1
|
Qi W, Liu H, Liu H, Guo Y, Wu L, Bao C, Liu X. Synergistical Induction of Apoptosis via Cold Atmospheric Plasma and Nanohydroxyapatite for Selective Inhibition of Oral Squamous Cell Carcinoma in Tumour Microenvironment. Cell Prolif 2025:e70041. [PMID: 40298279 DOI: 10.1111/cpr.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Surgical resection, radiotherapy and chemotherapy are the primary strategies of treating cancers globally. However, the current treatment methods bring new disease burdens to patients due to postoperative complications and multiple side effects, especially in surface tumours such as oral squamous cell carcinoma (OSCC). In this study, we developed a microwave cold atmospheric plasma (CAP) device in conjunction with tumour microenvironment-responsive nanohydroxyapatite (nHA) for the first time. The synergistic effects of CAP and nHA combined application on OSCC were evaluated in both in vitro and in vivo experiments. The synergistic effects of CAP and pH-responsive NH2-nHA on the apoptosis, intracellular reactive oxygen species (ROS) and calcium ion concentration of OSCC cells were investigated in vitro. The synergistic induction of CAP with NH2-nHA exhibited optimal tumour-specific inhibitory effects on OSCC. The results revealed that the combined application of CAP with NH2-nHA induced apoptosis of tumour cells in vitro and killed 84.0% of tumours in vivo. Mechanistically, CAP enhances extracellular ROS production, while NH2-nHA amplifies intracellular calcium ion (Ca2+) concentrations, synergistically increasing intracellular ROS levels to provoke oxidative stress in OSCC cells, ultimately triggering the mitochondrial apoptosis pathway. In conclusion, the combined utilisation of CAP and NH2-nHA presents a promising avenue as a novel, selective, and non-invasive strategy in the management of OSCC.
Collapse
Affiliation(s)
- Wenting Qi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuxuan Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wu
- Institute of Applied Electromagnetics, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Tonaree W, Taweepraditpol S, Kongkunnavat N, Poungjantaradej N, Kotistienkul B, Yongsuvimol M, Chinaroonchai K, Rachata P, Ongkasuwan P, Chansanti O, Mongkornwong A, Chaichote C, Chuangsuwanich A. The Efficacy of Low-Temperature Atmospheric-Pressure Plasma (LTAPP) in the Multicenter Treatment of Pressure Ulcers: A Randomized Controlled Trial. INT J LOW EXTR WOUND 2025:15347346251323940. [PMID: 40091352 DOI: 10.1177/15347346251323940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
IntroductionThis study is to examine the reduction in wound size between the LTAPP and the control group and also investigate the wound healing effect factor.MethodsA randomized controlled trial was conducted at five study centers. Participated patients were between 18-80 years old who had pressure ulcer wound(s) and excluded patients with high risk or receiving other treatment such as previous radiation therapy in the affected area, pregnancy, sepsis, and immunocompromised host. The study divided participant into LTAPP group and standard of care (SOC) group, the LTAPP group would received a dressing of non-Ag materials and administer LTAPP for 1 min per 1 cm2 (maximum of 20 min). The SOC group would received standard dressing wound protocol. Both groups would be followed until the end of study (ninth visit) or until the wound healed.ResultsWhen considering patients who attended follow-up ≥4 visits, only 45 ulcers were eligible, of which consisted of 21 ulcers in the LTAPP group and 24 ulcers in the SOC group. The results showed significant healing rate of the LTAPP group, whether to be the wound size: wound area and wound volume, wound healing: exudate reduction, granulation and lesser necrotic tissue or Pressure Ulcer Scale for Healing (PUSH) score. The LTAPP group had better bacterial load reduction without the use of tropical antibiotic, this also signified the quality in bacterial eradication of LTAPP.ConclusionLTAPP showed outstanding performance in treating pressure ulcer wounds. The LTAPP gave greater outcome in wound size, wound healing indicators, microbiological analyses and cost-effective comparison. Although, the absence of statistical significance, it did not affect the outcome trends. This study suggested further investigation of the potential role of LTAPP therapy in different wound types in near future.
Collapse
Affiliation(s)
- Warangkana Tonaree
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sitthichoke Taweepraditpol
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natthapong Kongkunnavat
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattanit Poungjantaradej
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Boonyaporn Kotistienkul
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Min Yongsuvimol
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kusuma Chinaroonchai
- Division of Trauma Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pitawan Rachata
- Division of Plastic Surgery, Department of Surgery, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Pattana Ongkasuwan
- Division of Plastic Surgery, Department of Surgery, Nakornping Hospital, Chiang Mai, Thailand
| | - Orawan Chansanti
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Atthawit Mongkornwong
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Chonlathorn Chaichote
- Division of Vascular Surgery, Department of Surgery, Saraburi Hospital, Saraburi, Thailand
| | - Apirag Chuangsuwanich
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Ahn GR, Park HJ, Kim YJ, Song MG, Han HS, Lee WG, Hong HK, Yoo KH, Seok J, Lee KB, Kim BJ. Subcytotoxic transepidermal delivery using low intensity cold atmospheric plasma. Sci Rep 2025; 15:2129. [PMID: 39820037 PMCID: PMC11739377 DOI: 10.1038/s41598-024-83201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage. However, the ability of LICAP to enhance transepidermal delivery in sub-cytotoxic conditions has not been fully investigated. This study aims to determine the sub-cytotoxic range of exposure time for LICAP and, within the range, to investigate the effects of LICAP treatment on transepidermal drug delivery (TED) and mechanisms using human keratinocytes and a mouse model. For the in vitro studies, LICAP treatment was evaluated in human keratinocyte (HaCaT) cells by assessing reactive species production, DNA damage, and cytotoxicity profiles. Within the determined safety range, mechanistic analyses were conducted to examine LICAP-enhanced delivery pathways. mRNA expression and protein levels of tight and adherens junction genes were quantified, and changes in ultramicroscopic morphology of HaCaT monolayers were investigated. Intracellular delivery of fluorescein isothiocyanate (FITC)-dextran was also assessed. For the in vivo studies, E-cadherin expression and the transepidermal delivery (TED) of human epidermal growth factor (hEGF) were analyzed in LICAP-treated mouse dorsal skin. The upper safety range of LICAP exposure time, reducing cell viability by 70% (IC70 or LD30), was estimated at 34.3 s. Within the safety range, LICAP treatment downregulated multiple tight and adherens junction genes in HaCaT cells. Consistent with the in vitro results, the epidermal E-cadherin expression was reduced, and human epidermal growth factor (hEGF) was infiltrated in the dermis of the LICAP-treated mouse skin. Intercellular clefts were detected in the HaCaT cell monolayer immediately following LICAP treatment and intracellular delivery of FITC-dextran was confirmed after LICAP exposure. This study demonstrated that LICAP treatment enhances transepidermal permeation of hEGF, apparently via both paracellular and transcellular routes. Under our study conditions, LICAP treatment seems to be a novel approach to facilitate TED with low safety concerns in vitro. Further translational studies are needed for clinical evaluation.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyung-Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Yu Jin Kim
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Min Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hye Sung Han
- College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Woo Geon Lee
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyuck Ki Hong
- Human IT Convergence System R&D Division, Korea Electronics Technology Institute, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang Ho Yoo
- College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
- College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Kyu Back Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea.
- BK21 Four R&E Center for Precision Public Health, Korea University, Seoul, Republic of Korea.
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
- College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
4
|
Yarangsee P, Khacha-ananda S, Pitchakarn P, Intayoung U, Sriuan S, Karinchai J, Wijaikhum A, Boonyawan D. A Nonclinical Safety Evaluation of Cold Atmospheric Plasma for Medical Applications: The Role of Genotoxicity and Mutagenicity Studies. Life (Basel) 2024; 14:759. [PMID: 38929742 PMCID: PMC11204557 DOI: 10.3390/life14060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Atmospheric nonthermal plasma (ANTP) has rapidly evolved as an innovative tool in biomedicine with various applications, especially in treating skin diseases. In particular, the formation of reactive oxygen species (ROS) and nitrogen species (RNS), which are generated by ANTP, plays an important role in the biological signaling pathways of human cells. Unfortunately, excessive amounts of these reactive species significantly result in cellular damage and cell death induction. To ensure the safe application of ANTP, preclinical in vitro studies must be conducted before proceeding to in vivo or clinical trials involving humans. Our study aimed to investigate adverse effects on genetic substances in murine fibroblast cells exposed to ANTP. Cell viability and proliferation were markedly reduced after exposing the cells with plasma. Both extracellular and intracellular reactive species, especially RNS, were significantly increased upon plasma exposure in the culture medium and the cells. Notably, significant DNA damage in the cells was observed in the cells exposed to plasma. However, plasma was not classified as a mutagen in the Ames test. This suggested that plasma led to the generation of both extracellular and intracellular reactive species, particularly nitrogen species, which affect cell proliferation and are also known to induce genetic damage in fibroblast cells. These results highlight the genotoxic and mutagenic effects of ANTP, emphasizing the need for the cautious selection of plasma intensity in specific applications to avoid adverse side effects resulting from reactive species production.
Collapse
Affiliation(s)
- Piimwara Yarangsee
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Unchisa Intayoung
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Sirikhwan Sriuan
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Apiwat Wijaikhum
- Research and Innovation Division, Electricity Generating Authority of Thailand, Nonthaburi 11130, Thailand;
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
5
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
6
|
Feibel D, Golda J, Held J, Awakowicz P, Schulz-von der Gathen V, Suschek CV, Opländer C, Jansen F. Gas Flow-Dependent Modification of Plasma Chemistry in μAPP Jet-Generated Cold Atmospheric Plasma and Its Impact on Human Skin Fibroblasts. Biomedicines 2023; 11:biomedicines11051242. [PMID: 37238913 DOI: 10.3390/biomedicines11051242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The micro-scaled Atmospheric Pressure Plasma Jet (µAPPJ) is operated with low carrier gas flows (0.25-1.4 slm), preventing excessive dehydration and osmotic effects in the exposed area. A higher yield of reactive oxygen or nitrogen species (ROS or RNS) in the µAAPJ-generated plasmas (CAP) was achieved, due to atmospheric impurities in the working gas. With CAPs generated at different gas flows, we characterized their impact on physical/chemical changes of buffers and on biological parameters of human skin fibroblasts (hsFB). CAP treatments of buffer at 0.25 slm led to increased concentrations of nitrate (~352 µM), hydrogen peroxide (H2O2; ~124 µM) and nitrite (~161 µM). With 1.40 slm, significantly lower concentrations of nitrate (~10 µM) and nitrite (~44 µM) but a strongly increased H2O2 concentration (~1265 µM) was achieved. CAP-induced toxicity of hsFB cultures correlated with the accumulated H2O2 concentrations (20% at 0.25 slm vs. ~49% at 1.40 slm). Adverse biological consequences of CAP exposure could be reversed by exogenously applied catalase. Due to the possibility of being able to influence the plasma chemistry solely by modulating the gas flow, the therapeutic use of the µAPPJ represents an interesting option for clinical use.
Collapse
Affiliation(s)
- Dennis Feibel
- Department of Orthopedics Trauma Surgery, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Judith Golda
- Plasma Interface Physics, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julian Held
- Experimental Physics II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Peter Awakowicz
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Christoph V Suschek
- Department of Orthopedics Trauma Surgery, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Witten/Herdecke University, 51109 Cologne, Germany
| | - Florian Jansen
- Department of Orthopedics Trauma Surgery, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Han I, Song IS, Choi SA, Lee T, Yusupov M, Shaw P, Bogaerts A, Choi EH, Ryu JJ. Bioactive Nonthermal Biocompatible Plasma Enhances Migration on Human Gingival Fibroblasts. Adv Healthc Mater 2023; 12:e2200527. [PMID: 36373222 DOI: 10.1002/adhm.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/18/2022] [Indexed: 11/16/2022]
Abstract
This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity. Focal adhesion kinase (FAK) mediated attenuation of wound healing or actin cytoskeleton rearrangement, and plasma-mediated reversal of this attenuation support the migratory effect of DBD-NBP. Further, this work performs computer simulations to investigate the effect of oxidation on the stability and conformation of the catalytic kinase domain (KD) of FAK. It is found that the oxidation of highly reactive amino acids (AAs) Cys427, Met442, Cys559, Met571, Met617, and Met643 changes the conformation and increases the structural flexibility of the FAK protein and thus modulates its function and activity. Low-dose DBD-NBP-induces host cell cycle arrest, ECM breakdown, and subsequent migration, thus contributing to the enhanced wound healing process.
Collapse
Affiliation(s)
- Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897, Republic of Korea.,Department of Plasma Bio-Display, Kwangwoon University, Seoul, 01897, Korea
| | - In-Seok Song
- Department of Dentistry, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Taebok Lee
- Confocal Core Facility, Center for Medical Innovation, Seoul National University Hospital, Seoul, 03082, Korea
| | - Maksudbek Yusupov
- Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Priyanka Shaw
- Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Annemie Bogaerts
- Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jae Jun Ryu
- Department of Dentistry, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| |
Collapse
|
8
|
Cold Atmospheric Plasma Jet Treatment Improves Human Keratinocyte Migration and Wound Closure Capacity without Causing Cellular Oxidative Stress. Int J Mol Sci 2022; 23:ijms231810650. [PMID: 36142561 PMCID: PMC9504313 DOI: 10.3390/ijms231810650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Cold Atmospheric Plasma (CAP) is an emerging technology with great potential for biomedical applications such as sterilizing equipment and antitumor strategies. CAP has also been shown to improve skin wound healing in vivo, but the biological mechanisms involved are not well known. Our study assessed a possible effect of a direct helium jet CAP treatment on keratinocytes, in both the immortalized N/TERT-1 human cell line and primary keratinocytes obtained from human skin samples. The cells were covered with 200 µL of phosphate buffered saline and exposed to the helium plasma jet for 10−120 s. In our experimental conditions, micromolar concentrations of hydrogen peroxide, nitrite and nitrate were produced. We showed that long-time CAP treatments (≥60 s) were cytotoxic, reduced keratinocyte migration, upregulated the expression of heat shock protein 27 (HSP27) and induced oxidative cell stress. In contrast, short-term CAP treatments (<60 s) were not cytotoxic, did not affect keratinocyte proliferation and differentiation, and did not induce any changes in mitochondria, but they did accelerate wound closure in vitro by improving keratinocyte migration. In conclusion, these results suggest that helium-based CAP treatments improve wound healing by stimulating keratinocyte migration. The study confirms that CAP could be a novel therapeutic method to treat recalcitrant wounds.
Collapse
|
9
|
Enhancement of Nitric Oxide Bioavailability by Modulation of Cutaneous Nitric Oxide Stores. Biomedicines 2022; 10:biomedicines10092124. [PMID: 36140225 PMCID: PMC9496039 DOI: 10.3390/biomedicines10092124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The generation of nitric oxide (NO) in the skin plays a critical role in wound healing and the response to several stimuli, such as UV exposure, heat, infection, and inflammation. Furthermore, in the human body, NO is involved in vascular homeostasis and the regulation of blood pressure. Physiologically, a family of enzymes termed nitric oxide synthases (NOS) generates NO. In addition, there are many methods of non-enzymatic/NOS-independent NO generation, e.g., the reduction of NO derivates (NODs) such as nitrite, nitrate, and nitrosylated proteins under certain conditions. The skin is the largest and heaviest human organ and contains a comparatively high concentration of these NODs; therefore, it represents a promising target for many therapeutic strategies for NO-dependent pathological conditions. In this review, we give an overview of how the cutaneous NOD stores can be targeted and modulated, leading to a further accumulation of NO-related compounds and/or the local and systemic release of bioactive NO, and eventually, NO-related physiological effects with a potential therapeutical use for diseases such as hypertension, disturbed microcirculation, impaired wound healing, and skin infections.
Collapse
|
10
|
Bekeschus S, Miebach L, Pommerening J, Clemen R, Witzke K. Biological Risk Assessment of Three Dental Composite Materials following Gas Plasma Exposure. Molecules 2022; 27:molecules27144519. [PMID: 35889393 PMCID: PMC9322037 DOI: 10.3390/molecules27144519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson’s r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
- Correspondence: ; Tel.: +49-3834-554-3948
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
- Department of General, Vascular, Thoracic, and Visceral Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Jonas Pommerening
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
| | - Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
| | - Katharina Witzke
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
| |
Collapse
|
11
|
Martusevich AK, Surovegina AV, Bocharin IV, Nazarov VV, Minenko IA, Artamonov MY. Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities. Antioxidants (Basel) 2022; 11:antiox11071262. [PMID: 35883753 PMCID: PMC9311881 DOI: 10.3390/antiox11071262] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/21/2023] Open
Abstract
Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological effects of this effect, as well as identifying and justifying the most promising areas of its application. It is known that these biological effects include antibacterial and antiviral activity, the ability to stimulate hemocoagulation, pro-regenerative properties, etc. The possibility of using the factor in tissue engineering and implantology is also shown. Based on this, the purpose of this review was to form a unified understanding of the biological effects and biomedical applications of argon cold plasma. The review shows that cold plasma, like any other physical and chemical factors, has dose dependence, and the variable parameter in this case is the exposure of its application. One of the significant characteristics determining the specificity of the cold plasma effect is the carrier gas selection. This gas carrier is not just an ionized medium but modulates the response of biosystems to it. Finally, the perception of cold plasma by cellular structures can be carried out by activating a special molecular biosensor, the functioning of which significantly depends on the parameters of the medium (in the field of plasma generation and the cell itself). Further research in this area can open up new prospects for the effective use of cold plasma.
Collapse
Affiliation(s)
- Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
- Correspondence: ; Tel.: +7-909-144-9182
| | - Alexandra V. Surovegina
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
| | - Ivan V. Bocharin
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
| | - Vladimir V. Nazarov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Institute of Applied Physics, 603950 Nizhny Novgorod, Russia
| | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| |
Collapse
|
12
|
Holl M, Rasch ML, Becker L, Keller AL, Schultze-Rhonhof L, Ruoff F, Templin M, Keller S, Neis F, Keßler F, Andress J, Bachmann C, Krämer B, Schenke-Layland K, Brucker SY, Marzi J, Weiss M. Cell Type-Specific Anti-Adhesion Properties of Peritoneal Cell Treatment with Plasma-Activated Media (PAM). Biomedicines 2022; 10:biomedicines10040927. [PMID: 35453677 PMCID: PMC9032174 DOI: 10.3390/biomedicines10040927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative abdominal adhesions are responsible for serious clinical disorders. Administration of plasma-activated media (PAM) to cell type-specific modulated proliferation and protein biosynthesis is a promising therapeutic strategy to prevent pathological cell responses in the context of wound healing disorders. We analyzed PAM as a therapeutic option based on cell type-specific anti-adhesive responses. Primary human peritoneal fibroblasts and mesothelial cells were isolated, characterized and exposed to different PAM dosages. Cell type-specific PAM effects on different cell components were identified by contact- and marker-independent Raman imaging, followed by thorough validation by specific molecular biological methods. The investigation revealed cell type-specific molecular responses after PAM treatment, including significant cell growth retardation in peritoneal fibroblasts due to transient DNA damage, cell cycle arrest and apoptosis. We identified a therapeutic dose window wherein specifically pro-adhesive peritoneal fibroblasts were targeted, whereas peritoneal mesothelial cells retained their anti-adhesive potential of epithelial wound closure. Finally, we demonstrate that PAM treatment of peritoneal fibroblasts reduced the expression and secretion of pro-adhesive cytokines and extracellular matrix proteins. Altogether, we provide insights into biochemical PAM mechanisms which lead to cell type-specific pro-therapeutic cell responses. This may open the door for the prevention of pro-adhesive clinical disorders.
Collapse
Affiliation(s)
- Myriam Holl
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Marie-Lena Rasch
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Lucas Becker
- Institute of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72076 Tübingen, Germany
| | - Anna-Lena Keller
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Laura Schultze-Rhonhof
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Felix Ruoff
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Silke Keller
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Felix Neis
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Franziska Keßler
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Jürgen Andress
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Cornelia Bachmann
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Bernhard Krämer
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
- Institute of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Medicine/Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Sara Y. Brucker
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Julia Marzi
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
- Institute of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72076 Tübingen, Germany
| | - Martin Weiss
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
- Correspondence:
| |
Collapse
|
13
|
Dose-Dependent Effects of Cold Atmospheric Argon Plasma on the Mesenchymal Stem and Osteosarcoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms22136797. [PMID: 34202684 PMCID: PMC8269077 DOI: 10.3390/ijms22136797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 01/07/2023] Open
Abstract
The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10–15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses. Using flow cytometry, we found that these effects are associated with cell cycle arrest and extended death of cancer cells by necrosis. Reactive oxygen species (ROS) formation was detected in both types of cells after 15 min of CAAP treatment. Evaluation of the genes’ transcriptional activity showed that exposure to low doses of CAAP activates the expression of genes responsible for proliferation, DNA replication, and transition between phases of the cell cycle in MSCs. There was a decrease in the transcriptional activity of most of the studied genes in MNNG/HOS osteosarcoma cancer cells. However, increased transcription of osteogenic differentiation genes was observed in normal and cancer cells. The selective effects of low and high doses of CAAP treatment on cancer and normal cells that we found can be considered in terms of hormesis. The low dose of cold argon plasma irradiation stimulated the vital processes in stem cells due to the slight generation of reactive oxygen species. In cancer cells, the same doses evidently lead to the formation of oxidative stress, which was accompanied by a proliferation inhibition and cell death. The differences in the cancer and normal cells’ responses are probably due to different sensitivity to exogenous oxidative stress. Such a selective effect of CAAP action can be used in the combined therapy of oncological diseases such as skin neoplasms, or for the removal of remaining cancer cells after surgical removal of a tumor.
Collapse
|
14
|
Subdiffusive Reaction Model of Molecular Species in Liquid Layers: Fractional Reaction-Telegraph Approach. FRACTAL AND FRACTIONAL 2021. [DOI: 10.3390/fractalfract5020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, different experimental works with molecular simulation techniques have been developed to study the transport of plasma-generated reactive species in liquid layers. Here, we improve the classical transport model that describes the molecular species movement in liquid layers via considering the fractional reaction–telegraph equation. We have considered the fractional equation to describe a non-Brownian motion of molecular species in a liquid layer, which have different diffusivities. The analytical solution of the fractional reaction–telegraph equation, which is defined in terms of the Caputo fractional derivative, is obtained by using the Laplace–Fourier technique. The profiles of species density with the mean square displacement are discussed in each case for different values of the time-fractional order and relaxation time.
Collapse
|
15
|
Plattfaut I, Besser M, Severing AL, Stürmer EK, Opländer C. Plasma medicine and wound management: Evaluation of the antibacterial efficacy of a medically certified cold atmospheric argon plasma jet. Int J Antimicrob Agents 2021; 57:106319. [PMID: 33716180 DOI: 10.1016/j.ijantimicag.2021.106319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 02/10/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES A major problem for wound healing is contamination with bacteria, often resulting in biofilm formation and wound infection, which, in turn, needs immediate intervention such as surgical debridement and through irrigation. A topical treatment with cold atmospheric pressure plasma (CAP) for wound disinfection may present an alternative and less painful approach. METHODS This study investigated the antibacterial effects of a cold atmospheric pressure argon plasma jet (kINPen® MED) as a CAP source, using the three-dimensional Staphylococcus aureus immunocompetent biofilm system hpBIOM in addition to a standard planktonic test. Furthermore, skin cell compatibility was evaluated using a keratinocyte (HaCat) model. RESULTS CAP treatment (0-240 s) followed by incubation (15, 120 min) within the CAP-treated media showed slight bactericidal efficacy under planktonic conditions but no effect on biofilms. However, indirect CAP treatment of keratinocytes performed under the same conditions resulted in a significant decrease in metabolic activity. Short CAP treatment and exposure time (30 s; 15 min) induced a slight increase in the metabolic activity; however, longer treatments and/or exposure times led to pronounced reductions up to 100%. These effects could partially be reversed by addition of catalase, indicating a dominant role of CAP-generated hydrogen peroxide. CONCLUSIONS These results indicate that plasma treatment does not lead to the desired disinfection or significant reduction in the bacterial burden of Staphylococcus aureus in a wet milieu or in biofilms. Thus, treatment with CAP could not be recommended as a single anti-bacterial therapy for wounds but could be used to support standard treatments.
Collapse
Affiliation(s)
- Isabell Plattfaut
- Department of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany
| | - Manuela Besser
- Clinic for General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Anna-Lena Severing
- Department of Dermatology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Opländer
- Department of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany; Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, University Witten/Herdecke, Witten, Germany.
| |
Collapse
|
16
|
Umair M, Jabbar S, Ayub Z, Muhammad Aadil R, Abid M, Zhang J, Liqing Z. Recent Advances in Plasma Technology: Influence of Atmospheric Cold Plasma on Spore Inactivation. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen, Guangdong, PR China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Zubaria Ayub
- Institute of Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Zhao Liqing
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen, Guangdong, PR China
| |
Collapse
|
17
|
Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep 2020; 10:16495. [PMID: 33020527 PMCID: PMC7536419 DOI: 10.1038/s41598-020-73457-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cold atmospheric plasma (CAP) technology, a relatively novel technique mainly investigated as a stand-alone cancer treatment method in vivo and in vitro, is being proposed for application in conjunction with chemotherapy. In this study, we explore whether CAP, an ionized gas produced in laboratory settings and that operates at near room temperature, can enhance Temozolomide (TMZ) cytotoxicity on a glioblastoma cell line (U87MG). Temozolomide is the first line of treatment for glioblastoma, one of the most aggressive brain tumors that remains incurable despite advancements with treatment modalities. The cellular response to a single CAP treatment followed by three treatments with TMZ was monitored with a cell viability assay. According to the cell viability results, CAP treatment successfully augmented the effect of a cytotoxic TMZ dose (50 μM) and further restored the effect of a non-cytotoxic TMZ dose (10 μM). Application of CAP in conjunction TMZ increased DNA damage measured by the phosphorylation of H2AX and induced G2/M cell cycle arrest. These findings were supported by additional data indicating reduced cell migration and increased αvβ3 and αvβ5 cell surface integrin expression as a result of combined CAP–TMZ treatment. The data presented in this study serve as evidence that CAP technology can be a suitable candidate for combination therapy with existing chemotherapeutic drugs. CAP can also be investigated in future studies for sensitizing glioblastoma cells to TMZ and other drugs available in the market.
Collapse
|
18
|
VON Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019; 33:1011-1026. [PMID: 31280189 DOI: 10.21873/invivo.11570] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
Plasma medicine comprises the application of physical plasma directly on or in the human body for therapeutic purposes. Three most important basic plasma effects are relevant for medical applications: i) inactivation of a broad spectrum of microorganisms, including multidrug-resistant pathogens, ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and iii) inactivation of cells by initialization of cell death with higher plasma treatment intensity, above all in cancer cells. Based on own published results as well as on monitoring of relevant literature the aim of this topical review is to summarize the state of the art in plasma medicine and connect it to redox biology. One of the most important results of basic research in plasma medicine is the insight that biological plasma effects are mainly mediated via reactive oxygen and nitrogen species influencing cellular redox-regulated processes. Plasma medicine can be considered a field of applied redox biology.
Collapse
Affiliation(s)
- Thomas VON Woedtke
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany .,Greifswald University Medicine, Greifswald, Germany
| | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| | | | | | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
20
|
Wende K, von Woedtke T, Weltmann KD, Bekeschus S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol Chem 2019; 400:19-38. [PMID: 30403650 DOI: 10.1515/hsz-2018-0242] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 02/01/2023]
Abstract
Reactive oxygen and nitrogen species deposited by cold physical plasma are proposed as predominant effectors in the interaction between discharge and biomedical application. Most reactive species found in plasma sources are known in biology for inter- and intracellular communication (redox signaling) and mammalian cells are equipped to interpret the plasma derived redox signal. As such, considerable effort has been put into the investigation of potential clinical applications and the underlying mechanism, with a special emphasis on conditions orchestrated significantly via redox signaling. Among these, immune system control in wound healing and cancer control stands out with promising in vitro and in vivo effects. From the fundamental point of view, further insight in the interaction of the plasma-derived species with biological systems is desired to (a) optimize treatment conditions, (b) identify new fields of application, (c) to improve plasma source design, and (d) to identify the trajectories of reactive species. Knowledge on the biochemical reactivity of non-thermal plasmas is compiled and discussed. While there is considerable knowledge on proteins, lipids and carbohydrates have not received the attention deserved. Nucleic acids have been profoundly investigated yet focusing on molecule functionality rather than chemistry. The data collected underline the efforts taken to understand the fundamentals of plasma medicine but also indicate 'no man's lands' waiting to be discovered.
Collapse
Affiliation(s)
- Kristian Wende
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Greifswald University Medicine, Fleischmannstr. 8, D-17475 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| |
Collapse
|
21
|
Boehm D, Bourke P. Safety implications of plasma-induced effects in living cells - a review of in vitro and in vivo findings. Biol Chem 2019; 400:3-17. [PMID: 30044756 DOI: 10.1515/hsz-2018-0222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Cold atmospheric plasma is a versatile new tool in the biomedical field with applications ranging from disinfection, wound healing and tissue regeneration to blood coagulation, and cancer treatment. Along with improved insights into the underlying physical, chemical and biological principles, plasma medicine has also made important advances in the introduction into the clinic. However, in the absence of a standard plasma 'dose' definition, the diversity of the field poses certain difficulties in terms of comparability of plasma devices, treatment parameters and resulting biological effects, particularly with regards to the question of what constitutes a safe plasma application. Data from various in vitro cytotoxic and genotoxic studies along with in vivo findings from animal and human trials are reviewed to provide an overview of the current state of knowledge on the safety of plasma for biological applications. Treatment parameters employed in clinical studies were well tolerated but intense treatment conditions can also induce tissue damage or genotoxicity. There is a need identified to establish both guidelines and safety limits that ensure an absence of (long-term) side effects and to define treatments as safe for applications, where cell stimulation is desired, e.g. in wound healing, or those aimed at inducing cell death in the treatment of cancer.
Collapse
Affiliation(s)
- Daniela Boehm
- School of Food Science and Environmental Health, Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - Paula Bourke
- School of Food Science and Environmental Health, Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
| |
Collapse
|
22
|
Hara H, Kobayashi M, Shiiba M, Kamiya T, Adachi T. Sublethal treatment with plasma-activated medium induces senescence-like growth arrest of A549 cells: involvement of intracellular mobile zinc. J Clin Biochem Nutr 2019; 65:16-22. [PMID: 31379409 PMCID: PMC6667388 DOI: 10.3164/jcbn.19-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 11/29/2022] Open
Abstract
Plasma-activated medium (PAM) is a solution produced by exposing a liquid medium to non-thermal atmospheric pressure plasma (NTAPP). A number of reactive molecules, such as reactive oxygen species and reactive nitrogen species, are contained in PAM. Therefore, exposure to high doses of PAM results in cell death. We previously demonstrated that intracellular zinc (Zn2+) serves as an important mediator in PAM-induced cell death; however, the effects of sublethal treatment with PAM on cell functions are not fully understood. In the present study, we found that sublethal PAM treatment suppressed cell proliferation and induced senescence-like changes in lung adenocarcinoma A549 cells. Cell cycle analysis revealed that PAM induced cell cycle arrest at the G2/M phase. PAM increased the level of intracellular free Zn2+ and the Zn2+ chelator TPEN counteracted PAM-induced growth suppression, suggesting that Zn2+ functions in PAM-induced growth suppression. In addition, sublethal treatment with PAM induced phosphorylation of ATM kinase, accumulation of p53 protein, and expression of p21 and GADD45A, which are known p53 target genes, in a Zn2+-dependent manner. These results suggest that the induction of growth arrest and cellular senescence by sublethal PAM treatment is mediated by Zn2+-dependent activation of the ATM/p53 pathway.
Collapse
Affiliation(s)
- Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Mari Kobayashi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Moe Shiiba
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
23
|
Weiss M, Barz J, Ackermann M, Utz R, Ghoul A, Weltmann KD, Stope MB, Wallwiener D, Schenke-Layland K, Oehr C, Brucker S, Loskill P. Dose-Dependent Tissue-Level Characterization of a Medical Atmospheric Pressure Argon Plasma Jet. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19841-19853. [PMID: 31071258 DOI: 10.1021/acsami.9b04803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nonthermal treatment with cold atmospheric plasma (CAP) is a promising option for local treatment of chronic-inflammatory and precancerous lesions as well as various mucosal cancer diseases, besides its primary indication for wound healing and antiseptics. Atmospheric pressure plasma jets (APPJs) are versatile plasma sources, some of which are well-characterized and medically approved. The characterization of APPJs, however, is often based on the treatment of simple solutions or even studies on the plasma effluent itself. To better assess the in vivo effects of CAP treatment, this study aims to recapitulate and study the physicochemical tissue-level effects of APPJ treatment on human primary mucosal tissue and tissue models. High resolution on-tissue infrared (IR) thermography and a first-time-performed spatially resolved optical emission spectroscopy (OES) of the APPJ emissions did not identify potentially tissue-harming effects. In this study, electron-spin-resonance (ESR) spectroscopy on human tissue samples, treated with different CAP doses, enabled the measurement and the distribution of CAP-derived radicals in the tissues. The results correlate plasma dosage and the generation of radical species with cell viability and cell proliferation of primary human fibroblasts while demonstrating apoptosis-independent antiproliferative cell effects. Moreover, a dose-dependent increase of cells in the G1 phase of the cell cycle was observed, stressing the likely important role of cell cycle regulation for antiproliferative CAP mechanisms. This study introduces suitable methods for CAP monitoring on tissues and contributes to a better understanding of tissue-derived plasma effects of APPJs.
Collapse
Affiliation(s)
- Martin Weiss
- Department of Women's Health , Eberhard Karls Universität Tübingen , Tübingen , Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart , Germany
| | - Jakob Barz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart , Germany
| | - Michael Ackermann
- Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart , Germany
| | - Raphael Utz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart , Germany
| | - Aya Ghoul
- Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart , Germany
| | | | - Matthias B Stope
- Department of Urology , University Medicine Greifswald , Greifswald , Germany
| | - Diethelm Wallwiener
- Department of Women's Health , Eberhard Karls Universität Tübingen , Tübingen , Germany
| | - Katja Schenke-Layland
- Department of Women's Health , Eberhard Karls Universität Tübingen , Tübingen , Germany
- Natural and Medical Sciences Institute (NMI) , Reutlingen , Germany
| | - Christian Oehr
- Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart , Germany
| | - Sara Brucker
- Department of Women's Health , Eberhard Karls Universität Tübingen , Tübingen , Germany
| | - Peter Loskill
- Department of Women's Health , Eberhard Karls Universität Tübingen , Tübingen , Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology , Stuttgart , Germany
| |
Collapse
|
24
|
Balzer J, Demir E, Kogelheide F, Fuchs PC, Stapelmann K, Opländer C. Cold atmospheric plasma (CAP) differently affects migration and differentiation of keratinocytes via hydrogen peroxide and nitric oxide-related products. CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Plasma Farming: Non-Thermal Dielectric Barrier Discharge Plasma Technology for Improving the Growth of Soybean Sprouts and Chickens. PLASMA 2018. [DOI: 10.3390/plasma1020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-thermal dielectric barrier discharge (DBD) plasma is an innovative and emerging field combining plasma physics, life science and clinical medicine for a wide-range of biological applications. Plasma techniques are applied in treating surfaces, materials or devices to realize specific qualities for subsequent special medical applications, plant seeds to improve the production and quality of crops, and living cells or tissues to realize therapeutic effects. Several studies that are summarized within this review show that non-thermal DBD plasma technique has potential biological applications in soybean sprout growth, chicken embryonic development and postnatal growth rate, and even male chicken reproductive capacity. The current developments in the non-thermal DBD plasma technique may be beneficial to improve plant and poultry productivity.
Collapse
|
26
|
Carreiro AF, Delben JA, Guedes S, Silveira EJ, Janal MN, Vergani CE, Pushalkar S, Duarte S. Low‐temperature plasma on peri‐implant–related biofilm and gingival tissue. J Periodontol 2018; 90:507-515. [DOI: 10.1002/jper.18-0366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Adriana F.P. Carreiro
- Department of DentistryFederal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Juliana A. Delben
- Department of DentistryState University of West of Parana Londrina Paraná Brazil
| | - Sarah Guedes
- Post‐Graduate Program in DentistryFederal University of Ceará Fortaleza Ceará Brazil
| | - Ericka J.D. Silveira
- Department of DentistryFederal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Malvin N. Janal
- Department of Epidemiology and Health PromotionCollege of DentistryNew York University New York NY USA
| | - Carlos Eduardo Vergani
- Department of Dental Materials and ProsthodonticsAraraquara Dental SchoolUNESP Araraquara São Paulo Brazil
| | - Smruti Pushalkar
- Department of Basic Sciences and Craniofacial BiologyNew York University College of Dentistry New York NY USA
| | - Simone Duarte
- Department of CariologyOperative Dentistry and Dental Public HealthIndiana University School of Dentistry Indianapolis IN USA
| |
Collapse
|
27
|
Innovative Approach of Non-Thermal Plasma Application for Improving the Growth Rate in Chickens. Int J Mol Sci 2018; 19:ijms19082301. [PMID: 30082605 PMCID: PMC6121326 DOI: 10.3390/ijms19082301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
As an innovative technology in biological applications—non-thermal plasma technique—has recently been applied to living cells and tissues. However, it is unclear whether non-thermal plasma treatment can directly regulate the growth and development of livestock. In this study, we exposed four-day-incubated fertilized eggs to plasma at 11.7 kV for 2 min, which was found to be the optimal condition in respect of highest growth rate in chickens. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Plasma treatment regulated the reactive oxygen species homeostasis by controlling the mitochondrial respiratory complex activity and up-regulating the antioxidant defense system. At the same time, growth metabolism was improved due to the increase of growth hormone and insulin-like growth factor 1 and their receptors expression, and the rise of thyroid hormones and adenosine triphosphate levels through the regulation of demethylation levels of growth and hormone biosynthesis-related genes in the skeletal muscles and thyroid glands. To our knowledge, this study was the first to evaluate the effects of a non-thermal plasma treatment on the growth rate of chickens. This safe strategy might be beneficial to the livestock industry.
Collapse
|
28
|
MicroRNA-7450 regulates non-thermal plasma-induced chicken Sertoli cell apoptosis via adenosine monophosphate-activated protein kinase activation. Sci Rep 2018; 8:8761. [PMID: 29884805 PMCID: PMC5993736 DOI: 10.1038/s41598-018-27123-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
Non-thermal plasma treatment is an emerging innovative technique with a wide range of biological applications. This study was conducted to investigate the effect of a non-thermal dielectric barrier discharge plasma technique on immature chicken Sertoli cell (SC) viability and the regulatory role of microRNA (miR)-7450. Results showed that plasma treatment increased SC apoptosis in a time- and dose-dependent manner. Plasma-induced SC apoptosis possibly resulted from the excess production of reactive oxygen species via the suppression of antioxidant defense systems and decreased cellular energy metabolism through the inhibition of adenosine triphosphate (ATP) release and respiratory enzyme activity in the mitochondria. In addition, plasma treatment downregulated miR-7450 expression and activated adenosine monophosphate-activated protein kinase α (AMPKα), which further inhibited mammalian target of rapamycin (mTOR) phosphorylation in SCs. A single-stranded synthetic miR-7450 antagomir disrupted mitochondrial membrane potential and decreased ATP level and mTOR phosphorylation by targeting the activation of AMPKα, which resulted in significant increases in SC lethality. A double-stranded synthetic miR-7450 agomir produced opposite effects on these parameters and ameliorated plasma-mediated apoptotic effects on SCs. Our findings suggest that miR-7450 is involved in the regulation of plasma-induced SC apoptosis through the activation of AMPKα and the further inhibition of mTOR signaling pathway.
Collapse
|
29
|
Zhang JJ, Do HL, Chandimali N, Lee SB, Mok YS, Kim N, Kim SB, Kwon T, Jeong DK. Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels. Sci Rep 2018; 8:7576. [PMID: 29765100 PMCID: PMC5953930 DOI: 10.1038/s41598-018-26049-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
The quality of avian semen is an important economic trait in poultry production. The present study examines the in vitro effects of non-thermal dielectric barrier discharge plasma on chicken sperm to determine the plasma conditions that can produce the optimum sperm quality. Exposure to 11.7 kV of plasma for 20 s is found to produce maximum sperm motility by controlling the homeostasis of reactive oxygen species and boosting the release of adenosine triphosphate and respiratory enzyme activity in the mitochondria. However, prolonged exposure or further increase in plasma potential impairs the sperm quality in a time- and dose-dependent manner. Optimal plasma treatment of sperm results in upregulated mRNA and protein expression of antioxidant defense-related and energetic metabolism-related genes by increasing their demethylation levels. However, 27.6 kV of plasma exerts significant adverse effects. Thus, our findings indicate that appropriate plasma exposure conditions improve chicken sperm motility by regulating demethylation levels of genes involved in antioxidant defense and energetic metabolism.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Huynh Luong Do
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang Baek Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Jeollabuk-Do, 54004, Republic of Korea
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea. .,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
30
|
Gjika E, Pal-Ghosh S, Tang A, Kirschner M, Tadvalkar G, Canady J, Stepp MA, Keidar M. Adaptation of Operational Parameters of Cold Atmospheric Plasma for in Vitro Treatment of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9269-9279. [PMID: 29473408 PMCID: PMC5954411 DOI: 10.1021/acsami.7b18653] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cold atmospheric plasma (CAP), an ionized gas operated at near-ambient temperatures, has been introduced as a new therapeutic opportunity for treating cancers. The effectiveness of the therapy has been linked to CAP-generated reactive oxygen and nitrogen species such as hydrogen peroxide and nitrite. In this study, we monitor in real-time cancer cell response to CAP over the course of 48 h. The results demonstrate a correlation between cell viability, exposure time (30, 60, 90, and 180 s), and discharge voltage (3.16 and 3.71 kV), while stressing the likely therapeutic role of plasma-generated reactive species. A 30-60 s increase in CAP exposure time and/or a discharge voltage adjustment from 3.16 to 3.71 kV is consistently accompanied by a significant reduction in cell viability. Comparably, levels of hydrogen peroxide and nitrite vary as a function of voltage with elevated levels detected at the highest tested voltage condition of 3.71 kV. CAP ultimately initiates a reduction in cell viability and triggers apoptosis via damage to the mitochondrial membrane, while also deregulating protein synthesis. The findings presented in this study are discussed in the context of facilitating the development of an adaptive CAP platform which could improve treatment outcomes.
Collapse
Affiliation(s)
- Eda Gjika
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, D.C. 20052, United States
- Corresponding Authors: (E.G.)., (M.K.)
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, D.C. 20052, United States
| | - Anna Tang
- Department of Biotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Megan Kirschner
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, D.C. 20052, United States
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, D.C. 20052, United States
| | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, US Medical Innovation LLC, Takoma Park, Maryland 20912, United States
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, D.C. 20052, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, D.C. 20052, United States
- Corresponding Authors: (E.G.)., (M.K.)
| |
Collapse
|
31
|
Kang SU, Choi JW, Chang JW, Kim KI, Kim YS, Park JK, Kim YE, Lee YS, Yang SS, Kim CH. N 2 non-thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase-9. Exp Dermatol 2018; 26:163-170. [PMID: 27673439 DOI: 10.1111/exd.13229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/17/2022]
Abstract
Advances in physics and biology have made it possible to apply non-thermal atmospheric pressure plasma (NTP) in the biomedical field. Although accumulating evidence suggests that NTP has various medicinal effects, such as facilitating skin wound healing on exposed tissue while minimizing undesirable tissue damage, the underlying molecular mechanisms are not fully understood. In this study, NTP generated from N2 optimized wound healing in the scratch wound healing assay. In addition, matrix metalloproteinase (MMP)-9 expression and enzyme activity increased and the urokinase-type plasminogen activator (uPA) system was activated after NTP treatment. We also showed that NTP treatment increased Slug and TCF8/ZEB1 expression and decreased that of E-cadherin, suggesting induction of the epithelial-to-mesenchymal transition (EMT). The effect of N2 NTP was verified on rat wound model. Taken together, these results suggest that N2 NTP promotes wound healing by inducing the EMT and activating the MMP-9/uPA system. These findings show the therapeutic potential of NTP for skin wound healing.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kang Il Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, Korea
| | - Yeon Soo Kim
- Department of otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Ju Kyeong Park
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yang Eun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Sang Sik Yang
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
32
|
Zhang JJ, Jo JO, Huynh DL, Ghosh M, Kim N, Lee SB, Lee HK, Mok YS, Kwon T, Jeong DK. Lethality of inappropriate plasma exposure on chicken embryonic development. Oncotarget 2017; 8:85642-85654. [PMID: 29156747 PMCID: PMC5689637 DOI: 10.18632/oncotarget.21105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/03/2017] [Indexed: 12/22/2022] Open
Abstract
In this study, we examined the effects of non-thermal dielectric barrier discharge plasma on embryonic development in chicken eggs in order to determine the optimal level of plasma exposure for the promotion of embryonic growth. We exposed developing chicken embryos at either Hamburger-Hamilton (HH) stage 04 or HH 20 to plasma at voltages of 11.7 kV to 27.6 kV. Our results show exposure at 11.7 kV for 1 min promoted chicken embryonic development, but exposure to more duration and intensity of plasma resulted in dose-dependent embryonic death and HH 20 stage embryos survive longer than those at stage HH 04. Furthermore, plasma exposure for 4 min increased the production of reactive oxygen species (ROS) and inactivated the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response signaling pathway, resulting in suppression of antioxidant enzymes in the skeletal muscle tissue of the dead embryos. We also found decreased levels of adenosine triphosphate production and reductions in the expression levels of several growth-related genes and proteins. These findings indicate that inappropriate plasma exposure causes dose-dependent embryonic death via excessive accumulation of ROS, NRF2-antioxidant signaling pathway disruption, and decreased growth factor expression.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Jin Oh Jo
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea
| | - Do Luong Huynh
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Nameun Kim
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea
| | - Sang Baek Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology and Advance Next Generation Convergence Technology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
33
|
Chuangsuwanich A, Assadamongkol T, Boonyawan D. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial. INT J LOW EXTR WOUND 2016; 15:313-319. [PMID: 27581113 DOI: 10.1177/1534734616665046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.
Collapse
|
34
|
Kluge S, Bekeschus S, Bender C, Benkhai H, Sckell A, Below H, Stope MB, Kramer A. Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model. PLoS One 2016; 11:e0160667. [PMID: 27584003 PMCID: PMC5008819 DOI: 10.1371/journal.pone.0160667] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/24/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. METHODS Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen's egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. RESULTS For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg's blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. CONCLUSION The longest plasma treatment time with the kINPen MED was 5-10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
Collapse
Affiliation(s)
- Susanne Kluge
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 49a, 17485 Greifswald, Germany
| | - Sander Bekeschus
- Leibniz-Institute for Plasma Science and Technology, ZIK plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- * E-mail:
| | - Claudia Bender
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 49a, 17485 Greifswald, Germany
| | - Hicham Benkhai
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 49a, 17485 Greifswald, Germany
| | - Axel Sckell
- Department of Trauma and Reconstructive Surgery, University Medicine Greifswald, Sauerbruchstr., 17475 Greifswald, Germany
| | - Harald Below
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 49a, 17485 Greifswald, Germany
| | - Matthias B. Stope
- Department of Urology, University Medicine Greifswald, Sauerbruchstr., 17475 Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 49a, 17485 Greifswald, Germany
| |
Collapse
|
35
|
Karrer S, Arndt S. [Plasma medicine in dermatology: Mechanisms of action and clinical applications]. DER HAUTARZT 2016; 66:819-28. [PMID: 26391324 DOI: 10.1007/s00105-015-3686-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plasma medicine has developed into an innovative field of research showing high potential. Since the establishment of cold atmospheric plasma, new, multifaceted medical treatment opportunities have become available. Within a short time a multidisciplinary special interest group of medical scientists, physicists, and biologists was created, aiming to understand plasma medicine and answer clinical as well as scientific questions. In dermatology, new horizons are being opened for wound healing, tissue regeneration, treatment of skin infections, and tumor therapy. A major task will be the introduction of plasma into clinical medicine and, simultaneously, the further investigation of the mechanisms of action of plasma at the cellular level. Only then can the safety of plasma treatment in patients be assured.
Collapse
Affiliation(s)
- S Karrer
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93042, Regensburg, Deutschland.
| | - S Arndt
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93042, Regensburg, Deutschland
| |
Collapse
|
36
|
Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation. Sci Rep 2016; 6:28829. [PMID: 27349181 PMCID: PMC4923893 DOI: 10.1038/srep28829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies.
Collapse
|
37
|
Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer. Adv Ther 2016; 33:894-909. [PMID: 27142848 PMCID: PMC4920838 DOI: 10.1007/s12325-016-0338-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 01/12/2023]
Abstract
Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.
Collapse
|
38
|
Zhong S, Dong Y, Liu D, Xu D, Xiao S, Chen H, Kong M. Surface air plasma-induced cell death and cytokine release of human keratinocytes in the context of psoriasis. Br J Dermatol 2015; 174:542-52. [DOI: 10.1111/bjd.14236] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- S.Y. Zhong
- Department of Dermatology; Xi'an Jiaotong University; Xi'an 710049 China
- Center of Plasma Biomedicine; State Key Laboratory of Electrical Insulation and Power Equipment; Xi'an Jiaotong University; Xi'an 710049 China
| | - Y.Y. Dong
- Department of Dermatology; Xi'an Jiaotong University; Xi'an 710049 China
- Center of Plasma Biomedicine; State Key Laboratory of Electrical Insulation and Power Equipment; Xi'an Jiaotong University; Xi'an 710049 China
| | - D.X. Liu
- Center of Plasma Biomedicine; State Key Laboratory of Electrical Insulation and Power Equipment; Xi'an Jiaotong University; Xi'an 710049 China
- School of Electrical Engineering; Xi'an Jiaotong University; Xi'an 710049 China
| | - D.H. Xu
- Center of Plasma Biomedicine; State Key Laboratory of Electrical Insulation and Power Equipment; Xi'an Jiaotong University; Xi'an 710049 China
| | - S.X Xiao
- Department of Dermatology; Xi'an Jiaotong University; Xi'an 710049 China
| | - H.L. Chen
- Center for Bioelectrics; Old Dominion University; Norfolk VA 23508 U.S.A
| | - M.G. Kong
- Center of Plasma Biomedicine; State Key Laboratory of Electrical Insulation and Power Equipment; Xi'an Jiaotong University; Xi'an 710049 China
- School of Electrical Engineering; Xi'an Jiaotong University; Xi'an 710049 China
- Center for Bioelectrics; Old Dominion University; Norfolk VA 23508 U.S.A
| |
Collapse
|
39
|
Balzer J, Heuer K, Demir E, Hoffmanns MA, Baldus S, Fuchs PC, Awakowicz P, Suschek CV, Opländer C. Non-Thermal Dielectric Barrier Discharge (DBD) Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide. PLoS One 2015; 10:e0144968. [PMID: 26661594 PMCID: PMC4682795 DOI: 10.1371/journal.pone.0144968] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022] Open
Abstract
The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal “cold” atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60–300 s; ~77–66%) or exposure to freshly DBD-treated PBS (60–300 s; ~75–55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well-balanced in order to avoid possible unwanted side effects such as a delayed healing process.
Collapse
Affiliation(s)
- Julian Balzer
- Department of Trauma and Hand Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Kiara Heuer
- Department of Trauma and Hand Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Erhan Demir
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Martin A. Hoffmanns
- Department of Trauma and Hand Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabrina Baldus
- Institute for Electrical Engineering and Plasma Technology, Ruhr University, Bochum, Germany
| | - Paul C. Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Peter Awakowicz
- Institute for Electrical Engineering and Plasma Technology, Ruhr University, Bochum, Germany
| | - Christoph V. Suschek
- Department of Trauma and Hand Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Opländer
- Department of Trauma and Hand Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
40
|
Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506059. [PMID: 26539504 PMCID: PMC4619824 DOI: 10.1155/2015/506059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.
Collapse
|
41
|
Arjunan KP, Sharma VK, Ptasinska S. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. Int J Mol Sci 2015; 16:2971-3016. [PMID: 25642755 PMCID: PMC4346876 DOI: 10.3390/ijms16022971] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/02/2023] Open
Abstract
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA.
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
42
|
Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem 2015; 290:6731-50. [PMID: 25589789 DOI: 10.1074/jbc.m114.603555] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application.
Collapse
Affiliation(s)
- Anke Schmidt
- From the Centre for Innovation Competence (ZIK) plasmatis and Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | | | - Anna Steuer
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Kai Masur
- From the Centre for Innovation Competence (ZIK) plasmatis and
| | - Kristian Wende
- From the Centre for Innovation Competence (ZIK) plasmatis and
| |
Collapse
|
43
|
Haertel B, von Woedtke T, Weltmann KD, Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther (Seoul) 2014; 22:477-90. [PMID: 25489414 PMCID: PMC4256026 DOI: 10.4062/biomolther.2014.105] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022] Open
Abstract
Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.
Collapse
Affiliation(s)
- Beate Haertel
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute of Plasma Science and Technology Greifswald e.V (INP), Felix-Hausdorff Str. 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute of Plasma Science and Technology Greifswald e.V (INP), Felix-Hausdorff Str. 2, 17489 Greifswald, Germany
| | - Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany
| |
Collapse
|
44
|
Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet. Sci Rep 2014; 4:6638. [PMID: 25319447 PMCID: PMC4198870 DOI: 10.1038/srep06638] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/26/2014] [Indexed: 11/08/2022] Open
Abstract
The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.
Collapse
|
45
|
Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One 2014; 9:e104397. [PMID: 25127477 PMCID: PMC4134215 DOI: 10.1371/journal.pone.0104397] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022] Open
Abstract
Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2′,7′-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a valid therapeutic approach for liver and gut lesions.
Collapse
|
46
|
Wende K, Straßenburg S, Haertel B, Harms M, Holtz S, Barton A, Masur K, von Woedtke T, Lindequist U. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biol Int 2014; 38:412-25. [PMID: 24155089 DOI: 10.1002/cbin.10200] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 10/03/2013] [Indexed: 12/30/2022]
Abstract
Modern non-thermal atmospheric pressure plasma sources enable controllable interaction with biological systems. Their future applications - e.g. wound management - are based on their unique mixture of reactive components sparking both stimulatory as well as inhibitory processes. To gain detailed understanding of plasma-cell interaction and with respect to risk awareness, key mechanisms need to be identified. This study focuses on the impact of an argon non-thermal atmospheric pressure plasma jet (kINPen 09) on human HaCaT keratinocytes. With increasing duration, cell viability decreased. In accordance, cells accumulated in G2/M phase within the following 24 h. DNA single-strand breaks were detected immediately after treatment and receded in the aftermath, returning to control levels after 24 h. No directly plasma-related DNA double-strand breaks were detected over the same time. Concurrently, DNA synthesis decreased. Coincident with treatment time, an increase in intracellular 2',7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) conversion increased reactive oxygen species (ROS) levels. The radical scavenging activity of culture medium crucially influenced these effects. Thus, ROS changed DNA integrity, and the effectiveness of cellular defence mechanisms characterises the interaction of non-thermal plasma and eukaryotic cells. Effects were time-dependent, indicating an active response of the eukaryotic cells. Hence, a stimulation of eukaryotic cells using short-term non-thermal plasma treatment seems possible, eg in the context of chronic wound care. Long-term plasma treatments stopped in cell proliferation and apoptosis, which might be relevant in controlling neoplastic conditions.
Collapse
Affiliation(s)
- Kristian Wende
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University, Friedrich-Ludwig-Jahn Str. 15a, 17487, Greifswald, Germany; ZIK Plasmatis, Leibniz Institute for Plasma Sciences and Technology e.V. (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:761451. [PMID: 23936843 PMCID: PMC3712198 DOI: 10.1155/2013/761451] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/10/2013] [Indexed: 01/25/2023]
Abstract
Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon), ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.
Collapse
|