1
|
Huang J, Bastos-Arrieta J, Serrano N, Díaz-Cruz JM. Voltammetric Determination of Salbutamol, Sulfamethoxazole, and Trimethoprim as Anthropogenic Impact Indicators Using Commercial Screen-Printed Electrodes. SENSORS (BASEL, SWITZERLAND) 2025; 25:2998. [PMID: 40431793 PMCID: PMC12115316 DOI: 10.3390/s25102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
A voltammetric method based on the use of screen-printed carbon electrodes (SPCEs) is presented for the simultaneous determination of salbutamol (SAL), sulfamethoxazole (SMX), and trimethoprim (TMP), with high sensitivity, fast response, and excellent repeatability and reproducibility. Under the optimal voltammetric conditions, the simultaneous analysis showed linear ranges of 0.3-2.5 mg L-1, 0.3-11.1 mg L-1, and 0.5-9.0 mg L-1 for SAL, SMX, and TMP, respectively, and detection limits of 83.8 μg L-1, 88.7 μg L-1, and 139.2 μg L-1, respectively. Additionally, the developed method was successfully validated by the analysis of a spiked river water sample with satisfactory recovery values in the range of 97.0-98.8%. The added value of the presented method relays in combining cost-effective disposable SPCEs with rapid analysis (<30 s), providing portable electrochemical tools for the on-site monitoring of pharmaceutical residues, which is critical for addressing contamination linked to anthropogenic activity.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - Julio Bastos-Arrieta
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| |
Collapse
|
2
|
Bott-Neto JL, Martins TS, Pimentel GJC, Oliveira ON, Marken F. Photoelectrochemical Performance of Brookite Titanium Dioxide Electrodeposited on Graphene Foam for Portable Biosensors. ACS OMEGA 2024; 9:51474-51480. [PMID: 39758679 PMCID: PMC11696410 DOI: 10.1021/acsomega.4c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
We discuss the photoelectroanalytical performance of a brookite-phase titanium dioxide (TiO2) platform electrodeposited onto graphene foam (GF) at low temperatures. The scalable electrosynthesis process eliminates the need for thermal annealing, which is impractical for carbon-based electrodes. Films resulting from a 10 min electrodeposition (TiO2-10/GF) exhibit enhanced photocurrents, reaching 170 μA cm-2 GEO-twice the value for TiO2 films on traditional screen-printed carbon electrodes (82 μA cm-2 GEO). The increased photocurrent density makes TiO2-10/GF ideal for on-site photoelectrochemical biosensors as it allows for the use of compact systems with low-power LEDs.
Collapse
Affiliation(s)
- José L. Bott-Neto
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos, São Paulo 13560-970, Brazil
- Department
of Chemistry, University of Bath, Claverton Down, Bath, England BA2 7AY, U.K.
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Thiago S. Martins
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos, São Paulo 13560-970, Brazil
- Department
of Chemistry, Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, London, England W12 0BZ, U.K.
| | - Gabriel J. C. Pimentel
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos, São Paulo 13560-970, Brazil
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath, England BA2 7AY, U.K.
| |
Collapse
|
3
|
da Silva MKL, Barreto FC, Sousa GDS, Simões RP, Ahuja G, Dutta S, Mulchandani A, Cesarino I. Development of an Electrochemical Paper-Based Device Modified with Functionalized Biochar for the Screening of Paracetamol in Substandard Medicines. Molecules 2024; 29:5468. [PMID: 39598857 PMCID: PMC11597429 DOI: 10.3390/molecules29225468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The global prevalence of counterfeit and low-quality pharmaceuticals poses significant health risks and challenges in medical treatments, creating a need for rapid and reliable drug screening technologies. This study introduces a cost-effective electrochemical paper-based device (ePAD) modified with functionalized bamboo-derived biochar (BCF) for the detection of paracetamol in substandard medicines. The sensor was fabricated using a custom 3D-printed stencil in PLA, designed for efficient production, and a 60:40 (m/m) graphite (GR) and glass varnish (GV) conductive ink, resulting in a robust and sensitive platform. The electroactive area of the ePAD/BCF sensor was determined as 0.37 cm2. Characterization via SEM and cyclic voltammetry (CV) verified its structural and electrochemical stability. The sensor demonstrated linear detection of paracetamol from 5.0 to 60.0 µmol L-1 with a detection limit of 3.50 µmol L-1. Interference studies showed high selectivity, with recoveries of over 90%, and the sensor successfully quantified paracetamol in commercial analgesic and anti-flu samples. This sustainable, bamboo-based ePAD offers a promising solution for rapid on-site pharmaceutical quality control, with significant potential to enhance drug screening accuracy.
Collapse
Affiliation(s)
- Martin Kassio Leme da Silva
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (G.A.); (A.M.)
| | - Francisco Contini Barreto
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| | - Guilherme dos Santos Sousa
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| | - Rafael Plana Simões
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| | - Gaurav Ahuja
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (G.A.); (A.M.)
| | - Samriddha Dutta
- Department of Bioengineering, University of California, Riverside, CA 92521, USA;
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (G.A.); (A.M.)
| | - Ivana Cesarino
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| |
Collapse
|
4
|
Luo Y, Sun Y, Wei X, He Y, Wang H, Cui Z, Ma J, Liu X, Shu R, Lin H, Xu D. Detection methods for antibiotics in wastewater: a review. Bioprocess Biosyst Eng 2024; 47:1433-1451. [PMID: 38907838 DOI: 10.1007/s00449-024-03033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/09/2024] [Indexed: 06/24/2024]
Abstract
Antibiotics are widely used as fungicides because of their antibacterial and bactericidal effects. However, it is necessary to control their dosage. If the amount of antbiotics is too much, it cannot be completely metabolized and absorbed, will pollute the environment, and have a great impact on human health. Many antibiotics usually left in factory or aquaculture wastewater pollute the environment, so it is vital to detect the content of antibiotics in wastewater. This article summarizes several common methods of antibiotic detection and pretreatment steps. The detection methods of antibiotics in wastewater mainly include immunoassay, instrumental analysis method, and sensor. Studies have shown that immunoassay can detect deficient concentrations of antibiotics, but it is affected by external factors leading to errors. The detection speed of the instrumental analysis method is fast, but the repeatability is poor, the price is high, and the operation is complicated. The sensor is a method that is currently increasingly studied, including electrochemical sensors, optical sensors, biosensors, photoelectrochemical sensors, and surface plasmon resonance sensors. It has the advantages of fast detection speed, high accuracy, and strong sensitivity. However, the reproducibility and stability of the sensor are poor. At present, there is no method that can comprehensively integrate the advantages. This paper aims to review the enrichment and detection methods of antibiotics in wastewater from 2020 to the present. It also aims to provide some ideas for future research directions in this field.
Collapse
Affiliation(s)
- Yuting Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yiwei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xiuxia Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yuyang He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Haoxiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Zewen Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Jiaqi Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xingcai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Ruxin Shu
- Shanghai Tobacco Group Co. Ltd., Shanghai, 200082, People's Republic of China
| | - Huaqing Lin
- Shanghai Tobacco Group Co. Ltd., Shanghai, 200082, People's Republic of China
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
5
|
Tsokanas D, Aggelopoulos CA. Exploring the Synergistic Mechanisms of Nanopulsed Plasma Bubbles and Photocatalysts for Trimethoprim Degradation and Mineralization in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:815. [PMID: 38786772 PMCID: PMC11123754 DOI: 10.3390/nano14100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
In this study, the synergetic action of nanopulsed plasma bubbles (PBs) and photocatalysts for the degradation/mineralization of trimethoprim (TMP) in water was investigated. The effects of ZnO or TiO2 loading, plasma gas, and initial TMP concentration were evaluated. The physicochemical characterization of plasma-treated water, the quantification of plasma species, and the use of appropriate plasma species scavengers shed light on the plasma-catalytic mechanism. ZnO proved to be a superior catalyst compared to TiO2 when combined with plasma bubbles, mainly due to the increased production of ⋅OH and oxygen species resulting from the decomposition of O3. The air-PBs + ZnO system resulted in higher TMP degradation (i.e., 95% after 5 min of treatment) compared to the air-PBs + TiO2 system (i.e., 87%) and the PBs-alone process (83%). The plasma gas strongly influenced the process, with O2 resulting in the best performance and Ar being insufficient to drive the process. The synergy between air-PBs and ZnO was more profound (SF = 1.7), while ZnO also promoted the already high O2-plasma bubbles' performance, resulting in a high TOC removal rate (i.e., 71%). The electrical energy per order in the PBs + ZnO system was very low, ranging from 0.23 to 0.46 kWh/m3, depending on the plasma gas and initial TMP concentration. The study provides valuable insights into the rapid and cost-effective degradation of emerging contaminants like TMP and the plasma-catalytic mechanism of antibiotics.
Collapse
Affiliation(s)
- Dimitris Tsokanas
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Chemistry Department, University of Patras, 26504 Patras, Greece
| | - Christos A. Aggelopoulos
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| |
Collapse
|
6
|
Karrat A, Amine A. Innovative approaches to suppress non-specific adsorption in molecularly imprinted polymers for sensing applications. Biosens Bioelectron 2024; 250:116053. [PMID: 38266615 DOI: 10.1016/j.bios.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic antibodies developed to bind selectively with specific molecules. They function through a particular recognition process involving their cavities and functional groups. Nevertheless, functional groups located outside these cavities are the main cause of non-specific molecule binding, thus reducing the effectiveness of MIPs in sensing applications. This work focused on enhancing the selectivity and performance of MIPs through electrostatic modification with surfactants. The study investigates the use of two surfactants, namely sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB), to eliminate non-specific adsorption in MIPs. The binding isotherms of the target molecule sulfamethoxazole (SMX) on MIPs and non-imprinted polymers (NIPs) were analyzed, showing higher adsorption capacity of MIPs due to the specific cavities. The modification with SDS or CTAB effectively eliminated non-specific adsorption in MIPs. The kinetic adsorption behavior further demonstrated the efficacy of MIP+--SDS/CTAB in the selective adsorption of SMX. Calibration curves showcase the methodology's analytical capabilities, achieving low limit of detection for SMX 6 ng mL-1 using MIP +-SDS. The stability study confirmed that the developed MIP +/--SDS/CTAB remains stable even at high temperatures, demonstrating its suitability for on-site applications. The methodology was successfully applied to detect SMX in milk and water samples, achieving promising recoveries. Overall, the electrostatic modification of MIPs with surfactants emerges as a valuable strategy for enhancing selectivity and performance in target molecule recognition and detection.
Collapse
Affiliation(s)
- Abdelhafid Karrat
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco.
| |
Collapse
|
7
|
Wang L, Zhang Y, Zeng DP, Zhu Y, Ling Z, Wang Y, Yang J, Wang H, Xu ZL, Tian Y, Sun Y, Shen YD. Development of an Open Droplet Microchannel-Based Magnetosensor for Immunofluorometric Assay of Trimethoprim in Chicken and Pork Samples with a Wide Linear Range. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6772-6780. [PMID: 38478886 DOI: 10.1021/acs.jafc.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Trimethoprim (TMP), functioning as a synergistic antibacterial agent, is utilized in diagnosing and treating diseases affecting livestock and poultry. Human consumption of the medication indirectly may lead to its drug accumulation in the body and increase drug resistance due to its prolonged metabolic duration in livestock and poultry, presenting significant health hazards. Most reported immunoassay techniques, such as ELISA and immunochromatographic assay (ICA), find it challenging to achieve the dual advantages of high sensitivity, simplicity of operation, and a wide detection range. Consequently, an open droplet microchannel-based magnetosensor for immunofluorometric assay (OMM-IFA) of trimethoprim was created, featuring a gel imager to provide a signal output derived from the highly specific antibody (Ab) targeting trimethoprim. The method exhibited high sensitivity in chicken and pork samples, with LODs of 0.300 and 0.017 ng/mL, respectively, and a wide linear range, covering trimethoprim's total maximum residue limits (MRLs). Additionally, the spiked recoveries in chicken and pork specimens varied between 81.6% and 107.9%, maintaining an acceptable variation coefficient below 15%, aligning well with the findings from the ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique. The developed method achieved a much wider linear range of about 5 orders of magnitude of 10-2-103 levels with grayscale signals as the output signal, which exhibited high sensitivity, excellent applicability and simple operability based on magnetic automation.
Collapse
Affiliation(s)
- Lei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongyi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dao-Ping Zeng
- Wens Institute, Wens Foodstuff Groups Co., Ltd., Yunfu 527499, China
| | - Yuxian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhou Ling
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 510410, China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
El Hani O, García-Guzmán JJ, Palacios-Santander JM, Digua K, Amine A, Cubillana-Aguilera L. Development of a molecularly imprinted membrane for selective, high-sensitive, and on-site detection of antibiotics in waters and drugs: Application for sulfamethoxazole. CHEMOSPHERE 2024; 350:141039. [PMID: 38147923 DOI: 10.1016/j.chemosphere.2023.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
Sulfonamides are among the widespread bacterial antibiotics. Despite this, their quick emergence constitutes a serious problem for ecosystems and human health. Therefore, there is an increased interest in developing relevant detection method for antibiotics in different matrices. In this work, a straightforward, green, and cost-effective protocol was proposed for the preparation of a selective molecularly imprinted membrane (MIM) of sulfamethoxazole (SMX), a commonly used antibiotic. Thus, cellulose acetate was used as the functional polymer, while polyethylene glycol served as a pore-former. The developed MIM was successfully characterized through scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The MIM was used as a sensing platform in conjunction with a smartphone for optical readout, enabling on-site, selective, and highly sensitive detection of SMX. In this way, a satisfactory imprinting factor of around 3.6 and a limit of detection of 2 ng mL-1 were reached after applying response surface methodologies, including Box-Behnken and central composite designs. Besides, MIM demonstrated its applicability for the accurate and selective detection of SMX in river waters, wastewater, and drugs. Additionally, the MIM was shown to be a valuable sorbent in a solid-phase extraction protocol, employing a spin column setup that offered rapid and reproducible results. Furthermore, the developed sensing platform exhibited notable regeneration properties over multiple cycles and long shelf-life in different storage conditions. The newly developed methodology is of crucial importance to overcome the limitations of classical imprinting polymers. Furthermore, the smartphone-based platform was used to surpass the typically expensive and complicated methods of detection.
Collapse
Affiliation(s)
- Ouarda El Hani
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia, Morocco; Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain.
| | - Khalid Digua
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia, Morocco.
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
9
|
Shi M, Shi P, Yang X, Zhao N, Wu M, Li J, Ye C, Li H, Jiang N, Li X, Lai G, Xie WF, Fu L, Wang G, Zhu Y, Tsai HS, Lin CT. A promising electrochemical sensor based on PVP-induced shape control of a hydrothermally synthesized layered structured vanadium disulfide for the sensitive detection of a sulfamethoxazole antibiotic. Analyst 2024; 149:386-394. [PMID: 38050732 DOI: 10.1039/d3an01355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The presence of sulfamethoxazole (SMX) in natural waters has become a significant concern recently because of its detrimental effects on human health and the ecological environment. To address this issue, it is of utmost urgency to develop a reliable method that can determine SMX at ultra-low levels. In our research, we utilized PVP-induced shape control of a hydrothermal synthesis method to fabricate layer-like structured VS2, and employed it as an electrode modification material to prepare an electrochemical sensor for the sensitive determination of SMX. Thus, our prepared VS2 electrodes exhibited a linear range of 0.06-10.0 μM and a limit of detection (LOD) as low as 47.0 nM (S/N = 3) towards SMX detection. Additionally, the electrochemical sensor presented good agreement with the HPLC method, and afforded perfect recovery results (97.4-106.8%) in the practical analysis. The results validated the detection accuracy of VS2 electrodes, and demonstrated their successful applicability toward the sensitive determination of SMX in natural waters. In conclusion, this research provides a promising approach for the development of electrochemical sensors based on VS2 composite materials.
Collapse
Affiliation(s)
- Mingjiao Shi
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, P.R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinxin Yang
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, P.R. China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Li
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China.
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - He Li
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Nan Jiang
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan-Feng Xie
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, 266071, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Hsu-Sheng Tsai
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001, Harbin, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
10
|
Coronado-Apodaca KG, Rodríguez-De Luna SE, Araújo RG, Oyervides-Muñoz MA, González-Meza GM, Parra-Arroyo L, Sosa-Hernandez JE, Iqbal HM, Parra-Saldivar R. Occurrence, transport, and detection techniques of emerging pollutants in groundwater. MethodsX 2023; 10:102160. [PMID: 37095869 PMCID: PMC10122002 DOI: 10.1016/j.mex.2023.102160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Emerging pollutants (EPs) are a group of different contaminants, such as hormones, pesticides, heavy metals, and drugs, usually found in concentrations between the order of ng and µg per liter. The global population's daily city and agro-industrial activities release EPs into the environment. Due to the chemical nature of EPs and deficient wastewater treatment and management, they are transported to superficial and groundwater through the natural water cycle, where they can potentially cause harmful effects on living organisms. Recent efforts have focused on developing technology that allows EPs quantification and monitoring in real-time and in situ. The newly developed technology aims to provide accessible groundwater management that detects and treats EPs while avoiding their contact with living beings and their toxic effects. This review presents some of the recently reported techniques that have been applied to advance the detection of EPs in groundwater and potential technologies that can be used for EP removal.
Collapse
Affiliation(s)
- Karina G. Coronado-Apodaca
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Sofía E. Rodríguez-De Luna
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Rafael G. Araújo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Georgia María González-Meza
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Lizeth Parra-Arroyo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernandez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
11
|
Torrinha Á, Tavares M, Dibo V, Delerue-Matos C, Morais S. Carbon Fiber Paper Sensor for Determination of Trimethoprim Antibiotic in Fish Samples. SENSORS (BASEL, SWITZERLAND) 2023; 23:3560. [PMID: 37050620 PMCID: PMC10099197 DOI: 10.3390/s23073560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The increase in anthropogenic pollution raises serious concerns regarding contamination of water bodies and aquatic species with potential implications on human health. Pharmaceutical compounds are a type of contaminants of emerging concern that are increasingly consumed and, thus, being frequently found in the aquatic environment. In this sense, an electrochemical sensor based on an unmodified and untreated carbon fiber paper (CPS-carbon paper sensor) was simply employed for the analysis of trimethoprim antibiotic in fish samples. First, the analytical conditions were thoroughly optimized in order for the CPS to achieve maximum performance in trimethoprim determination. Therefore, an electrolyte (0.1 M Britton-Robinson buffer) pH of 7 was selected and for square wave voltammetry parameters, optimum values of amplitude, frequency and step potential corresponded to 0.02 V, 50 Hz, and 0.015 V, respectively, whereas the deposition of analyte occurred at +0.7 V for 60 s. In these optimum conditions, the obtained liner range (0.05 to 2 µM), sensitivity (48.8 µA µM-1 cm-2), and LOD (0.065 µM) competes favorably with the commonly used GCE-based sensors or BDD electrodes that employ nanostructuration or are more expensive. The CPS was then applied for trimethoprim determination in fish samples after employing a solid phase extraction procedure based on QuEChERS salts, resulting in recoveries of 105.9 ± 1.8% by the standard addition method.
Collapse
|
12
|
Manivannan B, Nallathambi G, Devasena T. Alternative methods of monitoring emerging contaminants in water: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2009-2031. [PMID: 36128976 DOI: 10.1039/d2em00237j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities have steadily increased the release of emerging contaminants (ECs) in aquatic bodies, and these ECs may have adverse effects on humans even at their trace (μg L-1) levels. Their occurrence in wastewater systems is more common, and the current wastewater treatment facilities are inefficient in eliminating many of such persistent ECs. "Gold standard" techniques such as chromatography, mass spectrometry, and other high-resolution mass spectrometers are used for the quantification of ECs of various kinds, but they all have significant limitations. This paper reviews the alternative methods for EC detection, which include voltammetry, potentiometry, amperometry, electrochemical impedance spectroscopy (EIS) based electrochemical methods, colorimetry, surface-enhanced Raman spectroscopy (SERS), fluorescence probes, and fluorescence spectroscopy-based optical techniques. These alternative techniques have several advantages over conventional techniques, including low sample volume, excludes solid phase extraction procedure, high sensitivity, selectivity, portability, reproducibility, rapidity, low cost, and the ability to monitor ECs in real time. This review summarises each of the alternative methods for detecting ECs in water samples and their respective limits of detection (LODs). The sensitivity of each technique varied depending on the type of EC measured, type of electrochemical probe and electrode, substrates, type of nanoparticle (NP), the physicochemical parameters of water samples tested, and more. Nevertheless, this paper also focuses on some of the current challenges encountered by these alternative methods in monitoring ECs.
Collapse
Affiliation(s)
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
13
|
Parshina A, Yelnikova A, Safronova E, Kolganova T, Kuleshova V, Bobreshova O, Yaroslavtsev A. Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Functionalized CNTs for Determination of Sulfamethoxazole and Trimethoprim in Pharmaceuticals. MEMBRANES 2022; 12:1091. [PMID: 36363646 PMCID: PMC9695963 DOI: 10.3390/membranes12111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Sulfamethoxazole and trimethoprim are synthetic bacteriostatic drugs. A potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. Perfluorosulfonic acid membranes containing functionalized CNTs were used as the sensor materials. The CNTs' surface was modified by carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. The influence of the CNT concentration and the properties of their surface, as well as preliminary ultrasonic treatment of the polymer and CNT solution before the casting of hybrid membranes, on their ion-exchange capacity, water uptake, and transport properties was revealed. Cross-sensitivity of the sensors to the analytes was achieved due to ion exchange and hydrophobic interactions with hybrid membranes. An array of cross-sensitive sensors based on the membranes containing 1.0 wt% of CNTs with sulfonic acid or (3-aminopropyl)trimethoxysilanol groups enabled us to provide the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous solutions with a concentration ranging from 1.0 × 10-5 to 1.0 × 10-3 M (pH 4.53-8.31). The detection limits of sulfamethoxazole and trimethoprim were 3.5 × 10-7 and 1.3 × 10-7 М. The relative errors of sulfamethoxazole and trimethoprim determination in the combination drug as compared with the content declared by the manufacturer were 4% (at 6% RSD) and 5% (at 7% RSD).
Collapse
Affiliation(s)
- Anna Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Anastasia Yelnikova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina Safronova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Tatyana Kolganova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Victoria Kuleshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Olga Bobreshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| |
Collapse
|
14
|
Khosropour H, Maeboonruan N, Sriprachuabwong C, Tuantranont A, Laiwattanapaisal W. A new double signal on electrochemical aptasensor based on gold nanoparticles/graphene nanoribbons/MOF-808 as enhancing nanocomposite for ultrasensitive and selective detection of carbendazim. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Sawkar RR, Shanbhag MM, Tuwar SM, Veerapur RS, Shetti NP. Glucose Incorporated Graphite Matrix for Electroanalysis of Trimethoprim. BIOSENSORS 2022; 12:909. [PMID: 36291048 PMCID: PMC9599278 DOI: 10.3390/bios12100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The antibiotic drug trimethoprim (TMP) is used to treat bacterial infections in humans and animals, and frequently TMP is used along with sulfonamides. However, a large portion of TMP is excreted in its active state, which poses a severe problem to humans and the environment. A sensitive, rapid, cost-effective analytical tool is required to monitor the TMP concentration in biological and environmental samples. Hence, this study proposed an analytical methodology to analyze TMP in clinical, biological and environmental samples. The investigations were carried out using a glucose-modified carbon paste electrode (G-CPE) employing voltammetric techniques. Electrochemical behavior was examined with 0.5 mM TMP solution at optimum pH 3.4 (Phosphate Buffer Solution, I = 0.2 M). The influence of scan rate on the electro-oxidation of TMP was studied within the range of 0.05 to 0.55 V/s. The effect of pH and scan rate variations revealed proton transfer during oxidation. Moreover, diffusion phenomena governed the irreversibility of the electrode reaction. A probable and suitable electrode interaction and reaction mechanism was proposed for the electrochemical oxidation of TMP. Further, the TMP was quantitatively estimated with the differential pulse voltammetry (DPV) technique in the concentration range from 9.0 × 10-7 to 1.0 × 10-4 M. The tablet, spiked water and urine analysis demonstrated that the selected method and developed electrode were rapid, simple, sensitive, and cost-effective.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Ravindra S. Veerapur
- Department of Metallurgy & Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe 5196, Malawi
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India
| |
Collapse
|
16
|
Electrochemical paper-based analytical devices containing magnetite nanoparticles for the determination of vitamins B2 and B6. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Kumar S, Pratap S, Kumar V, Mishra RK, Gwag JS, Chakraborty B. Electronic, transport, magnetic and optical properties of graphene nanoribbons review. LUMINESCENCE 2022. [PMID: 35850156 DOI: 10.1002/bio.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Low dimensional materials have attracted great research interest from both theoretical and experimental point of view. These materials exhibit novel physical and chemical properties due to the confinement effect in low dimensions. The experimental observations of graphene open a new platform to study the physical properties of materials restricted to two dimensions. This featured article provides a review on the novel properties of quasi one-dimensional (1D) material known as graphene nanoribbon. Graphene nanoribbons can be obtained by unzipping carbon nanotubes (CNTs) or cutting the graphene sheet. Alternatively, it is also called the finite termination of graphene edges. It gives rise different edge geometries namely zigzag and armchair among others. There are various physical and chemical techniques to realize these materials. Depending on the edge type termination, these are called the zigzag and armchair graphene nanoribbons (ZGNR and AGNR). These edges play an important role in controlling the properties of graphene nanoribbons. The present review article provides an overview of the electronic, transport, optical and magnetic properties of graphene nanoribbons. However, there are different ways to tune these properties for device applications. Here, some of them are highlighted such as external perturbations and chemical modifications. Few applications of graphene nanoribbon have and chemical modifications. Few applications of graphene nanoribbon have also been briefly discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Surender Pratap
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Vipin Kumar
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
18
|
Martins TS, Bott-Neto JL, Machado SAS, Oliveira ON. Label-Free Electrochemical Immunosensor Made with Tree-like Gold Dendrites for Monitoring 25-Hydroxyvitamin D3 Metabolite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31455-31462. [PMID: 35776164 DOI: 10.1021/acsami.2c08381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible, fully printed immunosensors can meet the requirements of precision nutrition, but this demands optimized molecular architectures to reach the necessary sensitivity. Herein, we report on flexible and label-free immunosensor chips made with tree-like gold dendrites (AuDdrites) electrochemically formed by selective desorption of l-cysteine (L-cys) on (111) gold planes. Electrodeposition was used because it is scalable and cost-effective for a rapid, direct growth of Au hyperbranched dendritic structures. The 25-hydroxyvitamin D3 (25(OH)D3) metabolite was detected within 15 min with a limit of detection (LOD) of 0.03 ng mL-1. This high performance was possible due to the careful optimization of the electroactive layer and working conditions for square wave voltammetry (SWV). Electrocrystallization was manipulated by controlling the deposition potential and the molar ratio between HAuCl4 and L-cys. Metabolite detection was performed on human serum and saliva samples with adequate recovery between 97% and 100%. The immunosensors were stable and reproducible, unresponsive to interference from other molecules in human serum and saliva. They can be extended for use as wearable sensors with their mechanical flexibility and possible customization.
Collapse
Affiliation(s)
- Thiago S Martins
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - José L Bott-Neto
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
19
|
Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Polyaniline and PEDOT for Multicomponent Analysis of Sulfacetamide Pharmaceuticals. Polymers (Basel) 2022; 14:polym14132545. [PMID: 35808592 PMCID: PMC9269069 DOI: 10.3390/polym14132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The degradation of sulfacetamide with the formation of sulfanilamide leads to a deterioration in the quality of pharmaceuticals. In this work, potentiometric sensors for the simultaneous determination of sulfanilamide, sulfacetamide and inorganic ions, and for assessing the degradation of pharmaceuticals were developed. A multisensory approach was used for this purpose. The sensor cross-sensitivity to related analytes was achieved using perfluorosulfonic acid membranes with poly(3,4-ethylenedioxythiophene) or polyaniline as dopants. The composite membranes were prepared by oxidative polymerization and characterized using FTIR and UV-Vis spectroscopy, and SEM. The influence of the preparation procedure and the dopant concentration on the membrane hydrophilicity, ion-exchange capacity, water uptake, and transport properties was investigated. The characteristics of the potentiometric sensors in aqueous solutions containing sulfanilamide, sulfacetamide and alkali metals ions in a wide pH range were established. The introduction of proton-acceptor groups and π-conjugated moieties into the perfluorosulfonic acid membranes increased the sensor sensitivity to organic analytes. The relative errors of sulfacetamide and sulfanilamide determination in the UV-degraded eye drops were 1.2 to 1.4 and 1.7 to 4%, respectively, at relative standard deviation of 6 to 9%.
Collapse
|
20
|
Fu L, Mao S, Chen F, Zhao S, Su W, Lai G, Yu A, Lin CT. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE 2022; 297:134127. [PMID: 35240147 DOI: 10.1016/j.chemosphere.2022.134127] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The residues of antibiotics in the environment pose a potential health hazard, so highly sensitive detection of antibiotics has always appealed to analytical chemists. With the widespread use of new low-dimensional materials, graphene-modified electrochemical sensors have emerged as an excellent candidate for highly sensitive detection of antibiotics. Graphene, its derivatives and its composites have been used in this field of exploration in the last decade. In this review, we have not only described the field using traditional summaries, but also used bibliometrics to quantify the development of the field. The literature between 2011 and 2021 was included in the analysis. Also, the sensing performance and detection targets of different sensors were compared. We were able to trace not only the flow of research themes, but also the future areas of development. Graphene is a material that has a high potential to be used on a large scale in the preparation of electrochemical sensors. How to design a sensor with selectivity and low cost is the key to bring this material from the laboratory to practical applications.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
21
|
Bott-Neto JL, Martins TS, Buscaglia LA, Machado SAS, Oliveira ON. Photocatalysis of TiO 2 Sensitized with Graphitic Carbon Nitride and Electrodeposited Aryl Diazonium on Screen-Printed Electrodes to Detect Prostate Specific Antigen under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22114-22121. [PMID: 35324137 DOI: 10.1021/acsami.2c03106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report on a photoelectrochemical (PEC) device to detect prostatic-specific antigen (PSA) under visible LED light irradiation within the point-of-care (POC) paradigm. The device consists of a 3D printed miniaturized photoelectrochemical system and a disposable PEC immunosensor made with screen-printed carbon electrodes (SPCEs). The SPCEs were coated with nickel single atoms anchored on graphitic carbon nitride (Ni-gC3N4), titanium dioxide nanoparticles (TiO2), and aryl diazonium salt prepared from p-aminobenzoic acid. The electrodeposited aryl diazonium on Ni-gC3N4/TiO2 decreased the recombination of photogenerated charge carriers, leading to a 3.1-fold increase in the photocurrent compared to pure TiO2. This functionalization strategy provides carboxylic groups to anchor antibodies via the carbodiimide reaction, which may be extended to any other type of immunosensor. Under optimal conditions, the PEC immunosensor was able to detect PSA from 10-16 to 10-8 g mL-1 with a detection limit of 0.06 fg mL-1. The device robustness was confirmed with reproducibility and stability tests. PSA could also be detected in human serum samples, which demonstrates the potential of the PEC immunosensor for clinical diagnosis.
Collapse
Affiliation(s)
- José L Bott-Neto
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP Brazil
| | - Thiago S Martins
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP Brazil
| | - Lorenzo A Buscaglia
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP Brazil
| |
Collapse
|
22
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Gavrilaș S, Ursachi CȘ, Perța-Crișan S, Munteanu FD. Recent Trends in Biosensors for Environmental Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:1513. [PMID: 35214408 PMCID: PMC8879434 DOI: 10.3390/s22041513] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 05/07/2023]
Abstract
The monitoring of environmental pollution requires fast, reliable, cost-effective and small devices. This need explains the recent trends in the development of biosensing devices for pollutant detection. The present review aims to summarize the newest trends regarding the use of biosensors to detect environmental contaminants. Enzyme, whole cell, antibody, aptamer, and DNA-based biosensors and biomimetic sensors are discussed. We summarize their applicability to the detection of various pollutants and mention their constructive characteristics. Several detection principles are used in biosensor design: amperometry, conductometry, luminescence, etc. They differ in terms of rapidity, sensitivity, profitability, and design. Each one is characterized by specific selectivity and detection limits depending on the sensitive element. Mimetic biosensors are slowly gaining attention from researchers and users due to their advantages compared with classical ones. Further studies are necessary for the development of robust biosensing devices that can successfully be used for the detection of pollutants from complex matrices without prior sample preparation.
Collapse
Affiliation(s)
| | | | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, Tourism and Environmental Protection, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.G.); (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
24
|
Brazaca LC, Imamura AH, Gomes NO, Almeida MB, Scheidt DT, Raymundo-Pereira PA, Oliveira ON, Janegitz BC, Machado SAS, Carrilho E. Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2. Anal Bioanal Chem 2022; 414:5507-5517. [PMID: 35169906 PMCID: PMC8853172 DOI: 10.1007/s00216-022-03956-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
This paper reports the development of a low-cost (< US$ 0.03 per device) immunosensor based on gold-modified screen-printed carbon electrodes (SPCEs). As a proof of concept, the immunosensor was tested for a fast and sensitive determination of S proteins from both SARS-CoV and SARS-CoV-2, by a single disposable device. Gold nanoparticles were electrochemically deposited via direct reduction of gold ions on the electrode using amperometry. Capture antibodies from spike (S) protein were covalently immobilized on carboxylic groups of self-assembled monolayers (SAM) of mercaptoacetic acid (MAA) attached to the gold nanoparticles. Label-free detection of S proteins from both SARS-CoV and SARS-CoV-2 was performed with electrochemical impedance spectroscopy (EIS). The immunosensor fabricated with 9 s gold deposition had a high performance in terms of selectivity, sensitivity, and low limit of detection (LOD) (3.16 pmol L-1), thus permitting the direct determination of the target proteins in spiked saliva samples. The complete analysis can be carried out within 35 min using a simple one-step assay protocol with small sample volumes (10 µL). With such features, the immunoplatform presented here can be deployed for mass testing in point-of-care settings.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Nathalia Oezau Gomes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Desirée Tamara Scheidt
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | | | - Osvaldo N Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | | | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
25
|
Electrochemical sensors for sulfamethoxazole detection based on graphene oxide/graphene layered composite on indium tin oxide substrate. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Production of copper-graphene nanocomposite as a voltammetric sensor for determination of anti-diabetic metformin using response surface methodology. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
A sandwich-type electrochemical immunosensor based on Au-rGO composite for CA15-3 tumor marker detection. Mikrochim Acta 2021; 189:38. [PMID: 34958417 DOI: 10.1007/s00604-021-05145-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023]
Abstract
A sensitive detection of carbohydrate antigen 15-3 (CA15-3) levels may allow for early diagnosis and monitoring the treatment of breast cancer, but this can only be made in routine clinical practice if low-cost immunosensors are available. In this work, we developed a sandwich-type electrochemical immunosensor capable of rapid detection of CA15-3 with an ultra-low limit of detection (LOD) of 0.08 fg mL-1 within a wide linear concentration range from 0.1 fg mL-1 to 1 µg mL-1. The immunosensor had a matrix of a layer-by-layer film of Au nanoparticles and reduced graphene oxide (Au-rGO) co-electrodeposited on screen-printed carbon electrodes (SPCE). The high sensitivity was achieved by using secondary antibodies (Ab2) labeled with horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2) as signal amplifiers, and hydroquinone (HQ) was used as an electron mediator. The immunosensor was selective for CA15-3 in human serum and artificial saliva samples, robust, and stable to permit storage at 4 °C for more than 30 days. With its high performance, the immunosensor may be incorporated into future point-of-care (POC) devices to determine CA15-3 in distinct biological fluids, including in blood and saliva samples.
Collapse
|
28
|
D Tecuapa-Flores E, Hernández JG, Roquero-Tejeda P, Arenas-Alatorre JA, Thangarasu P. Rapid electrochemical recognition of trimethoprim in human urine samples using new modified electrodes (CPE/Ag/Au NPs) analysing tunable electrode properties: experimental and theoretical studies. Analyst 2021; 146:7653-7669. [PMID: 34806723 DOI: 10.1039/d1an01408k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pharmaceutical effluents are a serious environmental issue, which require to be treated by a suitable technique; thus, the electrochemical process is actively considered as a viable method for the treatment. In this work, new carbon paste electrodes (CPEs) were fabricated by compressing gold and silver nanoparticles (NPs), namely, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs and then completely characterized by different analytical methods. The performance of the electrodes was studied after determining their surface area (×10-6 cm2) as 4.17, 5.05, 5.27, and 5.12, producing high anodic currents for K4[Fe(CN)6] compared to the commercial electrode. This agrees with the results of impedance study, where the electron transfer rate constants (kapp, ×10-3 cm s-1) were determined to be 28.7, 42.6, 41.0, and 101.4 for CPE, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively, through the Bode plot-phase shifts. This is consistent with the charge transfer resistance (RCT, Ω), resulting as 171 for CPE/Ag/Au NPs < 395 for CPE/Ag NPs < 427 for CPE/Au NPs and < 742 for CPE. Therefore, these electrodes were employed to detect trimethoprim (TMP) since metallic NPs contribute good crystallinity, stability, conduciveness, and surface plasmon resonance to the CPE, convalescing the sensitivity; comprehensively, they were applied for its detection in real water and human urine samples, and the limit of detection (LOD) was as low as 0.026, 0.032, and 0.026 μmol L-1 for CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively. In contrast, unmodified CPE was unable to detect TMP due to the lack of efficiency. The developed technique shows excellent electrochemical recovery of 92.3 and 97.1% in the urine sample. Density functional theory (DFT) was used to explain the impact of the metallic center in graphite through density of states (DOS).
Collapse
Affiliation(s)
- Eduardo D Tecuapa-Flores
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| | - José Guadalupe Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México, Estado de México, CP 57130, Mexico
| | - Pedro Roquero-Tejeda
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| | - Jesús A Arenas-Alatorre
- Instituto de Fisica, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| |
Collapse
|
29
|
Fabrication of paper-based analytical devices using a PLA 3D-printed stencil for electrochemical determination of chloroquine and escitalopram. J Solid State Electrochem 2021; 26:581-586. [PMID: 34751209 PMCID: PMC8566020 DOI: 10.1007/s10008-021-05075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
In recent years, the use of prescribed and non-prescribed drugs has increased. Therefore, advances in new technologies and sensors for detecting molecules in natural environments are required. In this work, a 3D-printed polylactic acid stencil is used to fabricate paper-based analytical devices (ePADs). Herein, we report the use of carbon-based lab-manufactured conductive ink for the fabrication of sensors towards the detection of chloroquine and escitalopram. For each batch, eight ePADs were successfully fabricated. Firstly, the fabricated sensors were evaluated morphologically by scanning electron microscopy and electrochemically by cyclic voltammetry and electrochemical impedance spectroscopy experiments. The sensors displayed a well-defined voltammetric profile in the presence of the redox couple, when compared to a commercial carbon screen-printed electrode. Differential pulse voltammetry conducted the detection of chloroquine and escitalopram with detection limits of 4.0 and 0.5 µmol L−1, respectively. The ePADs fabricated using the 3D stencil are here presented as alternatives for the fabrication of electrochemical analytical devices.
Collapse
|
30
|
Zhai T, Li R, Zhang N, Zhao L, He M, Tan L. Simultaneous Detection of Sulfite and Nitrite on Graphene Oxide Nanoribbons‐gold Nanoparticles Composite Modified Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202100525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tingting Zhai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 PR China
| | - Rui Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 PR China
| | - Ningning Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 PR China
| | - Lixin Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 PR China
| | - Mengting He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 PR China
| | - Liang Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 PR China
| |
Collapse
|
31
|
Batch injection analysis with amperometric detection for fluoroquinolone determination in urine, pharmaceutical formulations, and milk samples using a reduced graphene oxide-modified glassy carbon electrode. Anal Bioanal Chem 2021; 414:5309-5318. [PMID: 33890118 DOI: 10.1007/s00216-021-03342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
In this work, the batch injection analysis system with amperometric detection using reduced graphene oxide as a modifier of glassy carbon electrode (GCE) was investigated for the simple, fast, and sensitive monitoring of levofloxacin (LEVO) and ciprofloxacin (CIPRO) in samples of pharmaceutical formulations, synthetic urine, and milk (low- and high-fat content). LEVO and CIPRO were quantified in seven samples using amperometric measurements at +1.10 V vs Ag/AgCl, KCl(sat). The developed methods showed excellent analytical performance with limits of detection of 0.30 and 0.16 μmol L-1, linear range from 3.0 to 50 μmol L-1 and 1.0 to 50 μmol L-1, relative standard deviation below 9.7 and 3.1%, and recovery ranges ranging from 80 to 107% and from 78 to 109% for LEVO and CIPRO, respectively. In addition, the minimum sample preparation (simple dilution) combined with a high analytical frequency (130 to 180 analyses per hour) can be highlighted. Thus, the methods are promising for implementation in routine analysis and quality control to different samples.
Collapse
|