1
|
Jiang W, Yang X, Zhu L, Yang Y, Liu C, Du Y, Wang Y, Niu L, Zhao Y, Liu Y, Gan M, Shen L, Zhu L. Genome-Wide Association Studies of Hair Whorl in Pigs. Genes (Basel) 2024; 15:1249. [PMID: 39457372 PMCID: PMC11506845 DOI: 10.3390/genes15101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In pigs, a hair whorl refers to hairs that form a ring of growth around the direction of the hair follicle at the dorsal hip. In China, a hair whorl is considered a negative trait that affects marketing, and no studies have been conducted to demonstrate whether hair whorl affects pig performance and provide an explanation for its genetic basis. METHODS Performance-measured traits and slaughter-measured traits of hair whorl and non-hair whorl pigs were differentially analyzed, followed by genome-wide association analysis (GWAS) and copy number variation (CNV) methods to investigate the genetic basis of hair whorl in pigs. RESULTS Differential analysis of 2625 pigs (171 hair whorl and 2454 non-hair whorl) for performance measures showed that hair whorl and non-hair whorl pigs differed significantly (p < 0.05) in traits such as live births, total litter size, and healthy litter size (p < 0.05), while differential analysis of carcass and meat quality traits showed a significant difference only in the 45 min pH (p = 0.0265). GWAS identified 4 SNP loci significantly associated with the hair whorl trait, 2 of which reached genome-significant levels, and 23 candidate genes were obtained by annotation with the Ensembl database. KEGG and GO enrichment analyses showed that these genes were mainly enriched in the ErbB signaling, endothelial apoptosis regulation, and cell proliferation pathways. In addition, CNV analysis identified 652 differential genes between hair whorl and non-hair whorl pigs, which were mainly involved in the signal transduction, transcription factor activity, and nuclear and cytoplasmic-related pathways. CONCLUSIONS The candidate genes and copy number variation differences identified in this study provide a new theoretical basis for pig breeding efforts.
Collapse
Affiliation(s)
- Wenyu Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangyu Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yihui Liu
- Sichuan Province General Station of Animal Husbandry, Chengdu 610066, China;
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Reeder TL, Zarlenga DS, Dyer RM. Molecular evidence sterile tissue damage during pathogenesis of pododermatitis aseptica hemorrhagica circumscripta is associated with disturbed epidermal-dermal homeostasis. J Dairy Sci 2024:S0022-0302(24)00842-7. [PMID: 38825113 DOI: 10.3168/jds.2023-24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Podermatitis aseptica hemorrhagica circumscripta is associated with metalloproteinase 2 weakening of distal phalangeal suspensory structures and sinkage of the distal phalanx in the claw capsule. Pressure from the tuberculum flexorium on the sole epidermis and dermis produces hemorrhagic tissue injury and defective horn production appearing as yellow-red, softened claw horn in region 4 of the sole. A model of the MAPK/ERK signal cascade orchestrating epidermal-dermal homeostasis was employed to determine if sterile inflammatory responses are linked to disturbed signal transduction for epidermal homeostasis in sole epidermis and dermis. The objective was to assess shifts in target genes of inflammation, up- and downstream MAPK/ERK signal elements, and targeted genes supporting epidermal proliferation and differentiation. Sole epidermis and dermis was removed from lateral claws bearing lesions of podermatitis aseptica hemorrhagica circumscripta, medial claws from the same limb and lateral claws from completely normal limbs of multiparous, lactating Holstein cows. The abundance levels of targeted transcripts were evaluated by real-time QPCR. Lesion effects were assessed by ANOVA, and mean comparisons were performed with t-tests to assess variations between mean expression in ulcer-bearing or medial claw dermis and epidermis and completely normal lateral claw dermis and epidermis or between ulcer-bearing dermis and epidermis and medial claw dermis and epidermis. The lesions were sterile and showed losses across multiple growth factors, their receptors, several downstream AP1 transcription components, CMYC, multiple cell cycle and terminal differentiation elements conducted by MAPK/ERK signals and β 4, α 6 and collagen 17A hemidesmosome components. These losses coincided with increased cytokeratin 6, β 1 integrin, proinflammatory metalloproteinases 2 and 9, IL1B and physiologic inhibitors of IL1B, the decoy receptor and receptor antagonist. Medial claw epidermis and dermis from limbs with lateral claws bearing podermatitis aseptica hemorrhagica circumscripta showed reductions in upstream MAPK/ERK signal elements and downstream targets that paralleled those in hemorrhagic lesions. Inhibitors of IL1B increased in the absence of real increases in inflammatory targets in the medial claw dermis and epidermis. Losses across multiple signal path elements and downstream targets were associated with negative effects on targeted transcripts supporting claw horn production and wound repair across lesion-bearing lateral claws and lesion-free medial claw dermis and epidermis. It was unclear if the sterile inflammation was causative or a consequence of these perturbations.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303.
| |
Collapse
|
3
|
Wang J, Wu X, Zhang L, Wang Q, Sun X, Ji D, Li Y. miR-133a-3p and miR-145-5p co-promote goat hair follicle stem cell differentiation by regulating NANOG and SOX9 expression. Anim Biosci 2024; 37:609-621. [PMID: 37946416 PMCID: PMC10915213 DOI: 10.5713/ab.23.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. METHODS To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (β-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. RESULTS miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. CONCLUSION These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009,
China
| | - Xi Wu
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Liuming Zhang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Qiang Wang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Xiaomei Sun
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Dejun Ji
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Yongjun Li
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009,
China
| |
Collapse
|
4
|
Ruttanapattanakul J, Wikan N, Potikanond S, Nimlamool W. Combination of Pinocembrin and Epidermal Growth Factor Enhances the Proliferation and Survival of Human Keratinocytes. Int J Mol Sci 2023; 24:12450. [PMID: 37569825 PMCID: PMC10418855 DOI: 10.3390/ijms241512450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Re-epithelialization is delayed in aged skin due to a slow rate of keratinocyte proliferation, and this may cause complications. Thus, there has been development of new therapies that increase treatment efficacy for skin wounds. Epidermal growth factor (EGF) has been clinically used, but this agent is expensive, and its activity is less stable. Therefore, a stable compound possessing EGF-like properties may be an effective therapy, especially when combined with EGF. The current study discovered that pinocembrin (PC) effectively synergized with EGF in increasing keratinocyte viability. The combination of PC and EGF significantly enhanced the proliferation and wound closure rate of the keratinocyte monolayer through activating the phosphorylation of ERK and Akt. Although these effects of PC were like those of EGF, we clearly proved that PC did not transactivate EGFR. Recent data from a previous study revealed that PC activates G-protein-coupled receptor 120 which further activates ERK1/2 and Akt phosphorylation. Therefore, this clearly indicates that PC possesses a unique property to stimulate the growth and survival of keratinocytes through activating a different receptor, which subsequently conveys the signal to cross-talk with the effector kinases downstream of the EGFR, suggesting that PC is a potential compound to be combined with EGF.
Collapse
Affiliation(s)
- Jirapak Ruttanapattanakul
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (N.W.); (S.P.)
| |
Collapse
|
5
|
Friedman N, Weinstein-Fudim L, Mostinski Y, Elia J, Cohen S, Steinberg E, Frankenburg S, Peretz T, Eisenberg G, Lotem M, Benny O, Merims S. Preventing skin toxicities induced by EGFR inhibitors by topically blocking drug-receptor interactions. Sci Transl Med 2023; 15:eabo0684. [PMID: 37285403 DOI: 10.1126/scitranslmed.abo0684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Epidermal growth factor receptor (EGFR) inhibitors are used to treat many advanced-stage epithelial cancers but induce severe skin toxicities in most treated patients. These side effects lead to a deterioration in the quality of life of the patients and compromise the anticancer treatment. Current treatment strategies for these skin toxicities focus on symptom reduction rather than preventing the initial trigger that causes the toxicity. In this study, we developed a compound and method for treating "on-target" skin toxicity by blocking the drug at the site of toxicity without reducing the systemic dose reaching the tumor. We first screened for small molecules that effectively blocked the binding of anti-EGFR monoclonal antibodies to EGFR and identified a potential candidate, SDT-011. In silico docking predicted that SDT-011 interacted with the same residues on EGFR found to be important for the binding of EGFR inhibitors cetuximab and panitumumab. Binding of SDT-011 to EGFR reduced the binding affinity of cetuximab to EGFR and could reactivate EGFR signaling in keratinocyte cell lines, ex vivo cetuximab-treated whole human skin, and A431-injected mice. Specific small molecules were topically applied and were delivered via a slow-release system derived from biodegradable nanoparticles that penetrate the hair follicles and sebaceous glands, within which EGFR is highly expressed. Our approach has the potential to reduce skin toxicity caused by EGFR inhibitors.
Collapse
Affiliation(s)
- Nethanel Friedman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Liza Weinstein-Fudim
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Yelena Mostinski
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Jhonatan Elia
- Department of Plastic and Reconstructive Surgery, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Sherri Cohen
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Eliana Steinberg
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shoshana Frankenburg
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| | - Ofra Benny
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sharon Merims
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| |
Collapse
|
6
|
Wang Y, Fan J, Ahmad N, Xin W, Wei Z, Xing S. Successful production of human epidermal growth factor in tobacco chloroplasts in a biologically active conformation. Growth Factors 2023; 41:20-31. [PMID: 36454601 DOI: 10.1080/08977194.2022.2150187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human epidermal growth factor (hEGF) is an important therapeutic compound with multiple applications particularly in pharmaceutical industry. Human EGF has already been expressed in different expression systems, however, the production of hEGF with bioactivity in chloroplasts has not been successful so far. In this study, we expressed a 6 × His-tagged hEGF in tobacco chloroplasts in its native conformation for the potential of large-scale production of hEGF for industrial applications. Several transplastomic plant lines were obtained, which were screened by PCR (polymerase chain reaction) using primers specific to selectable gene aadA, hEGF- and GFP-coding sequences that were included in the chloroplast expression vector. The selected lines were confirmed to be homoplasmic by PCR verification and Southern blot analysis. Immunoblotting assays of homoplasmic lines using antibodies raised against hEGF confirmed the accumulation of hEGF in transplastomic plants and the ELISA results demonstrated the expression levels of hEGF were between 0.124% and 0.165% of the total soluble proteins (TSP), namely, 23.16-25.77 ng/g of the fresh weight. In terms of activity, the data from cell proliferation and elongation assays showed that the tobacco-derived recombinant hEGF was as bioactive as its commercial counterpart. To our knowledge, this is the first report of recombinant production of hEGF with native bioactivity form in the chloroplast stroma. Overall, our results demonstrate the potential of higher plant chloroplasts for the production of a human therapeutic, hEGF, in an active conformation.
Collapse
Affiliation(s)
- Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jieying Fan
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd, Beijing, China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
7
|
Wang Y, Fan J, Wei Z, Xing S. Efficient expression of fusion human epidermal growth factor in tobacco chloroplasts. BMC Biotechnol 2023; 23:1. [PMID: 36611158 PMCID: PMC9824920 DOI: 10.1186/s12896-022-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chloroplast transformation is a robust technology for the expression of recombinant proteins. Various types of pharmaceutical proteins including growth factors have been reported in chloroplasts via chloroplast transformation approach at high expression levels. However, high expression of epidermal growth factor (EGF) in chloroplasts with the technology is still unavailable. RESULTS The present work explored the high-level expression of recombinant EGF, a protein widely applied in many clinical therapies, in tobacco chloroplasts. In this work, homoplastic transgenic plants expressing fusion protein GFP-EGF, which was composed of GFP and EGF via a linker, were generated. The expression of GFP-EGF was confirmed by the combination of green fluorescent observation and Western blotting. The achieved accumulation of the recombinant fusion GFP-EGF was 10.21 ± 0.27% of total soluble proteins (1.57 ± 0.05 g kg- 1 of fresh leaf). The chloroplast-derived GFP-EGF was capable of increasing the cell viability of the NSLC cell line A549 and enhancing the phosphorylation level of the EGF receptor in the A549 cells. CONCLUSION The expression of recombinant EGF in tobacco chloroplasts via chloroplast transformation method was achieved at considerable accumulation level. The attempt gives a good example for the application of chloroplast transformation technology in recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Yunpeng Wang
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| | - Jieying Fan
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| | - Zhengyi Wei
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China ,grid.452720.60000 0004 0415 7259Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Shaochen Xing
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| |
Collapse
|
8
|
Gui T, Wei Y, Luo L, Li J, Zhong L, Yao L, Beier F, Nelson CL, Tsourkas A, Liu XS, Enomoto-Iwamoto M, Yu F, Cheng Z, Qin L. Activating EGFR Signaling Attenuates Osteoarthritis Development Following Loading Injury in Mice. J Bone Miner Res 2022; 37:2498-2511. [PMID: 36178273 PMCID: PMC10183199 DOI: 10.1002/jbmr.4717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) results in joint pain, loss of joint function, and impaired quality of daily life in patients with limited treatment options. We previously demonstrated that epidermal growth factor receptor (EGFR) signaling is essential for maintaining chondroprogenitors during articular cartilage development and homeostasis. Here, we used a nonsurgical, loading-induced PTOA mouse model to investigate the protective action of EGFR signaling. A single bout of cyclic tibial loading at a peak force of 6 N injured cartilage at the posterior aspect of lateral femoral condyle. Similar loading at a peak force of 9 N ruptured the anterior cruciate ligament, causing additional cartilage damage at the medial compartment and ectopic cartilage formation in meniscus and synovium. Constitutively overexpression of an EGFR ligand, heparin binding EGF-like growth factor (HBEGF), in chondrocytes significantly reduced cartilage injury length, synovitis, and pain after 6 N loading and mitigated medial side cartilage damage and ectopic cartilage formation after 9 N loading. Mechanistically, overactivation of EGFR signaling protected chondrocytes from loading-induced apoptosis and loss of proliferative ability and lubricant synthesis. Overexpressing HBEGF in adult cartilage starting right before 6 N loading had similar beneficial effects. In contrast, inactivating EGFR in adult cartilage led to accelerated PTOA progression with elevated cartilage Mankin score and synovitis score and increased ectopic cartilage formation. As a therapeutic approach, we constructed a nanoparticle conjugated with the EGFR ligand TGFα. Intra-articular injections of this nanoconstruct once every 3 weeks for 12 weeks partially mitigated PTOA symptoms in cartilage and synovium after 6 N loading. Our findings demonstrate the anabolic actions of EGFR signaling in maintaining articular cartilage during PTOA development and shed light on developing a novel nanomedicine for PTOA. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijun Luo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Jun Li
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Charles L. Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - X. Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Feifan Yu
- AlphaThera, LLC, Philadelphia, PA, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 2022; 24:285-306. [PMID: 36222966 PMCID: PMC9555256 DOI: 10.1007/s10561-022-10039-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).
Collapse
|
10
|
Green KJ, Niessen CM, Rübsam M, Perez White BE, Broussard JA. The Desmosome-Keratin Scaffold Integrates ErbB Family and Mechanical Signaling to Polarize Epidermal Structure and Function. Front Cell Dev Biol 2022; 10:903696. [PMID: 35686051 PMCID: PMC9171019 DOI: 10.3389/fcell.2022.903696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.
Collapse
Affiliation(s)
- Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Bethany E. Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Akamatsu H, Yamada T, Sanada A, Ishii Y, Iwata Y, Arima M, Hasegawa S, Sugiura K. Age-related decrease in responsiveness of CD271-positive skin stem cells to growth factors. Exp Dermatol 2022; 31:1264-1269. [PMID: 35524485 DOI: 10.1111/exd.14601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that the numbers of interfollicular epidermal stem cells (IFE-SCs) and dermal stem cells (DSCs) decrease with age and that this decrease is attributed to the age-related deterioration of skin homeostatic functions and the delay in wound healing. Meanwhile, functional decline in the stem cells is also considered to be responsible for the deteriorated skin homeostatic functions and the delayed wound healing associated with aging. In the present study, we focused on epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) signaling and fibroblast growth factor-2/fibroblast growth factor receptor (FGF2/FGFR) signaling to analyze the age-related changes. Immunohistological analysis revealed that the expressions of EGFR and FGFR1 declined in IFE-SCs and DSCs with age, respectively. Additionally, IFE-SCs and DSCs isolated from the skin samples of elderly subjects exhibited lowered responsiveness to EGF and FGF2, respectively. These results suggest that the lowered responsiveness of the skin stem cells to growth factors may be a factor involved in the age-related deterioration of skin regenerative functions during wound healing and skin homeostatic functions. We hope that homeostatic and wound healing functions in the skin could be maintained if the decreased expressions of EGFR and FGFR1 in IFE-SCs and DSCs, respectively, can be suppressed.
Collapse
Affiliation(s)
- Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Takaaki Yamada
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan.,Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Ayumi Sanada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Yoshie Ishii
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan.,Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| |
Collapse
|
12
|
Babu M, Pavithran K. Therapeutic Drug Monitoring as a Tool for Therapy Optimization. Drug Metab Lett 2022; 15:DML-EPUB-122284. [PMID: 35382721 DOI: 10.2174/1872312815666220405122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
The use of pharmacotherapy for improving healthcare in society is increasing. A vast majority of patients have either received subtherapeutic treatment (which could result from low pharmacokinetic) or experienced adverse effects due to the toxic levels of the drug. The medicines used to treat chronic conditions, such as epilepsy; cardiovascular diseases; and oncological, neurological, and psychiatric disorders, require routine monitoring. New targeted therapies suggest an individualized treatment that can slowly move practitioners away from the concept of a one-size-fits-all-fixed-dosing approach. Therapeutic drug use can be monitored based on pharmacokinetic, pharmacodynamic, and pharmacometric methods. Based on the experiences of therapeutic drug monitoring of various agents across the globe, we can look ahead to the possible developments of therapeutic drug monitoring in India.
Collapse
Affiliation(s)
- Merin Babu
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| |
Collapse
|
13
|
Wang J, Wu X, Zhang L, Wang Q, Qu J, Wang Y, Ji D, Li Y. MiR-149-5p promotes β-catenin-induced goat hair follicle stem cell differentiation. In Vitro Cell Dev Biol Anim 2022; 58:325-334. [PMID: 35426064 DOI: 10.1007/s11626-022-00667-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/12/2022] [Indexed: 11/24/2022]
Abstract
The Yangtze River Delta white goat is a unique goat species that can produce superior-quality brush hair. The formation of superior-quality brush hair cannot occur without goat hair follicle stem cell differentiation. However, knowledge regarding the regulatory role of miR-149-5p in hair follicle stem cell differentiation is limited. Here, we found that miR-149-5p is widely expressed in the tissues of Yangtze River Delta white goats, but its expression in the skin tissue of superior-quality brush hair goats is high compared to normal- quality goats. The functional studies showed that miR-149-5p overexpression markedly facilitated hair follicle stem cell differentiation, whereas inhibiting miR-149-5p inhibited hair follicle stem cell differentiation. These results more clearly elucidate the regulatory role of miR-149-5p in hair follicle stem cell growth.
Collapse
Affiliation(s)
- Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dejun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China.
| |
Collapse
|
14
|
Wu NL, Huang DY, Hsieh SL, Dai YS, Lin WW. Decoy receptor 3 is involved in epidermal keratinocyte commitment to terminal differentiation via EGFR and PKC activation. Exp Mol Med 2022; 54:542-551. [PMID: 35478210 PMCID: PMC9076855 DOI: 10.1038/s12276-022-00762-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
Abstract
Decoy receptor 3 (DcR3) is a soluble receptor for Fas ligand, LIGHT and TL1A, but it also exerts effector functions. Previously, we found that DcR3 is upregulated in the serum and lesional skin of patients with psoriasis and is upregulated by EGFR activation in proliferating primary human epidermal keratinocytes. However, the functional role of intracellular DcR3 in keratinocyte differentiation is still incompletely defined. Herein, primary cultured human epidermal keratinocytes were differentiated by phorbol 12-myristate 13-acetate (PMA) treatment, calcium treatment and cell confluence, which are three standard in vitro differentiation models. We found that the constitutive expression of the DcR3 gene and protein was progressively suppressed during terminal differentiation of keratinocytes. These changes were correlated with downregulation of EGFR activation during keratinocyte differentiation. EGFR inhibition by gefitinib further decreased confluence-induced suppression of DcR3 mRNA expression, and, vice versa, knocking down DcR3 expression attenuated EGFR and EGFR ligand expression as well as EGFR activation. Under conditions without a change in cell growth, DcR3 silencing reduced the expression of involucrin and transglutaminase 1 but enhanced the induction of the terminal differentiation markers keratin 10 and loricrin. Of note, DcR3 interacted with PKCα and PKCδ and enhanced PKC activity. In keratinocytes with PKCα and PKCδ silencing, differentiation markers were differentially affected. In conclusion, DcR3 expression in keratinocytes is regulated by EGFR and forms a positive feedback loop to orchestrate constitutive EGFR and PKC activity. During differentiation, DcR3 is downregulated and involved in modulating the pattern of terminal differentiation. A protein linked to cancer and various inflammatory diseases may also be an important driver for the skin condition in psoriasis. The outer surface of the skin is formed by cells called keratinocytes, which transition from a highly proliferative state to a fully mature state where they no longer divide. This developmental process is disrupted in psoriasis. Researchers led by Wan-Wan Lin at National Taiwan University, Taipei, have now identified a prominent role for a protein called decoy receptor 3 (DcR3), which is a biomarker for a variety of disorders and is also abnormally expressed in keratinocytes in psoriatic lesions. Lin and colleagues demonstrated that DcR3 interacts with multiple cellular signaling pathways that coordinate cell differentiation. These findings reveal how aberrant DcR3 activity might lead to the abnormal keratinocyte developmental behavior observed in psoriasis.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan, ROC.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan, ROC.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
15
|
Lee H, Huang DY, Chang HC, Lin CY, Ren WY, Dai YS, Lin WW. Blimp-1 Upregulation by Multiple Ligands via EGFR Transactivation Inhibits Cell Migration in Keratinocytes and Squamous Cell Carcinoma. Front Pharmacol 2022; 13:763678. [PMID: 35185556 PMCID: PMC8847214 DOI: 10.3389/fphar.2022.763678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1) is a transcriptional repressor and plays a crucial role in the regulation of development and functions of various immune cells. Currently, there is limited understanding about the regulation of Blimp-1 expression and cellular functions in keratinocytes and cancer cells. Previously we demonstrated that EGF can upregulate Blimp-1 gene expression in keratinocytes, playing a negative role in regulation of cell migration and inflammation. Because it remains unclear if Blimp-1 can be regulated by other stimuli beyond EGF, here we further investigated multiple stimuli for their regulation of Blimp-1 expression in keratinocytes and squamous cell carcinoma (SCC). We found that PMA, TNF-α, LPS, polyIC, H2O2 and UVB can upregulate the protein and/or mRNA levels of Blimp-1 in HaCaT and SCC cells. Concomitant EGFR activation was observed by these stimuli, and EGFR inhibitor gefitinib and Syk inhibitor can block Blimp-1 gene expression caused by PMA. Reporter assay of Blimp-1 promoter activity further indicated the involvement of AP-1 in PMA-, TNF-α-, LPS- and EGF-elicited Blimp-1 mRNA expression. Confocal microscopic data indicated the nuclear loclization of Blimp-1, and such localization was not changed by stimuli. Moreover, Blimp-1 silencing enhanced SCC cell migration. Taken together, Blimp-1 can be transcriptionally upregulated by several stimuli in keratinocytes and SCC via EGFR transactivation and AP-1 pathway. These include growth factor PMA, cytokine TNF-α, TLR ligands (LPS and polyIC), and ROS insults (H2O2 and UVB). The function of Blimp-1 as a negative regulator of cell migration in SCC can provide a new therapeutic target in SCC.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hua-Ching Chang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yee Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Ren
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Wang J, Wu X, Sun X, Zhang L, Wang Q, Qu J, Wang Y, Li Y. The Circular RNA CircCOL1A1 Functions as a miR-149-5p Sponge to Regulate the Formation of Superior-Quality Brush Hair via the CMTM3/AR Axis. Front Cell Dev Biol 2022; 10:760466. [PMID: 35186916 PMCID: PMC8847694 DOI: 10.3389/fcell.2022.760466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Superior-quality brush hair, also called Type III hair, can be obtained only from the cervical spine region of skin tissues of Yangtze River Delta white goats. The formation of superior-quality brush hair is controlled by a series of critical genes and related signaling pathways. Circular RNAs (circRNAs) are ubiquitous endogenous noncoding RNAs that regulate many biological and physiological processes in mammals. However, little is known about the potential regulatory role of circRNAs in superior-quality brush hair formation. Here, we analyzed circRNA sequencing data from cervical spine region skin tissues of normal-quality brush hair goats and superior-quality brush hair goats and then selected and identified the differentially expressed circRNA circCOL1A1. To investigate the regulatory role and mechanism of action of circCOL1A1, goat hair follicle stem cells (gHFSCs) were cultured and treated with a circCOL1A1 overexpression plasmid and small-interfering RNAs (siRNAs). Functional assays showed that circCOL1A1 knockdown promoted the proliferation and differentiation of gHFSCs cultured in vitro but inhibited stem cell apoptosis, whereas overexpression of circCOL1A1 suppressed stem cell proliferation and differentiation and induced apoptosis. Bioinformatics analysis combined with dual-luciferase reporter assays and RNA binding protein immunoprecipitation (RIP) verified that, mechanistically, circCOL1A1 could bind miR-149-5p directly and then relieve its inhibitory effect on CMTM3 to further control the CMTM3/AR axis. Collectively, our results reveal a novel regulatory pathway for the formation of superior-quality brush hair and indicate that circCOL1A1 plays a role in gHFSC growth and superior-quality brush hair formation by targeting the miR-149-5p/CMTM3/AR axis.
Collapse
Affiliation(s)
- Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaomei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Li Z, You L, Zhang Q, Yu Y, Tan A. A Targeted In-Fusion Expression System for Recombinant Protein Production in Bombyx mori. Front Genet 2022; 12:816075. [PMID: 35058975 PMCID: PMC8763709 DOI: 10.3389/fgene.2021.816075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The domesticated silkworm, Bombyx mori, is an economically important insect that synthesizes large amounts of silk proteins in its silk gland to make cocoons. In recent years, germline transformation strategies advanced the bioengineering of the silk gland as an ideal bioreactor for mass production of recombinant proteins. However, the yield of exogenous proteins varied largely due to the random insertion and gene drift caused by canonical transposon-based transformation, calling for site-specific and stable expression systems. In the current study, we established a targeted in-fusion expression system by using the transcription activator-like effector nuclease (TALEN)-mediated targeted insertion to target genomic locus of sericin, one of the major silk proteins. We successfully generated chimeric Sericin1-EGFP (Ser-2A-EGFP) transformant, producing up to 3.1% (w/w) of EGFP protein in the cocoon shell. With this strategy, we further expressed the medically important human epidermal growth factor (hEGF) and the protein yield in both middle silk glands, and cocoon shells reached to more than 15-fold higher than the canonical piggyBac-based transgenesis. This natural Sericin1 expression system provides a new strategy for producing recombinant proteins by using the silkworm silk gland as the bioreactor.
Collapse
Affiliation(s)
- Zhiqian Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lang You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Qichao Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
18
|
Kossard S. Eruptive Necrotizing Infundibular Crystalline Folliculitis: An Expression of an Abortive Sebaceous Follicular Repair Pathway Linked to Committed Infundibular Stem Cells? Am J Dermatopathol 2021; 43:867-870. [PMID: 34735106 PMCID: PMC8601669 DOI: 10.1097/dad.0000000000002022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Necrotizing infundibular crystalline folliculitis is a rare entity, which is a distinctive clinical and histopathological entity. Eruptive yellow waxy umbilicated folliculocentric plugs clinically correspond to pale crystalline filaments embedded in an amorphous sebum-rich material. Remarkably, only the superficial infundibular ostia remain, and the distended cavity is devoid of a follicular or sebaceous gland remnant. The pathogenesis of this enigmatic event remains to be established. The emergence of necrotizing infundibular crystalline folliculitis (NICF) as a paradoxical side effect of antitumor inhibitors epidermal growth factor receptor vascular endothelial growth factor and more recently programmed death-1 represents the expression of altered molecular pathways that underpin the pathogenesis of NICF. To explore these pathways, it is necessary to explore the hierarchy of follicular stem cells, particularly the potential role of committed infundibular stem cells that play a key role in wound healing. Committed infundibular stem cells are closely linked to the sebaceous gland stem cell axis, and this has relevance in the process of homeostatic repair of sebaceous follicles in the wake of folliculitis. The unscheduled modulation of this infundibular homeostatic sebaceous repair axis by epidermal growth factor receptor vascular endothelial growth factor, and programmed death-1 may lead to an aberrant outcome with metaplasia of infundibular keratinocytes to sebocytes. In the absence of sebaceous gland differentiation, these metaplastic infundibular sebocyte cells would lead to the consumption and loss of the infundibulum as a result of holocrine sebum production. This conceptual pathogenic pathway for NICF is constructed by incorporating recent advances in the fields of follicular stem cells, wound repair, follicular homeostasis, regulatory T cells, and molecular pathways linked to the biologicals inducing NICF.
Collapse
Affiliation(s)
- Steven Kossard
- Laverty Pathology, Kossard Dermatopatholgists, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Kwon PK, Kim SW, De R, Jeong SW, Kim KT. Isoprocurcumenol Supports Keratinocyte Growth and Survival through Epidermal Growth Factor Receptor Activation. Int J Mol Sci 2021; 22:ijms222212579. [PMID: 34830467 PMCID: PMC8625800 DOI: 10.3390/ijms222212579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 02/04/2023] Open
Abstract
Although proliferation of keratinocytes, a major type of skin cells, is a key factor in maintaining the function of skin, their ability to proliferate tends to diminish with age. To solve such a problem, researchers in medical and skin cosmetic fields have tried to utilize epidermal growth factor (EGF), but achieved limited success. Therefore, a small natural compound that can mimic the activity of EGF is highly desired in both medical and cosmetic fields. Here, using the modified biosensor system, we observed that natural small-compound isoprocurcumenol, which is a terpenoid molecule derived from turmeric, can activate EGFR signaling. It increased the phosphorylation of ERK and AKT, and upregulated the expression of genes related to cell growth and proliferation, such as c-myc, c-jun, c-fos, and egr-1. In addition, isoprocurcumenol induced the proliferation of keratinocytes in both physical and UVB-induced cellular damage, indicative of its function in skin regeneration. These findings reveal that EGF-like isoprocurcumenol promotes the proliferation of keratinocytes and further suggest its potential as an ingredient for medical and cosmetics use.
Collapse
Affiliation(s)
- Paul Kwangho Kwon
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
| | - Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
| | - Ranjit De
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea
| | - Sung Woo Jeong
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
| | - Kyong-Tai Kim
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea
- Correspondence:
| |
Collapse
|
20
|
Lin S, Hirayama D, Maryu G, Matsuda K, Hino N, Deguchi E, Aoki K, Iwamoto R, Terai K, Matsuda M. Redundant roles of EGFR ligands in the ERK activation waves during collective cell migration. Life Sci Alliance 2021; 5:5/1/e202101206. [PMID: 34667080 PMCID: PMC8548211 DOI: 10.26508/lsa.202101206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
By knocking out all four EGFR ligands expressed in MDCK cells, this study shows the redundant and specific roles of each EGFR ligand in the ERK activation waves during collective cell migration. Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves. We found that epidermal growth factor (EGF)–deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Surprisingly, ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout NRG1, a ligand for ErbB3 and ErbB4, and found that NRG1-deficiency induced growth arrest in the absence of all four EGFR ligand genes. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.
Collapse
Affiliation(s)
- Shuhao Lin
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daiki Hirayama
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Gembu Maryu
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kimiya Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Hino
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Eriko Deguchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Ryo Iwamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan .,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Müller L, Hatzfeld M, Keil R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front Cell Dev Biol 2021; 9:745670. [PMID: 34631720 PMCID: PMC8495202 DOI: 10.3389/fcell.2021.745670] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state. Their constituent proteins are highly regulated by posttranslational modifications that control their function in the desmosome itself and in addition regulate a multitude of desmosome-independent functions. This review will summarize our current knowledge how signaling pathways that control epithelial shape, polarity and function regulate desmosomes and how desmosomal proteins transduce these signals to modulate cell behavior.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
22
|
Cells/colony motion of oral keratinocytes determined by non-invasive and quantitative measurement using optical flow predicts epithelial regenerative capacity. Sci Rep 2021; 11:10403. [PMID: 34001929 PMCID: PMC8128884 DOI: 10.1038/s41598-021-89073-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Cells/colony motion determined by non-invasive, quantitative measurements using the optical flow (OF) algorithm can indicate the oral keratinocyte proliferative capacity in early-phase primary cultures. This study aimed to determine a threshold for the cells/colony motion index to detect substandard cell populations in a subsequent subculture before manufacturing a tissue-engineered oral mucosa graft and to investigate the correlation with the epithelial regenerative capacity. The distinctive proliferating pattern of first-passage [passage 1 (p1)] cells reveals the motion of p1 cells/colonies, which can be measured in a non-invasive, quantitative manner using OF with fewer full-screen imaging analyses and cell segmentations. Our results demonstrate that the motion index lower than 40 μm/h reflects cellular damages by experimental metabolic challenges although this value shall only apply in case of our culture system. Nonetheless, the motion index can be used as the threshold to determine the quality of cultured cells while it may be affected by any different culture conditions. Because the p1 cells/colony motion index is correlated with epithelial regenerative capacity, it is a reliable index for quality control of oral keratinocytes.
Collapse
|
23
|
Hirose T, Kotoku J, Toki F, Nishimura EK, Nanba D. Label-free quality control and identification of human keratinocyte stem cells by deep learning-based automated cell tracking. Stem Cells 2021; 39:1091-1100. [PMID: 33783921 PMCID: PMC8359832 DOI: 10.1002/stem.3371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/23/2021] [Indexed: 01/07/2023]
Abstract
Stem cell-based products have clinical and industrial applications. Thus, there is a need to develop quality control methods to standardize stem cell manufacturing. Here, we report a deep learning-based automated cell tracking (DeepACT) technology for noninvasive quality control and identification of cultured human stem cells. The combination of deep learning-based cascading cell detection and Kalman filter algorithm-based tracking successfully tracked the individual cells within the densely packed human epidermal keratinocyte colonies in the phase-contrast images of the culture. DeepACT rapidly analyzed the motion of individual keratinocytes, which enabled the quantitative evaluation of keratinocyte dynamics in response to changes in culture conditions. Furthermore, DeepACT can distinguish keratinocyte stem cell colonies from non-stem cell-derived colonies by analyzing the spatial and velocity information of cells. This system can be widely applied to stem cell cultures used in regenerative medicine and provides a platform for developing reliable and noninvasive quality control technology.
Collapse
Affiliation(s)
- Takuya Hirose
- Graduate School of Medical Care and Technology, Teikyo University, Tokyo, Japan
| | - Jun'ichi Kotoku
- Graduate School of Medical Care and Technology, Teikyo University, Tokyo, Japan
| | - Fujio Toki
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Division of Aging and Regeneration, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daisuke Nanba
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
24
|
Chiu LY, Wu NL, Hung CF, Bai P, Dai YS, Lin WW. PARP-1 involves in UVB-induced inflammatory response in keratinocytes and skin injury via regulation of ROS-dependent EGFR transactivation and p38 signaling. FASEB J 2021; 35:e21393. [PMID: 33570794 DOI: 10.1096/fj.202002285rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/11/2023]
Abstract
UV irradiation can injure the epidermis, resulting in sunburn, inflammation, and cutaneous tissue disorders. Previous studies demonstrate that EGFR in keratinocytes can be activated by UVB and contributes to inflammation. Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme and plays an essential role in DNA repair under moderate stress. In this study, we set out to understand how PARP-1 regulates UVB irradiation-induced skin injury and interplays with EGFR to mediate the inflammation response. We found that PARP-1 deficiency exacerbated the UVB-induced inflammation, water loss, and back skin damage in mice. In human primary keratinocytes, UVB can activate PARP-1 and enhance DNA damage upon PARP-1 gene silencing. Moreover, PARP-1 silencing and PARP inhibitor olaparib can suppress UVB-induced COX-2 and MMP-1 expression, but enhance TNF-α and IL-8 expression. In addition, EGFR silencing or EGFR inhibition by gefitinib can decrease UVB-induced COX-2, TNF-α, and IL-8 expression, suggesting EGFR activation via paracrine action can mediate UVB-induced inflammation responses. Immunoblotting data revealed that PARP-1 inhibition decreases UVB-induced EGFR and p38 activation. Pharmacological inhibition of p38 also dramatically led to the attenuation of UVB-induced inflammatory gene expression. Of note, genetic ablation of PARP-1 or EGFR can attenuate UVB-induced ROS production, and antioxidant NAC can attenuate UVB-induced EGFR-p38 signaling axis and PARP-1 activation. These data suggest the regulatory loops among EGFR, PARP-1, and ROS upon UVB stress. PARP-1 not only serves DNA repair function but also orchestrates interactions to EGFR transactivation and ROS production, leading to p38 signaling for inflammatory gene expression in keratinocytes.
Collapse
Affiliation(s)
- Ling-Ya Chiu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Luo G, Sun Y, Zhang J, Xu Z, Lu W, Wang H, Zhang Y, Li H, Mao Z, Ye S, Cheng B, Fang X. Nanodefensin-encased hydrogel with dual bactericidal and pro-regenerative functions for advanced wound therapy. Am J Cancer Res 2021; 11:3642-3660. [PMID: 33664853 PMCID: PMC7914350 DOI: 10.7150/thno.53089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Host defense peptides (HDPs) have emerged as a novel therapeutic paradigm for wound management; however, their clinical applications remain a challenge owing to their poor pharmacological properties and lack of suitable pharmaceutical formulations. Nanodefensin (ND), a nanoengineered human α-defensin 5 (HD5), has shown improved pharmacological properties relative to the parent compound. In this study, we engineered a nanodefensin-encased hydrogel (NDEFgel), investigated the effects of NDEFgel on wound healing, and elucidated underlying mechanisms. Method: ND was chemically synthesized and tested functions by in vitro antimicrobial and scratch assays and western blotting. Different NDEFgels were evaluated by in vitro characterizations including degradation, drug release and antimicrobial activity. In full-thickness excisional murine models, the optimal NDEFgel was directly applied onto wound sites, and the efficacy was assessed. Moreover, the underlying mechanisms of pro-regenerative effect developed by NDEFgel were also explored. Results: Apart from bactericidal effects, ND modulated fibroblast behaviors by promoting migration and differentiation. Among the tested hydrogels, the Pluronic F127 (Plu) hydrogel represented the most desirable carrier for ND delivery owing to its favorable controlled release and compatibility with ND. Local treatment of NDEFgel on the wound bed resulted in accelerated wound regeneration and attenuated bacterial burden. We further demonstrated that NDEFgel therapy significantly upregulated genes related to collagen deposition and fibroblasts, and increased the expression of myofibroblasts and Rac1. We therefore found that Rac1 is a critical factor in the ND-induced modulation of fibroblast behaviors in vitro through a Rac1-dependent cytoskeletal rearrangement. Conclusion: Our results indicate that NDEFgel may be a promising dual-action therapeutic option for advanced wound management in the future.
Collapse
|
26
|
Spatio-temporal regulation of gene expression defines subpopulations of epidermal stem cells. Biochem Soc Trans 2020; 48:2839-2850. [PMID: 33170265 DOI: 10.1042/bst20200740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The search for epidermal stem cells has gained the momentum as they possess unique biological characteristics and a potential in regeneration therapies. Several transcription factors and miRNAs have been identified as epidermal stem cell markers. However, the separation of epidermal stem cells from their progeny remains challenging. The introduction of single-cell transcriptomics pointed to the high degree of heterogeneity in epidermal stem cells imbedded within subpopulations of keratinocytes. Pseudotime inference, RNA velocity, and cellular entropy further enhanced our knowledge of stem cells, allowing for the discovery of the epidermal stem cell plasticity. We explore the main findings that lead to the discovery of the plastic trait within the epidermal stem cells and the implications of cell plasticity in regenerative medicine.
Collapse
|
27
|
Castañeda-Zárraga A, Rodríguez-Cid JR, Flores-Mariñelarena RR, Trinidad-Bibiano H, Martínez-Herrera JF, Sánchez-Ríos CP, Fernández-Garibay VM, Alatorre-Alexander JA, Martínez-Barrera L, Santillán-Doherty PJ, Vega-Memije ME. Human skin biomarkers relationship to response to treatment with tyrosine kinase inhibitors in advanced EGFR-mutated lung adenocarcinoma. Thorac Cancer 2020; 11:3243-3251. [PMID: 33015988 PMCID: PMC7606021 DOI: 10.1111/1759-7714.13657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
Background A relationship between the EGFR signaling pathway expression in skin and the use of targeted cancer therapies has been previously demonstrated. Consistent evidence to support the use of skin biopsies as a surrogate for therapeutic evaluation is needed. The purpose of this study was to establish the relationship between the expression of EGFR signaling pathway markers in skin samples from EGFR‐mutated metastatic lung adenocarcinoma patients and their response to tyrosine kinase inhibitors. Methods This was a prospective single blind analysis of 35 skin biopsies from 31 patients with confirmed advanced EGFR‐mutated lung adenocarcinoma. Immunohistochemistry was performed: EGFR, p27, Ki67, STAT3 and MAPK, as well as H&E histopathological analysis, in order to determine their treatment response to tyrosine kinase inhibitors. Results EGFR, Ki67, STAT3, stratum corneum thickness (number of layers and millimeters) from skin samples had a statistical correlation with an adequate treatment response (P = 0.025, 0.015, 0.017, 0.041, 0.039 respectively). EGFR, p27 and number of layers of the stratum corneum were related to a better median progression‐free survival (P = 0.025 and P = 0.030). Conclusions The relationship between EGFR pathway inhibition in the skin and oncological outcomes obtained explains the parallel biological effects of tyrosine kinase inhibitors. We hope that our work incites future research to help validate and assess the use of these markers as potential prognostic and predictive factors.
Collapse
Affiliation(s)
| | | | | | | | - José Fabián Martínez-Herrera
- Department of Oncology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carla Paola Sánchez-Ríos
- Department of Oncology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | - Luis Martínez-Barrera
- Department of Oncology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | |
Collapse
|
28
|
Bari E, Di Silvestre D, Mastracci L, Grillo F, Grisoli P, Marrubini G, Nardini M, Mastrogiacomo M, Sorlini M, Rossi R, Torre ML, Mauri P, Sesana G, Perteghella S. GMP-compliant sponge-like dressing containing MSC lyo-secretome: Proteomic network of healing in a murine wound model. Eur J Pharm Biopharm 2020; 155:37-48. [PMID: 32784044 DOI: 10.1016/j.ejpb.2020.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Chronic wounds account for 3% of total healthcare expenditure of developed countries; thus, innovative therapies, including Mesenchymal Stem Cells (MSCs) end their exosomes are increasingly considered, even if the activity depends on the whole secretome, made of both soluble proteins and extracellular vesicles. In this work, we prove for the first time the in vivo activity of the whole secretome formulated in a sponge-like alginate wound dressing to obtain the controlled release of bioactive substances. The product has been prepared in a public GMP-compliant facility by a scalable process; based on the murine model, treated wounds healed faster than controls without complications or infections. The treatment induced a higher acute inflammatory process in a short time and sustained the proliferative phase by accelerating fibroblast migration, granulation tissue formation, neovascularization and collagen deposition. The efficacy was substantially supported by the agreement between histological and proteomic findings. In addition to functional modules related to proteolysis, complement and coagulation cascades, protein folding and ECM remodeling, in treated skin, emerged the role of specific wound healing related proteins, including Tenascin (Tnc), Decorin (Dcn) and Epidermal growth factor receptor (EGFR). Of note, Decorin and Tenascin were also components of secretome, and network analysis suggests a potential role in regulating EGFR. Although further experiments will be necessary to characterize better the molecular keys induced by treatment, overall, our results confirm the whole secretome efficacy as novel "cell-free therapy". Also, sponge-like topical dressing containing the whole secretome, GMP- compliant and "ready-off-the-shelf", may represent a relevant point to facilitate its translation into the clinic.
Collapse
Affiliation(s)
- Elia Bari
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Luca Mastracci
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Federica Grillo
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Pietro Grisoli
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | | | - Marta Nardini
- University of Genoa, Department of Internal Medicine, Genoa, Italy
| | | | - Marzio Sorlini
- PharmaExceed S.r.l., Pavia, Italy; University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Maria Luisa Torre
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Giovanni Sesana
- Tissue Bank and Tissue Therapy Unit, Emergency and Acceptance Department, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, Milan, Italy
| | - Sara Perteghella
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy
| |
Collapse
|
29
|
Assenat E, Mineur L, Mollevi C, Lopez-Crapez E, Lombard-Bohas C, Samalin E, Portales F, Walter T, de Forges H, Dupuy M, Boissière-Michot F, Ho-Pun-Cheung A, Ychou M, Mazard T. Phase II study evaluating the association of gemcitabine, trastuzumab and erlotinib as first-line treatment in patients with metastatic pancreatic adenocarcinoma (GATE 1). Int J Cancer 2020; 148:682-691. [PMID: 33405269 DOI: 10.1002/ijc.33225] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
In a previous phase II study (THERAPY), cetuximab and trastuzumab combination, as second-line after progression with gemcitabine, showed disease stabilization in 27% of 33 patients with pancreatic carcinoma. In the present phase II multicenter study, we assessed the efficacy and tolerance of gemcitabine, trastuzumab plus erlotinib as first-line treatment of metastatic pancreatic cancer. The primary endpoint was disease control rate (DCR, RECIST v.1); secondary endpoints were progression-free (PFS), overall (OS) survival and toxicity (NCI-CTCAE v3.0). Ancillary study addressed the predictive value of both EGFR/HER2 expression and KRAS mutational status. Sixty-three patients from four centers were included (62 evaluable for toxicity, 59 for efficacy), median age was 62 years (35-77), 59.7% men. The median treatment duration was 16.1 weeks (2.1-61). Eleven patients (19%) reported a partial tumor response, and 33 (56%) disease stabilization. DCR was 74.6% (95%CI: 61.8-85.0; 44/59 patients). After a median follow-up of 23.3 months (0.6-23.6), median PFS was 3.5 months (95%CI: 2.4-3.8) and median OS 7.9 months (95%CI: 5.1-10.2). PFS was significantly longer in patients with grade ≥ 2 cutaneous toxicities vs patients with grade 0-1 toxicities (HR = 0.55, 95%CI: 0.33-0.92, P = .020). Expression of EGFR and HER2 was correlated with PFS and OS in multivariate analysis; HER2 expression was correlated with the tumor response. Main severe toxicities were neutropenia (32%), cutaneous rash (37%) and thrombosis/embolisms (35.5%). This triplet combination is effective in terms of disease control, PFS and OS, and acceptable for safety. A larger study to investigate this combination compared to the standard regimen should be discussed.
Collapse
Affiliation(s)
- Eric Assenat
- Medical Oncology Department, Institut du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France.,Centre Hospitalier Régional Universitaire (CHU) de Montpellier, Univ. Montpellier, Montpellier, France
| | - Laurent Mineur
- Unité de Cancérologie Digestive Oncologie Radiothérapie, Institut Sainte Catherine, Avignon, France
| | - Caroline Mollevi
- Biometrics Unit, Institut du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | | | - Emmanuelle Samalin
- Medical Oncology Department, Institut du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Fabienne Portales
- Medical Oncology Department, Institut du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | | | - Hélène de Forges
- Clinical Research and Innovation Department, Institut du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Marie Dupuy
- Centre Hospitalier Régional Universitaire (CHU) de Montpellier, Univ. Montpellier, Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Alexandre Ho-Pun-Cheung
- Translational Research Unit, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Marc Ychou
- Medical Oncology Department, Institut du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Thibaut Mazard
- Medical Oncology Department, Institut du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| |
Collapse
|
30
|
Uchino T, Fujino H, Kamiya D, Suzuki T, Miyazaki Y, Asada K, Shirai T, Yagi H, Sano Y, Moriki M, Mizuno H, Todoroki K, Kimura M, Kagawa Y. Association of dry skin with intercellular lipid composition of stratum corneum after erlotinib administration. Cancer Chemother Pharmacol 2020; 86:233-243. [PMID: 32666159 DOI: 10.1007/s00280-020-04095-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, causes skin disorders such as dry skin, which impairs the skin barrier function. Stratum corneum (SC) lipids play an important role in skin barrier function; therefore, this study aimed to investigate the relationship between erlotinib-related dry skin and changes in the intercellular lipid composition and structure of the SC. METHODS Overall, 21 patients with non-small lung cancer were enrolled in this study. All patients received 150 mg/day erlotinib orally. A SC sample of each patient was collected from the inner forearm using the tape stripping method on days 0, 7, 14, 28, and 56 after erlotinib administration. The intercellular lipid components of ceramide (CER), free fatty acid (FFA), and cholesterol sulfate (CS) in samples extracted from the tape were analyzed using liquid chromatography/time-of-flight/mass spectrometry. SC samples from six healthy subjects were collected as controls on days 0, 28 and 56 and analyzed similarly. RESULTS Although total CER and FFA levels were not changed after erlotinib administration, the levels of CER subclasses [AP] and [AH] and hydroxy FFA, which are structural components of CER subclass [A], decreased. In contrast, the CS levels increased after erlotinib administration. Moreover, higher CS levels in the SC correlated with the clinical condition of dry skin. No changes were observed in the SC lipid composition in healthy subjects. CONCLUSION Erlotinib-related dry skin was associated with a higher CS level in the SC.
Collapse
Affiliation(s)
- Tomonobu Uchino
- Laboratory of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan.
- Laboratory of Clinical Pharmacokinetics, the Medical Frontier Center, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan.
| | - Hiyori Fujino
- Laboratory of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Daichi Kamiya
- Laboratory of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Tomonori Suzuki
- Laboratory of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Yasunori Miyazaki
- Laboratory of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
- Laboratory of Clinical Pharmacokinetics, the Medical Frontier Center, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| | - Kazuhiro Asada
- Department of Respiratory Medicine, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| | - Toshihiro Shirai
- Department of Respiratory Medicine, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| | - Hiroaki Yagi
- Department of Dermatology, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| | - Yuko Sano
- Department of Dermatology, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| | - Mutsumi Moriki
- Department of Dermatology, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| | - Hajime Mizuno
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Midori Kimura
- Department of Pharmacy, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| | - Yoshiyuki Kagawa
- Laboratory of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
- Laboratory of Clinical Pharmacokinetics, the Medical Frontier Center, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, Japan
| |
Collapse
|
31
|
Anti-Aging Effects of GDF11 on Skin. Int J Mol Sci 2020; 21:ijms21072598. [PMID: 32283613 PMCID: PMC7177281 DOI: 10.3390/ijms21072598] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is composed of three layers: the epidermis, the dermis, and the hypodermis. The epidermis has four major cell layers made up of keratinocytes in varying stages of progressive differentiation. Skin aging is a multi-factorial process that affects every phase of its biology and function. The expression profiles of inflammation-related genes analyzed in resident immune cells demonstrated that these cells have a strong ability to regenerate adult skin stem cells and to produce endogenous substances such as growth differentiation factor 11 (GDF11). GDF11 appears to be the key to progenitor proliferation and/or differentiation. The preservation of youthful phenotypes has been tied to the presence of GDF11 in different human tissues, and, in the skin, this factor inhibits inflammatory responses. The protective role of GDF11 depends on a multi-factorial process implicating various types of skin cells such as keratinocytes, fibroblasts and inflammatory cells. GDF11 should be further studied for the purpose of developing novel therapies for the treatment of skin diseases.
Collapse
|
32
|
Network pharmacology-based preventive effect of XZF on cutaneous toxicities induced by EGFR inhibitor. Biomed Pharmacother 2020; 123:109755. [PMID: 31926375 DOI: 10.1016/j.biopha.2019.109755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
Skin toxicities induced by epidermal growth factor receptor inhibitors such as Erlotinib plagues clinical challenges. Chinese formulas have a unique advantage in reducing side effects. Here, we aim to investigate the skin protecting function of XiaoZhenFang (XZF), a clinical adjuvant prescription made up of Lonicerae Japonicae Flos, Lithospermum Erythrorhizon, Smilacis Glabrae Rhizoma, Forsythiae Fructus, Spirodelae Herba, Cortex Moutan and Prunellae Spica. Our data showed that XZF aqueous extract effectively reduced skin toxicities induced by Erlotinib in vivo using established mice model. Next, we used a systems pharmacology approach to investigate the pharmacological mechanism of XZF with the goal of understanding its effects at the system, organ, and molecular levels. 44 candidate compounds and 103 potential targets were identified by network pharmacology. Inflammation, cell stress and the EGFR-related signal pathways, which may participate in the skin protection afforded by XZF, were analyzed by gene enrichment. Importantly, our in vivo experimental results largely validated XZF's mechanism of action, as predicted by the system pharmacology analysis. Our study uncovered the effect and mechanism of XZF in attenuating skin toxicities induced by EGFRI, providing a basis for the development of in-hospital preparations and new drugs for the prevention of skin toxicities.
Collapse
|
33
|
Yamamoto Y, Saita T, Yamamoto Y, Sogawa R, Kimura S, Narisawa Y, Kimura S, Shin M. Immunohistochemical localization of afatinib in male rat intestines and skin after its oral administration. Acta Histochem 2019; 121:151439. [PMID: 31500866 DOI: 10.1016/j.acthis.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 09/01/2019] [Indexed: 12/28/2022]
Abstract
Afatinib, a second-generation tyrosine kinase inhibitor, was designed to bind covalently to and irreversibly inhibit active ErbB family receptors. The major metabolites of afatinib in human plasma are adducts of afatinib covalently bound to plasma proteins via. the Michael addition reaction. These findings suggest that afatinib may form covalent bonds with proteins in tissue and be localized in tissue. However, there is no method for the specific detection of afatinib-protein conjugates localized in tissue. In this paper, we aimed to develop an immunohistochemical protocol to detect afatinib-protein conjugates. Immunostainings were performed with male rat intestinal tract and skin at 24 h after an oral administration of afatinib. In the intestinal tract, strong staining was observed in the ileum and colon, but only slight staining was observed in the duodenum and jejunum. In the skin, strong staining was observed in the epidermis, sebaceous glands and hair follicles. Immunohistochemistry for afatinib-protein conjugates could be a useful tool to detect the localization of such conjugates. This study is the first to elucidate the localization of afatinib-protein conjugates in the rat intestinal tract and skin and is expected to be of great use in efforts to clarify the mechanism underlying afatinib-induced diarrhoea or skin toxicities.
Collapse
|
34
|
Lueangarun S, Soktepy B, Tempark T. Efficacy of anti‐inflammatory moisturizer vs hydrophilic cream in elderly patients with moderate to severe xerosis: A split site, triple‐blinded, randomized, controlled trial. J Cosmet Dermatol 2019; 19:1432-1438. [DOI: 10.1111/jocd.13183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Suparuj Lueangarun
- Division of Dermatology Chulabhorn International College of Medicine Thammasat University Amphur Klongluang Thailand
| | - Bith Soktepy
- Division of Dermatology Chulabhorn International College of Medicine Thammasat University Amphur Klongluang Thailand
| | - Therdpong Tempark
- Department of Pediatrics Faculty of Medicine King Chulalongkorn Memorial Hospital Chulalongkorn University Bangkok Thailand
| |
Collapse
|
35
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
36
|
Fukuyama T, Nakamura Y, Kanemaru K, Toyoda C, Jang HJ, Suh PG, Fukami K. Phospholipase Cγ1 is required for normal irritant contact dermatitis responses and sebaceous gland homeostasis. Exp Dermatol 2019; 28:1051-1057. [PMID: 31338881 DOI: 10.1111/exd.14009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte-specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.
Collapse
Affiliation(s)
- Takatsugu Fukuyama
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kaori Kanemaru
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Chiho Toyoda
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Korea Brain Reaseach Institute, Daegu, Korea
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
37
|
Clayton R, Göbel K, Niessen C, Paus R, Steensel M, Lim X. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. Br J Dermatol 2019; 181:677-690. [DOI: 10.1111/bjd.17981] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- R.W. Clayton
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
| | - K. Göbel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - C.M. Niessen
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - R. Paus
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
- Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| | - M.A.M. Steensel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| | - X. Lim
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| |
Collapse
|
38
|
Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR‐Ras‐Erk signalling and suppresses increased Ras‐Erk signalling‐induced tumour formation in mice. J Pathol 2019; 249:39-51. [DOI: 10.1002/path.5279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Taeko Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| |
Collapse
|
39
|
Pharmacodynamic Therapeutic Drug Monitoring for Cancer: Challenges, Advances, and Future Opportunities. Ther Drug Monit 2019; 41:142-159. [DOI: 10.1097/ftd.0000000000000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Annunziata MC, Ferrillo M, Cinelli E, Panariello L, Rocco D, Fabbrocini G. Retrospective Analysis of Skin Toxicity in Patients under Anti-EGFR Tyrosine Kinase Inhibitors: Our Experience in Lung Cancer. Open Access Maced J Med Sci 2019; 7:973-977. [PMID: 30976343 PMCID: PMC6454160 DOI: 10.3889/oamjms.2019.170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND: Tyrosine kinase inhibitors (TKIs) have been introduced for the treatment of lung cancer, improving progression-free survival, objective response rate, and quality of life. However, TKIs can lead to cutaneous toxicities, including papulopustular rash, xerosis, paronychia with/without pyogenic granulomas, scalp disorders, facial hair and/or eyelash growth. AIM: In this study, we describe retrospectively all cases of mucocutaneous side effects in patients with lung cancer under TKIs referring to our outpatient for the skin care of oncological patients. METHODS: We included patients referring from January 2016 to January 2018 affected by lung cancer and under TKIs. We collected data about the clinical exam, clinical photography, dermoscopy, histology and direct microscopic examination for each patient and we performed retrospectively descriptive analyses to assess whether a specific TKIs is linked significantly to particular cutaneous toxicity. RESULTS: The majority of skin toxicities were due to afatinib, and the most common skin reaction was rash. We selected 60 patients with skin reactions, treated by TKIs for lung cancer. The majority of skin toxicities were due to afatinib (47/102 adverse reactions) and erlotinib (39/102). The most common skin reaction was rash (63% of patients), followed by xerosis (30%) and granulomas (30%). There was no significant relationship between a specific type of cutaneous reaction and specific EGFRi except for granulomas, developed more frequently in patients under afatinib (p < 0.05). CONCLUSION: Most of our patients (63%) developed a cutaneous rash under TKIs. Most commonly afatinib was the drug involved, although it wasn’t the most used EGFRi. Moreover, we noticed a significant correlation between afatinib therapy and appearance of granulomas.
Collapse
Affiliation(s)
- Maria Carmela Annunziata
- Section of Dermatology, University of Naples Federico II, Naples, Italy via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Ferrillo
- Section of Dermatology, University of Naples Federico II, Naples, Italy via Sergio Pansini 5, 80131 Naples, Italy
| | - Eleonora Cinelli
- Section of Dermatology, University of Naples Federico II, Naples, Italy via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigia Panariello
- Section of Dermatology, University of Naples Federico II, Naples, Italy via Sergio Pansini 5, 80131 Naples, Italy
| | - Danilo Rocco
- UOC Pneumologia Oncologica, AORN Azienda Ospedaliera Dei Colli Monaldi, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, University of Naples Federico II, Naples, Italy via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
41
|
A short peptide potentially promotes the healing of skin wound. Biosci Rep 2019; 39:BSR20181734. [PMID: 30842341 PMCID: PMC6430730 DOI: 10.1042/bsr20181734] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Skin wound, a common form of skin damage in daily life, remains a serious challenge in clinical treatment. Bioactive peptides with high efficiency have been considered as potential therapeutic candidates for wound healing. In this report, a novel short linear peptide, with mature peptide sequence of 'GLLSGINAEWPC' and no obvious similarity with other known bioactive peptides, was identified by genomic method from the skin of odorous frog, Odorrana andersonii Our results suggested that OA-GL12 (OA: abbreviation of species (O. andersonii), GL: two initial amino acids, 12: peptide length) obviously accelerated the scratch-healing of keratinocytes and human fibroblasts in a time- and concentration-dependent manner. Meanwhile, OA-GL12 showed significant effect in promoting the wound healing on the full-thickness skin wound model. Inflammatory assay results demonstrated that OA-GL12 induced the secretion of tumor necrosis factor (TNF) and transforming growth factor β1 (TGF-β1) on murine macrophage cell line (RAW264.7), which might explain the powerful accelerating capacity of wound healing. Moreover, results also indicated that epidermal growth factor receptor (EGFR) was involved in the mechanisms underlying the scratch-healing promoting activity of OA-GL12. In addition, OA-GL12 showed obvious free radical scavenging activity. Results supported that OA-GL12 did not exert risk in acute toxicity, hemolytic activity, and direct antibacterial activity. The remarkable effect of OA-GL12 on promoting wound healing verified in this research made it potential to be a novel template for the development of wound healing-promoting agents.
Collapse
|
42
|
Qin L, Beier F. EGFR Signaling: Friend or Foe for Cartilage? JBMR Plus 2019; 3:e10177. [PMID: 30828691 PMCID: PMC6383702 DOI: 10.1002/jbm4.10177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies using genetically modified mice, pharmacological approaches, and human samples have highlighted an important role for the epidermal growth factor receptor (EGFR), selected ligands, and downstream components in endochondral bone formation and joint homeostasis. Although most data demonstrate an important function of this pathway in endochondral ossification and articular cartilage growth, conflicting results on its role in osteoarthritis have been reported. In some contexts, inactivation of EGFR signaling has been shown to protect joints from surgically induced osteoarthritis, whereas in others, similar manipulations worsened joint pathology. The current review summarizes recent studies of cartilage EGFR signaling in long bone development and diseases, provides potential explanations for the reported discrepancies, and suggests directions for future work to clarify the potential of this pathway as target for osteoarthritis treatment. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ling Qin
- Department of Orthopaedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Frank Beier
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonCanada
- Western Bone and Joint InstituteUniversity of Western OntarioLondonCanada
| |
Collapse
|
43
|
Liu F, Chen Y, Zhu G, Hysi PG, Wu S, Adhikari K, Breslin K, Pospiech E, Hamer MA, Peng F, Muralidharan C, Acuna-Alonzo V, Canizales-Quinteros S, Bedoya G, Gallo C, Poletti G, Rothhammer F, Bortolini MC, Gonzalez-Jose R, Zeng C, Xu S, Jin L, Uitterlinden AG, Ikram MA, van Duijn CM, Nijsten T, Walsh S, Branicki W, Wang S, Ruiz-Linares A, Spector TD, Martin NG, Medland SE, Kayser M. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Hum Mol Genet 2019; 27:559-575. [PMID: 29220522 PMCID: PMC5886212 DOI: 10.1093/hmg/ddx416] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023] Open
Abstract
Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans.
Collapse
Affiliation(s)
- Fan Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sijie Wu
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaustubh Adhikari
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Krystal Breslin
- Department of Biology, Indiana-University-Purdue-University-Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Ewelina Pospiech
- Institute of Zoology and Biomedical Research, Faculty of Biology and Earth Sciences, Jagiellonian University, Kraków, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Merel A Hamer
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fuduan Peng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Charanya Muralidharan
- Department of Biology, Indiana-University-Purdue-University-Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Victor Acuna-Alonzo
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City, México
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City, México
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Maria Catira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Rolando Gonzalez-Jose
- Instituto Patagónico de Ciencias Sociales y Humanas, CENPAT-CONICET, Puerto Madryn, Argentina
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuhua Xu
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Li Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susan Walsh
- Department of Biology, Indiana-University-Purdue-University-Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Sijia Wang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK.,Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Laboratory of Biocultural Anthropology, Law, Ethics, and Health (Centre National de la Recherche Scientifique and Etablissement Français du Sang), Aix-Marseille Université, Marseille, France
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Chang HC, Huang DY, Wu NL, Kannagi R, Wang LF, Lin WW. BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation. J Dermatol Sci 2018; 92:151-161. [DOI: 10.1016/j.jdermsci.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
|
45
|
Effects of quercetin on human oral keratinocytes during re-epithelialization: An in vitro study. Arch Oral Biol 2018; 95:187-194. [DOI: 10.1016/j.archoralbio.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023]
|
46
|
Coordinated collective migration and asymmetric cell division in confluent human keratinocytes without wounding. Nat Commun 2018; 9:3665. [PMID: 30202009 PMCID: PMC6131553 DOI: 10.1038/s41467-018-05578-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Epithelial sheet spreading is a fundamental cellular process that must be coordinated with cell division and differentiation to restore tissue integrity. Here we use consecutive serum deprivation and re-stimulation to reconstruct biphasic collective migration and proliferation in cultured sheets of human keratinocytes. In this system, a burst of long-range coordinated locomotion is rapidly generated throughout the cell sheet in the absence of wound edges. Migrating cohorts reach correlation lengths of several millimeters and display dependencies on epidermal growth factor receptor-mediated signaling, self-propelled polarized migration, and a G1/G0 cell cycle environment. The migration phase is temporally and spatially aligned with polarized cell divisions characterized by pre-mitotic nuclear migration to the cell front and asymmetric partitioning of nuclear promyelocytic leukemia bodies and lysosomes to opposite daughter cells. This study investigates underlying mechanisms contributing to the stark contrast between cells in a static quiescent state compared to the long-range coordinated collective migration seen in contact with blood serum. Epithelial sheet migration requires polarized and coordinated cell movement. Here, the authors demonstrate serum-activated collective migration followed by polarized asymmetric cell divisions in otherwise quiescent human keratinocyte monolayers in the absence of wound edges.
Collapse
|
47
|
Tripurani SK, Wang Y, Fan YX, Rahimi M, Wong L, Lee MH, Starost MF, Rubin JS, Johnson GR. Suppression of Wnt/β-catenin signaling by EGF receptor is required for hair follicle development. Mol Biol Cell 2018; 29:2784-2799. [PMID: 30188763 PMCID: PMC6249831 DOI: 10.1091/mbc.e18-08-0488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mice that lack the epidermal growth factor receptor (EGFR) fail to develop a hair coat, but the mechanism responsible for this deficit is not completely understood. Here, we show that EGFR plays a critical role to attenuate wingless-type MMTV integration site family member (Wnt)/β-catenin signaling during postnatal hair follicle development. Genetic ablation of EGFR in mice resulted in increased mitotic activity in matrix cells, apoptosis in hair follicles, and impaired differentiation of epithelial lineages that form hair. EGFR is activated in wild-type hair follicle stem cells marked with SOX9 or NFATc1 and is essential to restrain proliferation and support stem cell numbers and their quiescence. We observed elevated levels of Wnt4, 6, 7b, 10a, 10b, and 16 transcripts and hyperactivation of the β-catenin pathway in EGFR knockout follicles. Using primary keratinocytes, we linked ligand-induced EGFR activation to suppression of nascent mRNA synthesis of Wnt genes. Overexpression of the Wnt antagonist sFRP1 in mice lacking EGFR demonstrated that elevated Wnts are a major cause for the hair follicle defects. Colocalization of transforming growth factor α and Wnts regulated by EGFR in stem cells and progeny indicates that EGFR autocrine loops control Wnts. Our findings define a novel mechanism that integrates EGFR and Wnt/β-catenin pathways to coordinate the delicate balance between proliferation and differentiation during development.
Collapse
Affiliation(s)
- Swamy K Tripurani
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Yan Wang
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Ying-Xin Fan
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Massod Rahimi
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Lily Wong
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Min-Hyung Lee
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Matthew F Starost
- Diagnostic and Research Services Branch, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey S Rubin
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892
| | - Gibbes R Johnson
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| |
Collapse
|
48
|
He Y, Xu H, Li C, Zhang X, Zhou P, Xiao X, Zhang W, Wu Y, Zeng R, Wang B. Nicastrin/miR-30a-3p/RAB31 Axis Regulates Keratinocyte Differentiation by Impairing EGFR Signaling in Familial Acne Inversa. J Invest Dermatol 2018; 139:124-134. [PMID: 30120935 DOI: 10.1016/j.jid.2018.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Nicastrin (NCSTN) mutations are associated with familial acne inversa (AI), and emerging evidence suggests that microRNAs (miRNAs) are involved in various skin diseases. However, whether NCSTN mutations affect miRNA levels and their subsequent signaling pathways in familial AI patients has not been studied. We aimed to elucidate the relationship between NCSTN mutations and familial AI pathogenesis by investigating differential miRNA expression and their related pathways. Combined with miRNA microarray data from familial AI patients, Ncstn keratinocyte-specific-knockout (NcstnΔKC) mice and bioinformatics predictions showed that NCSTN mutations led to decreased miR-30a-3p levels, which negatively regulated RAB31 expression. Moreover, enhanced RAB31 levels accelerated degradation of activated EGFR, leading to abnormal differentiation in keratinocytes. The impaired EGFR signaling and its effects on epidermal differentiation were also observed in familial AI patients and NcstnΔKC mice. Thus, our study showed that miR-30a-3p/RAB31/EGFR signaling pathway may play a key role in the pathogenesis of familial AI with NCSTN mutations.
Collapse
Affiliation(s)
- Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xiaofeng Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengjun Zhou
- Department of Dermatology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuemin Xiao
- Department of Dermatology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Wanlu Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yingda Wu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Rong Zeng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Baoxi Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells. Nat Commun 2018; 9:2384. [PMID: 29921844 PMCID: PMC6008431 DOI: 10.1038/s41467-018-04761-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/20/2018] [Indexed: 12/24/2022] Open
Abstract
Cell-based small molecule screening is an effective strategy leading to new medicines. Scientists in the pharmaceutical industry as well as in academia have made tremendous progress in developing both large-scale and smaller-scale screening assays. However, an accessible and universal technology for measuring large numbers of molecular and cellular phenotypes in many samples in parallel is not available. Here we present the immuno-detection by sequencing (ID-seq) technology that combines antibody-based protein detection and DNA-sequencing via DNA-tagged antibodies. We use ID-seq to simultaneously measure 70 (phospho-)proteins in primary human epidermal stem cells to screen the effects of ~300 kinase inhibitor probes to characterise the role of 225 kinases. The results show an association between decreased mTOR signalling and increased differentiation and uncover 13 kinases potentially regulating epidermal renewal through distinct mechanisms. Taken together, our work establishes ID-seq as a flexible solution for large-scale high-dimensional phenotyping in fixed cell populations. Detecting proteins and post-translational modifications is important for drug screens, but the number of proteins measurable simultaneously is limited. Here the authors use antibodies tagged with DNA barcodes and high-throughput sequencing to detect up to 70 (phospho-)proteins in stem cells.
Collapse
|
50
|
Affiliation(s)
- Julia Etulain
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| |
Collapse
|