain Dilfy
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.,Department of Biology, College of Education for Pure Science, Wasit University, Iraq
| |
Collapse
|
12
|
Badr-Eldin SM, Aldawsari HM, Fahmy UA, Ahmed OAA, Alhakamy NA, Al-hejaili OD, Alhassan AA, Ammari GA, Alhazmi SI, Alawadi RM, Bakhaidar R, Alamoudi AJ, Neamatallah T, Tima S. Optimized Apamin-Mediated Nano-Lipidic Carrier Potentially Enhances the Cytotoxicity of Ellagic Acid against Human Breast Cancer Cells. Int J Mol Sci 2022; 23:9440. [PMID: 36012704 PMCID: PMC9408819 DOI: 10.3390/ijms23169440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Ellagic acid has recently attracted increasing attention regarding its role in the prevention and treatment of cancer. Surface functionalized nanocarriers have been recently studied for enhancing cancer cells' penetration and achieving better tumor-targeted delivery of active ingredients. Therefore, the present work aimed at investigating the potential of APA-functionalized emulsomes (EGA-EML-APA) for enhancing cytototoxic activity of EGA against human breast cancer cells. Phospholipon® 90 G: cholesterol molar ratio (PC: CH; X1, mole/mole), Phospholipon® 90 G: Tristearin weight ratio (PC: TS; X2, w/w) and apamin molar concentration (APA conc.; X3, mM) were considered as independent variables, while vesicle size (VS, Y1, nm) and zeta potential (ZP, Y2, mV) were studied as responses. The optimized formulation with minimized vs. and maximized absolute ZP was predicted successfully utilizing a numerical technique. EGA-EML-APA exhibited a significant cytotoxic effect with an IC50 value of 5.472 ± 0.21 µg/mL compared to the obtained value from the free drug 9.09 ± 0.34 µg/mL. Cell cycle profile showed that the optimized formulation arrested MCF-7 cells at G2/M and S phases. In addition, it showed a significant apoptotic activity against MCF-7 cells by upregulating the expression of p53, bax and casp3 and downregulating bcl2. Furthermore, NF-κB activity was abolished while the expression of TNfα was increased confirming the significant apoptotic effect of EGA-EML-APA. In conclusion, apamin-functionalized emulsomes have been successfully proposed as a potential anti-breast cancer formulation.
Collapse
Affiliation(s)
- Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar D. Al-hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alhanoof A. Alhassan
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghadeer A. Ammari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shouq I. Alhazmi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raghad M. Alawadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmohsen J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Mortezagholi B, Movahed E, Fathi A, Soleimani M, Forutan Mirhosseini A, Zeini N, Khatami M, Naderifar M, Abedi Kiasari B, Zareanshahraki M. Plant-mediated synthesis of silver-doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay. Microsc Res Tech 2022; 85:3553-3564. [PMID: 35983930 DOI: 10.1002/jemt.24207] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022]
Abstract
In this research, silver-doped zinc oxide (SdZnO) nanoparticles (NPs) were synthesized in an environmental-friendly manner. The synthesized NPs were identified by UV-vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Finally, the antimicrobial activity of synthesized ZnO and SdZnO NPs was performed. It was observed that by doping silver, the size of ZnO NPs was changed. By adding silver to ZnO NPs, the antimicrobial effect of ZnO NPs was improved. Antibacterial test against gram-positive bacterium Streptococcus mutants showed that SdZnO NPs with a low density of silver had higher antibacterial activity than ZnO NPs; Therefore, SdZnO NPs can be used as a new antibacterial agent in medical applications.
Collapse
Affiliation(s)
- Bardia Mortezagholi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Emad Movahed
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Soleimani
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Negar Zeini
- Department of Oral and Maxillofacial Radiology, School Dentistry Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran
| | - Mehran Zareanshahraki
- School of Dentistry, Islamic Azad Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Li JY, Tang YH, Tang L, Chen LY. Adsorption of thiotepa anticancer drugs on the C 3N nanotube as promising nanocarriers for drug delivery. J Mol Model 2022; 28:249. [PMID: 35933501 DOI: 10.1007/s00894-022-05248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
Abstract
This paper focused on the efficiency of carbon nitride nanotubes functionalized with alanine amino acid (f-C3NNTs) in thiotepa (TPA) anti-cancerous drug delivery via density functional theory (DFT). Pristine C3NNTs were incorporated for comparison. TPA was found to spontaneously undergo exothermic adsorption onto the nanostructures. The f-C3NNT/TPA complexes showed the highest interaction strength. The adsorption distance of TPA was found to be smaller, with a greater adsorption capacity and solubility on the f-C3NNT surface than on the pristine C3NNT surface. As they were polar, all the complexes were concluded to be insoluble within an aqueous phase. The quantum molecular descriptors revealed the f-C3NNT nanocarriers to be more reactive than the C3NNT carrier. The drug was found to spontaneously and exothermically interact with f-C3NNT. As a result, f-C3NNT would be promising for TPA adsorption in drug delivery applications.
Collapse
Affiliation(s)
- Jia Yu Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Songjiang, Shanghai, 201620, China
| | - Yu Han Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Songjiang, Shanghai, 201620, China
| | - Li Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Songjiang, Shanghai, 201620, China
| | - Ling Yan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Songjiang, Shanghai, 201620, China.
| |
Collapse
|
15
|
Najmi M, Ayari MA, Sadeghsalehi H, Vaferi B, Khandakar A, Chowdhury MEH, Rahman T, Jawhar ZH. Estimating the Dissolution of Anticancer Drugs in Supercritical Carbon Dioxide with a Stacked Machine Learning Model. Pharmaceutics 2022; 14:1632. [PMID: 36015258 PMCID: PMC9416672 DOI: 10.3390/pharmaceutics14081632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Synthesizing micro-/nano-sized pharmaceutical compounds with an appropriate size distribution is a method often followed to enhance drug delivery and reduce side effects. Supercritical CO2 (carbon dioxide) is a well-known solvent utilized in the pharmaceutical synthesis process. Reliable knowledge of a drug's solubility in supercritical CO2 is necessary for feasible study, modeling, design, optimization, and control of such a process. Therefore, the current study constructs a stacked/ensemble model by combining three up-to-date machine learning tools (i.e., extra tree, gradient boosting, and random forest) to predict the solubility of twelve anticancer drugs in supercritical CO2. An experimental databank comprising 311 phase equilibrium samples was gathered from the literature and applied to design the proposed stacked model. This model estimates the solubility of anticancer drugs in supercritical CO2 as a function of solute and solvent properties and operating conditions. Several statistical indices, including average absolute relative deviation (AARD = 8.62%), mean absolute error (MAE = 2.86 × 10-6), relative absolute error (RAE = 2.42%), mean squared error (MSE = 1.26 × 10-10), and regression coefficient (R2 = 0.99809) were used to validate the performance of the constructed model. The statistical, sensitivity, and trend analyses confirmed that the suggested stacked model demonstrates excellent performance for correlating and predicting the solubility of anticancer drugs in supercritical CO2.
Collapse
Affiliation(s)
- Maryam Najmi
- Faculty of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran 1584715414, Iran
| | - Mohamed Arselene Ayari
- Department of Civil and Architectural Engineering, Qatar University, Doha 2713, Qatar
- Technology Innovation and Engineering Education Unit, Qatar University, Doha 2713, Qatar
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Behzad Vaferi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz 7198774731, Iran
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region 44001, Iraq
| |
Collapse
|
16
|
Study to molecular insight into the role of aluminum nitride nanotubes on to deliver of 5-Fluorouracil (5FU) drug in smart drug delivery. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
18
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
19
|
Hu W, Yang C, Guo X, Wu Y, Loh XJ, Li Z, Wu YL, Wu C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022; 8:423. [PMID: 35877508 PMCID: PMC9316750 DOI: 10.3390/gels8070423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.
Collapse
Affiliation(s)
- Wei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Cui Yang
- School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE) Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| |
Collapse
|
20
|
Manouchehri F, Iranpanah S. Thioguanine adsorption on the γ- graphyne and its boron nitride analogue as promising drug delivery system: Electronic study via DFT. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Density Functional Study of the adsorption behavior of 6-mercaptopurine on Primary, Si, Al and Ti doped C60 fullerenes. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Meghdadi Esfahani F, Balali E, Sedigheh Hashemi S, Khadivi R, Mohammad Raei Nayini M, Voung B. Investigating an Iron-Doped Fullerene Cage for Adsorption of Niacin (Vitamin B3): DFT Analyses of Bimolecular Complex Formations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Li X, Zheng F, Mohammadi R, Jazebizadeh M, Semiromi D. Performance evaluation of polyamide reverse osmosis membranes incorporated silica nanoparticles for concentrating peach juice: An invitro evaluation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Anti-Virulence Activity of 3,3′-Diindolylmethane (DIM): A Bioactive Cruciferous Phytochemical with Accelerated Wound Healing Benefits. Pharmaceutics 2022; 14:pharmaceutics14050967. [PMID: 35631553 PMCID: PMC9144697 DOI: 10.3390/pharmaceutics14050967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial resistance is among the top global health problems with antibacterial resistance currently representing the major threat both in terms of occurrence and complexity. One reason current treatments of bacterial diseases are ineffective is the occurrence of protective and resistant biofilm structures. Phytochemicals are currently being reviewed for newer anti-virulence agents. In the present study, we aimed to investigate the anti-virulence activity of 3,3′-diindolylmethane (DIM), a bioactive cruciferous phytochemical. Using a series of in vitro assays on major Gram-negative pathogens, including transcriptomic analysis, and in vivo porcine wound studies as well as in silico experiments, we show that DIM has anti-biofilm activity. Following DIM treatment, our findings show that biofilm formation of two of the most prioritized bacterial pathogens Acinetobacter baumannii and Pseudomonas aeruginosa was inhibited respectively by 65% and 70%. Combining the antibiotic tobramycin with DIM enabled a high inhibition (94%) of P. aeruginosa biofilm. A DIM-based formulation, evaluated for its wound-healing efficacy on P. aeruginosa-infected wounds, showed a reduction in its bacterial bioburden, and wound size. RNA-seq was used to evaluate the molecular mechanism underlying the bacterial response to DIM. The gene expression profile encompassed shifts in virulence and biofilm-associated genes. A network regulation analysis showed the downregulation of 14 virulence-associated super-regulators. Quantitative real-time PCR verified and supported the transcriptomic results. Molecular docking and interaction profiling indicate that DIM can be accommodated in the autoinducer- or DNA-binding pockets of the virulence regulators making multiple non-covalent interactions with the key residues that are involved in ligand binding. DIM treatment prevented biofilm formation and destroyed existing biofilm without affecting microbial death rates. This study provides evidence for bacterial virulence attenuation by DIM.
Collapse
|
25
|
Improving the Self-Healing of Cementitious Materials with a Hydrogel System. Gels 2022; 8:gels8050278. [PMID: 35621576 PMCID: PMC9141947 DOI: 10.3390/gels8050278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
Despite cement’s superior performance and inexpensive cost compared to other industrial materials, crack development remains a persistent problem in concrete. Given the comparatively low tensile strength, when cracks emerge, a pathway is created for gas and water to enter the cementitious matrix, resulting in steel reinforcement corrosion which compromises the durability of concrete. Superabsorbent hydrogels have been developed as a novel material for enhancing the characteristics of cementitious materials in which they have been demonstrated to decrease autogenous shrinkage and encourage self-healing. This study will detail the design and application of polyelectrolyte hydrogel particles as internal curing agents in concrete and provide new findings on relevant hydrogel–ion interactions. When hydrogel particles are mixed into concrete, they generate their stored water to fuel the curing reaction that results in less cracking and shrinkage, thereby prolonging the service life of the concrete. The interaction of hydrogels with cementitious materials is addressed in this study; the effect of hydrogels on the characteristics and self-healing of cementitious materials was also studied. Incorporating hydrogel particles into cement decreased mixture shrinkage while increasing the production of particular inorganic phases within the vacuum region formerly supplied by the swollen particle. In addition, considering the control paste, cement pastes containing hydrogels exhibited less autogenous shrinkage. The influence of hydrogels on autogenous shrinkage was found to be chemically dependent; the hydrogel with a delayed desorption rate displayed significantly low shrinkage in cement paste.
Collapse
|
26
|
Lai WF, Wong WT. Edible Clusteroluminogenic Films Obtained from Starch of Different Botanical Origins for Food Packaging and Quality Management of Frozen Foods. MEMBRANES 2022; 12:membranes12040437. [PMID: 35448407 PMCID: PMC9029101 DOI: 10.3390/membranes12040437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
Starch is a naturally occurring material showing high potential for use in food packaging because of its low cost, natural abundance and high biodegradability. Over the years, different starch-based packaging films have been developed, but the impact of botanical sources on film performance has rarely been exploited. Efforts devoted to exploiting the role played by the clusteroluminescence of starch in food packaging are also lacking. This study fills these gaps by comparing the properties of edible starch films generated from different botanical sources (including water chestnuts, maize and potatoes) in food packaging. Such films are produced by solution casting. They are highly homogeneous, with a thickness of 55–65 μm. Variations in the botanical sources of starch have no significant impact on the color parameters (including L*, a* and b*) and morphological features of the films but affect the water vapor permeability, maximum tensile strength and elongation at break. Starch films from water chestnut show the highest percentage of transmittance, whereas those from potatoes are the opaquest. No observable change in the intensity of clusteroluminescence occurs when a packaging bag generated from starch is used to package fresh or frozen chicken breast meat; however, a remarkable decline in the intensity of luminescence is noted when the frozen meat is thawed inside the bag. Our results reveal the impact of starch sources on the performance of starch films in food packaging and demonstrate the possibility of using the clusteroluminescence of starch as an indicator to reveal the state of packaged frozen food.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Correspondence:
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
27
|
Formulation and Evaluation of Hybrid Niosomal In Situ Gel for Intravesical Co-Delivery of Curcumin and Gentamicin Sulfate. Pharmaceutics 2022; 14:pharmaceutics14040747. [PMID: 35456581 PMCID: PMC9028379 DOI: 10.3390/pharmaceutics14040747] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
The current study describes the elaboration of a hybrid drug delivery platform for an intravesical application based on curcumin/gentamicin sulfate simultaneously loaded niosomes incorporated into thermosensitive in situ gels. Series of niosomes were elaborated via the thin film hydration method, evaluating the impact of non-ionic surfactants’, cholesterol’s, and curcumin’s concentration. The formulation composed of equimolar ratio of Span 60, Tween 60, and 30 mol% cholesterol was selected as the optimal composition, due to the high entrapment efficiency values obtained for both drugs, and appropriate physicochemical parameters (morphology, size, PDI, and zeta potential), therefore, was further incorporated into Poloxamers (407/188) and Poloxamers and chitosan based in situ gels. The developed hybrid systems were characterized with sol to gel transition in the physiological range, suitable rheological and gelling characteristics. In addition, the formed gel structure at physiological temperatures determines the retarded dissolution of both drugs (vs. niosomal suspension) and sustained release profile. The conducted microbial studies of selected niosomal in situ gels revealed the occurrence of a synergetic effect of the two compounds when simultaneously loaded. The findings indicate that the elaborated thermosensitive niosomal in situ gels can be considered as a feasible platform for intravesical drug delivery.
Collapse
|
28
|
Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications. NANOMATERIALS 2022; 12:nano12071151. [PMID: 35407269 PMCID: PMC9000734 DOI: 10.3390/nano12071151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/23/2023]
Abstract
Aspartic acid stabilized iron oxide nanoparticles (A-IONPs) with globular shape and narrow size distribution were prepared by the co-precipitation method in aqueous medium. A quantum-mechanical approach to aspartic acid optimized structure displayed negative charged sites, relatively high dipole moment, and hydrophilicity, which recommended it for interaction with iron cations and surrounding water electrical dipoles. A-IONPs were characterized by TEM, XRD, ATR-FTIR, EDS, DSC, TG, DLS, NTA, and VSM techniques. Theoretical study carried out by applying Hartree-Fock and density functional algorithms suggested that some aspartic acid properties related to the interaction can develop with nanoparticles and water molecules. The results of experimental investigation showed that the mean value of particle physical diameters was 9.17 ± 2.2 nm according to TEM image analysis, the crystallite size was about 8.9 nm according to XRD data, while the magnetic diameter was about 8.8 nm, as was determined from VSM data interpretation with Langevin's theory. The A-IONP suspension was characterized by zeta-potential of about -11.7 mV, while the NTA investigation revealed a hydrodynamic diameter of 153.9 nm. These results recommend the A-IONP suspension for biomedical applications.
Collapse
|
29
|
Obireddy SR, Lai WF. ROS-Generating Amine-Functionalized Magnetic Nanoparticles Coupled with Carboxymethyl Chitosan for pH-Responsive Release of Doxorubicin. Int J Nanomedicine 2022; 17:589-601. [PMID: 35173432 PMCID: PMC8840919 DOI: 10.2147/ijn.s338897] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Sreekanth Reddy Obireddy
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, 515003, India
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, People’s Republic of China
| | - Wing-Fu Lai
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, People’s Republic of China
- Correspondence: Wing-Fu Lai, Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, People’s Republic of China, Email
| |
Collapse
|
30
|
Lai WF, Zhao S, Chiou J. Antibacterial and clusteroluminogenic hypromellose-graft-chitosan-based polyelectrolyte complex films with high functional flexibility for food packaging. Carbohydr Polym 2021; 271:118447. [PMID: 34364582 DOI: 10.1016/j.carbpol.2021.118447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Food packaging can extend the shelf life of food products and enhance the safety and quality of the food. This study reports food-grade polyelectrolyte complex films generated via electrostatic interactions between two cellulose-based agents [viz., hypromellose-graft-chitosan, and carmellose sodium]. At optimal conditions, our films show good barrier properties, high transparency, and high efficiency in post-production agent loading. They also demonstrate intrinsic antibacterial effects against both Gram-negative and Gram-positive bacteria. By using frozen chicken breasts as a model, the films enable real-time monitoring of the status of the frozen food due to the property of clusterisation-triggered emission. Along with their negligible toxicity, our films warrant further development as multi-functional films for effective and self-indicating food packaging.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region; School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.
| | - Shuyang Zhao
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Jiachi Chiou
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| |
Collapse
|