1
|
Peña-Álvarez V, Asensio V, Baragaño D, Forján R, Peláez AI, Gallego JLR. Integrated landfarming strategy for remediation of HCH-contaminated soil: Synergistic effects of bioaugmentation, organic amendments, and nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137637. [PMID: 39983642 DOI: 10.1016/j.jhazmat.2025.137637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Hexachlorocyclohexane (HCH) isomers are toxic and persistent pollutants that pose serious risks to the environment and human health. Here we tested the capacity of various nature-based solutions to degrade HCH in contaminated soils of O Porriño area (Galicia, Spain). To this end, eight microcosms were established using combinations of tailor-made biostabilized organic amendments, nanoscale zero-valent iron (nZVI), and an autochthonous microbial inoculum. Throughout a 60-day experiment, we conducted HCH quantification, leachability tests, bacterial community analysis, and soil health assessment. Our results showed that landfarming alone achieved a reduction of up to 83 % in ∑HCH concentrations, demonstrating its cost-effectiveness, facilitated by the physical disruption of HCH aggregates and the presence of HCH-degrading bacteria as Sphingobium, Mesorhizobium and Cupriavidus. Organic amendments did not improve the HCH degradation rate of landfarming, but, notably, reduced HCH leachability and improved soil properties; the combination of the inoculum with the organic amendments revealed the same positive effects but a higher HCH depletion similar to that of landfarming. Thus, the synergistic effects of organic amending and inoculum in an integrated landfarming allows a reduction of the environmental risk and a potential long-term soil restoration, while a landfarming without amendments appear as a cost-effective option but only to reduce HCH contents. These findings aim to provide valuable insights into integrated approach for HCH large-scale landfarming remediation.
Collapse
Affiliation(s)
- Verónica Peña-Álvarez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | | | - Diego Baragaño
- Instituto Geológico y Minero de España (IGME-CSIC), Oviedo, Spain
| | - Rubén Forján
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain
| | - Ana Isabel Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain.
| |
Collapse
|
2
|
Malwe A, Longwani U, Sharma V. XenoBug: machine learning-based tool to predict pollutant-degrading enzymes from environmental metagenomes. NAR Genom Bioinform 2025; 7:lqaf037. [PMID: 40314024 PMCID: PMC12044416 DOI: 10.1093/nargab/lqaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/09/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
Application of machine learning-based methods to identify novel bacterial enzymes capable of degrading a wide range of xenobiotics offers enormous potential for bioremediation of toxic and carcinogenic recalcitrant xenobiotics such as pesticides, plastics, petroleum, and pharmacological products that adversely impact ecology and health. Using 6814 diverse substrates involved in ∼141 200 biochemical reactions, we have developed 'XenoBug', a machine learning-based tool that predicts bacterial enzymes, enzymatic reaction, the species capable of biodegrading xenobiotics, and the metagenomic source of the predicted enzymes. For training, a hybrid feature set was used that comprises 1603 molecular descriptors and linear and circular fingerprints. It also includes enzyme datasets consisting of ∼3.3 million enzyme sequences derived from an environmental metagenome database and ∼16 million enzymes from ∼38 000 bacterial genomes. For different reaction classes, XenoBug shows very high binary accuracies (>0.75) and F1 scores (>0.62). XenoBug is also validated on a set of diverse classes of xenobiotics such as pesticides, environmental pollutants, pharmacological products, and hydrocarbons known to be degraded by the bacterial enzymes. XenoBug predicted known as well as previously unreported metabolic enzymes for the degradation of molecules in the validation set, thus showing its broad utility to predict the metabolism of any input xenobiotic molecules. XenoBug is available on: https://metabiosys.iiserb.ac.in/xenobug.
Collapse
Affiliation(s)
- Aditya S Malwe
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Usha Longwani
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| |
Collapse
|
3
|
Leal-Duaso A, Salvatella L, Fraile JM. Physical-chemical transformations for the remediation and valorization of hexachlorocyclohexanes (HCHs) including lindane: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124262. [PMID: 39904237 DOI: 10.1016/j.jenvman.2025.124262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/28/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
The production of the former insecticide lindane (γ-HCH) resulted in the generation of vast quantities of hexachlorocyclohexanes (HCH) residues, creating one of the most significant environmental challenges related to persistent organic pollutants in the world. This contamination is present today in different scenarios, including stockpiles and highly concentrated mixed waste, contaminated surface soils, subsoil, and waters. In particular, Dense Non-Aqueous Phase Liquids (DNAPLs) represent challenging subsurface and groundwater contamination. This review provides a comprehensive and critical overview of the physical-chemical methodologies and remediation projects reported in the literature for addressing lindane contamination through separation, transformation, disposal, and valorization approaches. The available physicochemical techniques include dehydrochlorination, oxidation, reduction, substitution, isomerization, as well as electrochemical, photochemical, sonochemical, plasma, and other high energy treatments. Key aspects, such as advantages and limitations, remediation effectiveness, technological maturity, scalability, estimated costs, and applicability to different contamination scenarios are thoroughly analyzed for each method. The review culminates in a detailed comparison of these methodologies for various contamination contexts, providing valuable insights for the identification of optimal solutions to this global environmental challenge. In addition, the review assesses, for the first time, the potential for valorization of the products formed during HCH treatment or remediation. This aspect highlights the opportunity to transform HCH residues into higher value-added chemicals, thereby enhancing the circular economy of the remediation process. Finally, the integration of physicochemical methods with separation and biological tools offers a holistic perspective that underscores the importance of comprehensive strategies for addressing HCH contamination effectively and sustainably.
Collapse
Affiliation(s)
- Alejandro Leal-Duaso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain.
| | - Luis Salvatella
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - José M Fraile
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain.
| |
Collapse
|
4
|
Vu PH, Nguyen DH, Vu TS, Le AH, Tran TQT, Nguyen YT, Nguyen TTT, Mai LDT, Bui HVT, Tran HM, Nguyen HQ, Nguyen TKN, Truong BG, Tran HTT, Pham HT. Biodegradation of DDT using multi-species mixtures: From genome-mining prediction to practical assessment. Microb Biotechnol 2024; 17:e70021. [PMID: 39316024 PMCID: PMC11421292 DOI: 10.1111/1751-7915.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) is a commonly used insecticide that is recalcitrant and highly stable in the environment. Currently, DDT residue contamination, especially in agricultural soil, is still a concern in many countries, threatening human health and the environment. Among the approaches to resolve such an issue, novel biodegradation-based methods are now preferred to physicochemical methods, due to the sustainability and the effectiveness of the former. In this study, we explored the possibility of building mixed microbial cultures that can offer improved DDT-degrading efficiencies and be more environmentally transilient, based on genome annotation using the KEGG database and prediction of interactions between single strains using the obtained metabolic maps. We then proposed 10 potential DDT-degrading mixed cultures of different strain combinations and evaluated their DDT degradation performances in liquid, semi-solid and solid media. The results demonstrated the superiority of the mixtures over the single strains in terms of degrading DDT, particularly in a semi-solid medium, with up to 40-50% more efficiency. Not only did the mixed cultures degrade DDT more efficiently, but they also adapted to broader spectra of environmental conditions. The three best DDT-degrading and transilient mixtures were selected, and it turned out that their component strains seemed to have more metabolic interactions than those in the other mixtures. Thus, our study demonstrates the effectiveness of exploiting genome-mining techniques and the use of constructed mixed cultures in improving biodegradation.
Collapse
Affiliation(s)
- Phuong Ha Vu
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Dang Huy Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Tung Son Vu
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Anh Hien Le
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Trang Quynh Thi Tran
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Yen Thi Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Thuy Thu Thi Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Linh Dam Thi Mai
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Ha Viet Thi Bui
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Hanh My Tran
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Huy Quang Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Key Laboratory of Enzyme and Protein TechnologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Thao Kim Nu Nguyen
- Department of Cell Biology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Bao Gia Truong
- High School for Gifted StudentsVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Huyen Thanh Thi Tran
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Hai The Pham
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| |
Collapse
|
5
|
Liu M, Yuan J, Shi J, Xu J, He Y. Chlorinated organic pollutants in global flooded soil and sediments: Pollution status and potential risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121270. [PMID: 36780978 DOI: 10.1016/j.envpol.2023.121270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated organic pollutants (COPs) were widely detected in anaerobic environments while there is limited understanding of their pollution status and potential environmental risks. Here, we applied meta-analysis to identify the occurrence status, pollution sources, and environmental risk of COPs from 246 peer-published literature, including 25 kinds of COPs from 977 sites. The results showed that the median concentrations of COPs were at the ng g-1 level. By the combination of principal component analysis (PCA) and positive matrix factorization (PMF), we established 7 pollution sources for COPs. Environmental risk assessment found 73.3% of selected sites were at a security level but the rest were not, especially for the wetlands. The environmental risk of COPs was usually underestimated by the existing evaluation methods, such as without the consideration of the non-extractable residues (NER) and the multi-process coupling effect. Especially, the synergetic coupling associations between dechlorination and methanogenesis might increase the risk of methane emission that has barely been previously considered in previous risk assessment approaches. Our results expanded the knowledge for the pollution control and remediation of COPs in anaerobic environments.
Collapse
Affiliation(s)
- Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Yuan
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80524, USA
| | - Jiachun Shi
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
6
|
Pannu R, Kumar D. Biodegradation of lindane (γ-Hexachlorocyclohexane) and other isomers by Bacillus subtilis strain Mz-13i. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Guo G, Liu C, Tian F, Ding K, Wang H, Zhang C, Yang F, Xu J. Bioaugmentation treatment of polycyclic aromatic hydrocarbon-polluted soil in a slurry bioreactor with a bacterial consortium and hydroxypropyl-β-cyclodextrin. ENVIRONMENTAL TECHNOLOGY 2022; 43:3231-3238. [PMID: 33945429 DOI: 10.1080/09593330.2021.1921042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
The aim of the study was to verify the effect of bioaugmentation by the bacterial consortium YS with hydroxypropyl-β-cyclodextrin (HPCD) in a soil slurry. The bacterial consortium YS was enriched from a petroleum-polluted soil using pyrene as sole carbon resource. After 3 weeks, the degradation rate of phenanthrene in CK increased from 22.58% to 55.23 and 78.21% in bioaugmentation (B) and HPCD + bioaugmentation (MB) respectively. The degradation rate of pyrene in CK increased from 17.33% to 51.10% and 60.32% in B and MB respectively in the slurry. The augmented YS persisted in the slurry as monitored by 16S rRNA gene high-throughput sequencing and outcompeted some indigenous bacteria. Enhanced polycyclic aromatic hydrocarbon (PAH) degradation was observed in the addition of HPCD due to the enhanced bioavailability of phenanthrene and pyrene. Additionally, the amount of PAH-degrading bacteria and enzymatic activity in bioaugmentation with HPCD were higher than that in the CK group. The results indicated that bioaugmentation with a bacterial consortium and HPCD is an environmentally friendly method for the bioremediation of PAH-polluted soil.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing, People's Republic of China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing, People's Republic of China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Jin Xu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Nazarova EA, Egorova DO, Anan’ina LN, Korsakova ES, Plotnikova EG. New Associations of Aerobic Bacteria that Actively Decompose Lindane. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Yu F, Li Y, Wang H, Peng T, Wu YR, Hu Z. Microbial debromination of hexabromocyclododecanes. Appl Microbiol Biotechnol 2021; 105:4535-4550. [PMID: 34076715 DOI: 10.1007/s00253-021-11095-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
Hexabromocyclododecanes (HBCDs), a new sort of brominated flame retardants (BFRs), are globally prevalent and recalcitrant toxic environmental pollutants. HBCDs have been found in many environmental media and even in the human body, leading to serious health concerns. HBCDs are biodegradable in the environment. By now, dozens of bacteria have been discovered with the ability to transform HBCDs. Microbial debromination of HBCDs is via HBr-elimination, HBr-dihaloelimination, and hydrolytic debromination. Biotic transformation of HBCDs yields many hydroxylated and lower brominated compounds which lack assessment of ecological toxicity. Bioremediation of HBCD pollution has only been applied in the laboratory. Here, we review the current knowledge about microbial debromination of HBCDs, aiming to promote the bioremediation applied in HBCD contaminated sites. KEY POINTS: • Microbial debromination of HBCDs is via hydrolytic debromination, HBr-elimination, and HBr-dihaloelimination. • Newly occurred halogenated contaminants such as HBCDs hitch the degradation pathway tamed by previously discharged anthropogenic organohalides. • Strategy that combines bioaugmentation with phytoremediation for bioremediation of HBCD pollution is promising.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yuyang Li
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Hui Wang
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Tao Peng
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yi-Rui Wu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Zhong Hu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China.
| |
Collapse
|
10
|
Egorova DO, Nazarova EA, Demakov VA. New Lindane-Degrading Strains Achromobacter sp. NE1 and Brevundimonas sp. 242. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Barbance A, Della-Negra O, Chaussonnerie S, Delmas V, Muselet D, Ugarte E, Saaidi PL, Weissenbach J, Fischer C, Le Paslier D, Fonknechten N. Genetic Analysis of Citrobacter sp.86 Reveals Involvement of Corrinoids in Chlordecone and Lindane Biotransformations. Front Microbiol 2020; 11:590061. [PMID: 33240246 PMCID: PMC7680753 DOI: 10.3389/fmicb.2020.590061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
Chlordecone (Kepone®) and γ-hexachlorocyclohexane (γ-HCH or lindane) have been used for decades in the French West Indies (FWI) resulting in long-term soil and water pollution. In a previous work, we have identified a new Citrobacter species (sp.86) that is able to transform chlordecone into numerous products under anaerobic conditions. No homologs to known reductive dehalogenases or other candidate genes were found in the genome sequence of Citrobacter sp.86. However, a complete anaerobic pathway for cobalamin biosynthesis was identified. In this study, we investigated whether cobalamin or intermediates of cobalamin biosynthesis was required for chlordecone microbiological transformation. For this purpose, we constructed a set of four Citrobacter sp.86 mutant strains defective in several genes belonging to the anaerobic cobalamin biosynthesis pathway. We monitored chlordecone and its transformation products (TPs) during long-term incubation in liquid cultures under anaerobic conditions. Chlordecone TPs were detected in the case of cobalamin-producing Citrobacter sp.86 wild-type strain but also in the case of mutants able to produce corrinoids devoid of lower ligand. In contrast, mutants unable to insert the cobalt atom in precorrin-2 did not induce any transformation of chlordecone. In addition, it was found that lindane, previously shown to be anaerobically transformed by Citrobacter freundii without evidence of a mechanism, was also degraded in the presence of the wild-type strain of Citrobacter sp.86. The lindane degradation abilities of the various Citrobacter sp.86 mutant strains paralleled chlordecone transformation. The present study shows the involvement of cobalt-containing corrinoids in the microbial degradation of chlorinated compounds with different chemical structures. Their increased production in contaminated environments could accelerate the decontamination processes.
Collapse
Affiliation(s)
- Agnès Barbance
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Oriane Della-Negra
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Sébastien Chaussonnerie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Valérie Delmas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Delphine Muselet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Edgardo Ugarte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pierre-Loïc Saaidi
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Cécile Fischer
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Denis Le Paslier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Denis Le Paslier,
| | - Nuria Fonknechten
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Laboratoire de Cancérologie Expérimentale, IRCM, Institut François Jacob, CEA, Université Paris-Saclay, Fontenay aux Roses, France
- *Correspondence: Nuria Fonknechten,
| |
Collapse
|
12
|
Gortares-Maroyoqui P, Ulloa-Mercado RG, Ríos-Vázquez NJ, Breton-Deval L, Macarie H, Poggi-Varaldo HM, Sastre-Conde I. Advances in environmental biotechnology and engineering 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28463-28468. [PMID: 32654035 DOI: 10.1007/s11356-020-09377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Pablo Gortares-Maroyoqui
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, CP, 8500, Ciudad Obregón, Sonora, Mexico
| | - Ruth Gabriela Ulloa-Mercado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, CP, 8500, Ciudad Obregón, Sonora, Mexico
| | - Nidia Josefina Ríos-Vázquez
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, CP, 8500, Ciudad Obregón, Sonora, Mexico
| | - Luz Breton-Deval
- CATEDRAS-CONACYT, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Hervé Macarie
- IRD, Aix Marseille Univ, Avignon Université, CNRS, IMBE, Marseille, France
| | - Hector Mario Poggi-Varaldo
- Environmental Biotechnology and Renewable Energies R&D, Group, Dept. Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, C. P. 07360, 14-740, 07000, Mexico City, Mexico
| | - Isabel Sastre-Conde
- SEMILLA-INAGEA, Calle Babieca no. 2, 07198 Son Ferriol , Balearic Islands, Palma, Spain.
| |
Collapse
|
13
|
Kumari M, Ghosh P, Swati, Thakur IS. Development of artificial consortia of microalgae and bacteria for efficient biodegradation and detoxification of lindane. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Yang J, Qi X, Shen F, Qiu M, Smith RL. Complete dechlorination of lindane over N-doped porous carbon supported Pd catalyst at room temperature and atmospheric pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137534. [PMID: 32135324 DOI: 10.1016/j.scitotenv.2020.137534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Transfer hydrogenation is highly effective for dechlorinating priority organic pollutants in wastewater. Lindane could be completely dechlorinated at room temperature and atmospheric pressure via transfer hydrogenation, in which Pd (3.1 wt%) supported on chitosan-derived porous carbon (3.1Pd@A600) and formic acid (FA) were used as catalyst and hydrogen source, respectively. Favorable catalytic activity of 3.1Pd@A600 is attributed to pyridinic N of the support that allowed Pd nanoparticles to be well-dispersed in the solid and to pyridinic N-Pd interactions that enhanced FA decomposition over that observed for commercial carbon supported Pd catalyst (5Pd@AC). In the reaction system containing 3.1Pd@A600 and FA, 99.7% lindane conversion and 100% dechlorination efficiency could be achieved at 25 °C and atmospheric pressure within 60 min. Benzene and cyclohexane were identified as end-products of lindane dechlorination. The transfer hydrogenation strategy developed in this study has wide application to chlorinated organic pollutants contained in actual waste streams.
Collapse
Affiliation(s)
- Jirui Yang
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Xinhua Qi
- College of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Feng Shen
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Mo Qiu
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Richard Lee Smith
- Research Center of Supercritical Fluid Technology, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
15
|
Zhang W, Lin Z, Pang S, Bhatt P, Chen S. Insights Into the Biodegradation of Lindane (γ-Hexachlorocyclohexane) Using a Microbial System. Front Microbiol 2020; 11:522. [PMID: 32292398 PMCID: PMC7119470 DOI: 10.3389/fmicb.2020.00522] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Lindane (γ-hexachlorocyclohexane) is an organochlorine pesticide that has been widely used in agriculture over the last seven decades. The increasing residues of lindane in soil and water environments are toxic to humans and other organisms. Large-scale applications and residual toxicity in the environment require urgent lindane removal. Microbes, particularly Gram-negative bacteria, can transform lindane into non-toxic and environmentally safe metabolites. Aerobic and anaerobic microorganisms follow different metabolic pathways to degrade lindane. A variety of enzymes participate in lindane degradation pathways, including dehydrochlorinase (LinA), dehalogenase (LinB), dehydrogenase (LinC), and reductive dechlorinase (LinD). However, a limited number of reviews have been published regarding the biodegradation and bioremediation of lindane. This review summarizes the current knowledge regarding lindane-degrading microbes along with biodegradation mechanisms, metabolic pathways, and the microbial remediation of lindane-contaminated environments. The prospects of novel bioremediation technologies to provide insight between laboratory cultures and large-scale applications are also discussed. This review provides a theoretical foundation and practical basis to use lindane-degrading microorganisms for bioremediation.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
16
|
Lian S, Nikolausz M, Nijenhuis I, da Rocha UN, Liu B, Corrêa FB, Saraiva JP, Richnow HH. Biotransformation of hexachlorocyclohexanes contaminated biomass for energetic utilization demonstrated in continuous anaerobic digestion system. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121448. [PMID: 31668499 DOI: 10.1016/j.jhazmat.2019.121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Lindane, the γ-hexachlorocyclohexane (HCH) isomer, was among the most used pesticides worldwide. Although it was banned in 2009, residues of Lindane and other HCH-isomers are still found with high concentrations in contaminated fields. For clean-up, phytoremediation combined with anaerobic digestion (AD) of contaminated biomass to produce biogas and fertilizer could be a promising strategy and was tested in two 15 L laboratory-scale continuous stirred tank reactors. During operation over one year by adding HCH isomers (γ, α and β) consecutively, no negative influence on conventional reactor parameters was observed. The γ- and α-HCH isomers were transformed to chlorobenzene and benzene, and transformation became faster along with time, while β-HCH was not removed. Genus Methanosaeta and order Clostridiales, showing significant enhancement on abundance with HCH addition, may be used as bioindicators for HCH dehalogenation in AD process. The potential for HCH degradation in AD system was restricted to axial Cl atoms of HCH and it showed slight enantioselective preference towards transformation of (+) α-HCH. Moreover, metabolite benzene was mineralized to CO2 and methane, deducing from tracer experiments with benzene-13C6. Overall, AD appears to be a feasible option for treatment of γ and α-HCHs contaminated biomass.
Collapse
Affiliation(s)
- Shujuan Lian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Bin Liu
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Felipe Borim Corrêa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - João Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
17
|
Russo F, Ceci A, Maggi O, Siciliano A, Guida M, Petrangeli Papini M, Černík M, Persiani AM. Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24445-24461. [PMID: 31228071 DOI: 10.1007/s11356-019-05679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
Collapse
Affiliation(s)
- Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
18
|
Rhizospheric Microbacterium sp. P27 Showing Potential of Lindane Degradation and Plant Growth Promoting Traits. Curr Microbiol 2019; 76:888-895. [PMID: 31093691 DOI: 10.1007/s00284-019-01703-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Lindane is an organochlorine pesticide that is highly persistent in the environment. The amassing of lindane has been identified worldwide and has been found to be very toxic to the environment, human, and animal health. Therefore, urgent consideration and management of the problem is necessary. The current study intends to isolate and identify lindane degrading rhizospheric bacteria from Phragmites karka and to study its degradation kinetics. Also, plant growth promoting potential of the bacterium was evaluated in the presence and absence of studied pesticide. Rhizospheric bacteria were isolated by standard enrichment technique in Mineral Salt Medium. Microbacterium sp. P27 showed the highest degradation percentage, 82.7 ± 1.79% for 50 mg l-1 lindane, after 15 days. Degradation was also studied at different concentrations of lindane. Maximum degradation was achieved at 10 mg l-1 followed by 50 mg l-1 and 100 mg l-1 lindane. Microbacterium sp. P27 showed positive result for Indole-3-acetic acid production, ammonia production, and 1-aminocyclopropane-1-carboxylate deaminase activity. Presence of lindane revealed a concentration-dependent decrease in plant growth promoting activity. Since the isolated bacterial strain possesses lindane degrading capacity and also other characters that help in plant growth promotion, the isolate can be an important candidate for the progress of bioremediation strategy.
Collapse
|
19
|
Singh T, Singh DK. Lindane degradation by root epiphytic bacterium Achromobacter sp. strain A3 from Acorus calamus and characterization of associated proteins. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:419-424. [PMID: 30648424 DOI: 10.1080/15226514.2018.1524835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lindane degrading root epiphytic bacteria were isolated from wetland plant Acorus calamus. Bacterial strain A3 identified as Achromobacter sp. A3, showed maximum degradation potential of 88.7 ± 1.24% for 50 mg l-1 lindane. Lindane biodegradation was followed by decrease in pH as well as increase in concentration of chloride ions in the culture medium. Lindane degradation potential of Achromobacter sp. A3 was also studied at different concentrations of lindane. Maximum degradation was at 10 mg l-1 followed by 50 mg l-1 and 100 mg l-1 lindane. Also, lindane induced proteins were studied using SDS-PAGE. The induced proteins were identified as alpha/beta hydrolase fold-3 domain-containing protein, involved in lindane hydrolysis and extracellular solute-binding family protein having role in transmembrane transport of lindane for utilization of lindane by bacteria. The appearance of unique polypeptides in lane corresponding to media supplemented with lindane showed that the exposure of bacterial cells to lindane has resulted in regulative expression of certain proteins. So far as known, this is the first report to isolate and study lindane degrading root epiphytic bacteria from A. calamus.
Collapse
Affiliation(s)
- Tanvi Singh
- a Department of Zoology , University of Delhi , Delhi , India
| | - Dileep K Singh
- a Department of Zoology , University of Delhi , Delhi , India
| |
Collapse
|
20
|
Zheng H, Yu WL, Guo X, Zhao YZ, Cui Y, Hu T, Zhong JY. An effective immobilized haloalkane dehalogenase DhaA from Rhodococcus rhodochrous by adsorption, crosslink and PEGylation on meso-cellular foam. Int J Biol Macromol 2018; 125:1016-1023. [PMID: 30576728 DOI: 10.1016/j.ijbiomac.2018.12.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/01/2018] [Accepted: 12/16/2018] [Indexed: 12/30/2022]
Abstract
Haloalkane dehalogenase DhaA catalyzes the hydrolysis of halogenated compounds by cleavage of the carbon-halogen bond. However, DhaA suffers from poor environmental stability and difficult recovery, which significantly increase the cost of DhaA. Here, an effective enzyme immobilization strategy was developed to overcome the disadvantages of DhaA. DhaA was physically absorbed with amine-functionalized meso-cellular foam (MCF). The MCF-absorbed DhaA (MD) was intermolecularly crosslinked with 8-arm PEG N‑hydroxysuccinimide ester and then PEGylated by maleimide-thiol chemistry. DhaA from Rhodococcus rhodochrous was absorbed at a loading capacity of 100 mg/g in MD. The bulk crystallinity and morphology of MCF were largely maintained. The immobilized DhaA (MD-P1-P2) showed a lower Michaelis constant (Km, 0.588 mM) than DhaA (0.905 mM), along with an extremely low leaching ratio of DhaA (1.1%) from MCF. MD-P1-P2 exhibited a high stability in the extreme environmental conditions, as reflected by the remaining activity of 99.8% in 40% (v/v) DMSO for 5 h, 87.3% in 3 M urea solution for 1 h, 25.9% at pH 3.0, and 51.8% at room temperature for 30 days. Thus, our study was expected to develop an effective immobilized DhaA for practical application.
Collapse
Affiliation(s)
- He Zheng
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wei-Li Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yuan-Zhong Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yan Cui
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jin-Yi Zhong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
21
|
Biodegradation of γ-Hexachlorocyclohexane by Burkholderia sp. IPL04. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Khalid S, Han JI, Hashmi I, Hasnain G, Ahmed MA, Khan SJ, Arshad M. Strengthening calcium alginate microspheres using polysulfone and its performance evaluation: Preparation, characterization and application for enhanced biodegradation of chlorpyrifos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1046-1058. [PMID: 29727931 DOI: 10.1016/j.scitotenv.2018.03.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Bacterial cell immobilization offer considerable advantages over traditional biotreatment systems using free cells. Calcium alginate matrix usually used for bacterial immobilization is susceptible to biodegradation in harsh environment. Current study aimed to produce and characterize stable macrocapsules (MCs) of Chlorpyrifos (CP) degrading bacterial consortium using biocompatible calcium alginate matrix coupled with environmentally stable polysulfone. In current study bacterial consortium capable of CP biodegradation was immobilized using calcium alginate in a form of microcapsule (MC) reinforced by being coated with a synthetic polymer polysulfone (PSf) through phase inversion. Consortium comprised of five bacterial strains was immobilized using optimized concentration of sodium alginate (2.5gL-1), calcium chloride (6gL-1), biomass (600mgL-1) and polysulfone (10gL-1). It has been observed that MCs have high thermal, pH and chemical stability than CAMs. In synthetic media complete biodegradation of CP (100-600mgL-1) was achieved using macrocapsules (MCs) within 18h. CAMs could be reused effectively only upto 5cycles, contrary to this MCs could be used 13 times to achieve more than >96% CP degradation. Shelf life and reusability studies conducted for MCs indicated unaltered biomass retention and CP biodegradation activity (95%) over 16weeks of storage. MCs achieved complete biodegradation of CP (536mgL-1) in real industrial wastewater and reused several times effectively. Metabolites (3,5,6-trichloro-2-pyridinol (TCP), 3,5,6-trichloro-2-methoxypyridine (TMP) and diethyl-thiophosphate (DETP) were traced using GC-MS and possible metabolic pathway was constructed. Study indicated MCs could be used for cleanup of CP contaminated wastewater repeatedly, safely, efficiently for a longer period of time.
Collapse
Affiliation(s)
- Saira Khalid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Imran Hashmi
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Ghalib Hasnain
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ajaz Ahmed
- Chemical Engineering Department, Muhammad Nawaz Sharif University of Engineering and Technology, MNS, UET, Multan, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
23
|
Kumar D, Pannu R. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0213-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Lian S, Nikolausz M, Nijenhuis I, Francisco Leite A, Richnow HH. Biotransformation and inhibition effects of hexachlorocyclohexanes during biogas production from contaminated biomass characterized by isotope fractionation concepts. BIORESOURCE TECHNOLOGY 2018; 250:683-690. [PMID: 29220813 DOI: 10.1016/j.biortech.2017.11.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Hexachlorocyclohexane (HCH) production for pesticides was banned by Stockholm Convention (2009) due to its harmful and adverse effects on the environment. Despite this measure, many areas contaminated with former HCH production-waste products still require management. As a potential solution contributing to clean-up of these sites, anaerobic digestion (AD) of pesticide-contaminated biomass to produce biogas is a promising strategy. High pesticide concentrations, however, may inhibit biogas production. Therefore, laboratory-scale batch reactors were set up to investigate biogas reactor performance in presence of HCH. Inhibitory effects on biogas yield was observed with concentrations of HCH ≥ 150 mg/L. Carbon isotope composition of methane (δ13CCH4) showed significant fluctuation after an inhibition phase, indicating that HCH toxicity can affect the activity of acetoclastic methanogens. Furthermore, combined results of metabolites and carbon isotope fractionation factors (εc) demonstrated that α- and γ-HCH can be degraded to chlorobenzene and benzene via anaerobic reductive dechlorination.
Collapse
Affiliation(s)
- Shujuan Lian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Athaydes Francisco Leite
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
25
|
Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus. Appl Microbiol Biotechnol 2017; 102:1019-1033. [DOI: 10.1007/s00253-017-8614-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022]
|
26
|
Cuozzo SA, Sineli PE, Davila Costa J, Tortella G. Streptomyces sp. is a powerful biotechnological tool for the biodegradation of HCH isomers: biochemical and molecular basis. Crit Rev Biotechnol 2017; 38:719-728. [PMID: 29124958 DOI: 10.1080/07388551.2017.1398133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Actinobacteria are well-known degraders of toxic materials that have the ability to tolerate and remove organochloride pesticides; thus, they are used for bioremediation. The biodegradation of organochlorines by actinobacteria has been demonstrated in pure and mixed cultures with the concomitant production of metabolic intermediates including γ-pentachlorocyclohexene (γ-PCCH); 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN); 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), or 1,4-dichlorobenzene (1,4-DCB); 1,2,3-trichlorobenzene (1,2,3-TCB), 1,2,4-trichlorobenzene (1,2,4-TCB), or 1,3,5-trichlorobenzene (1,3,5-TCB); 1,3-DCB; and 1,2-DCB. Chromatography coupled to mass spectrometric detection, especially GC-MS, is typically used to determine HCH-isomer metabolites. The important enzymes involved in HCH isomer degradation metabolic pathways include hexachlorocyclohexane dehydrochlorinase (LinA), haloalkane dehalogenase (LinB), and alcohol dehydrogenase (LinC). The metabolic versatility of these enzymes is known. Advances have been made in the identification of actinobacterial haloalkane dehydrogenase, which is encoded by linB. This knowledge will permit future improvements in biodegradation processes using Actinobacteria. The enzymatic and genetic characterizations of the molecular mechanisms involved in these processes have not been fully elucidated, necessitating further studies. New advances in this area suggest promising results. The scope of this paper encompasses the following: (i) the aerobic degradation pathways of hexachlorocyclohexane (HCH) isomers; (ii) the important genes and enzymes involved in the metabolic pathways of HCH isomer degradation; and (iii) the identification and quantification of intermediate metabolites through gas chromatography coupled to mass spectrometry (GC-MS).
Collapse
Affiliation(s)
- S A Cuozzo
- a Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET) , Tucumán , Argentina.,b Facultad de Ciencias Naturales e Instituto Miguel Lillo , Universidad Nacional de Tucumán , Tucumán , Argentina
| | - P E Sineli
- a Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET) , Tucumán , Argentina
| | - J Davila Costa
- a Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET) , Tucumán , Argentina
| | - G Tortella
- c Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA) , Universidad de La Frontera , Temuco , Chile.,d Departamento de Ingeniería Química , Universidad de La Frontera , Temuco , Chile
| |
Collapse
|
27
|
Zhao YZ, Yu WL, Zheng H, Guo X, Guo N, Hu T, Zhong JY. PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA. J Biotechnol 2017; 254:25-33. [DOI: 10.1016/j.jbiotec.2017.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/28/2017] [Accepted: 05/28/2017] [Indexed: 12/18/2022]
|
28
|
Loredana S, Graziano P, Antonio M, Carlotta NM, Caterina L, Maria AA, Carlo Z, Giuseppe C, Pietro A. Lindane Bioremediation Capability of Bacteria Associated with the Demosponge Hymeniacidon perlevis. Mar Drugs 2017; 15:md15040108. [PMID: 28383507 PMCID: PMC5408254 DOI: 10.3390/md15040108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
Lindane is an organochlorine pesticide belonging to persistent organic pollutants (POPs) that has been widely used to treat agricultural pests. It is of particular concern because of its toxicity, persistence and tendency to bioaccumulate in terrestrial and aquatic ecosystems. In this context, we assessed the role of bacteria associated with the sponge Hymeniacidon perlevis in lindane degradation. Seven bacteria isolates were characterized and identified. These isolates showed a remarkable capacity to utilize lindane as a sole carbon source leading to a percentage of residual lindane ranging from 3% to 13% after 12 days of incubation with the pesticide. The lindane metabolite, 1,3–6-pentachloro-cyclohexene, was identified as result of lindane degradation and determined by gas chromatography–mass spectrometry (GC–MS). The bacteria capable of lindane degradation were identified on the basis of the phenotypic characterization by morphological, biochemical and cultural tests, completed with 16S rDNA sequence analysis, and assigned to Mameliella phaeodactyli, Pseudovibrioascidiaceicola, Oceanicaulis stylophorae, Ruegeria atlantica and to three new uncharacterized species. The results obtained are a prelude to the development of future strategies for the in situ bioremediation of lindane.
Collapse
Affiliation(s)
- Stabili Loredana
- Istituto per l'Ambiente Marino Costiero, Unità Operativa di Supporto di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy.
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Pizzolante Graziano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Morgante Antonio
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Nonnis Marzano Carlotta
- Dipartimento di Biologia, Università di Bari Aldo Moro, 70125 Bari, Italy.
- CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Longo Caterina
- Dipartimento di Biologia, Università di Bari Aldo Moro, 70125 Bari, Italy.
- CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | | | - Zambonin Carlo
- Dipartimento di Chimica, Università di Bari Aldo Moro, 70125 Bari, Italy.
| | - Corriero Giuseppe
- Dipartimento di Biologia, Università di Bari Aldo Moro, 70125 Bari, Italy.
- CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Alifano Pietro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
29
|
Saez JM, Alvarez A, Fuentes MS, Amoroso MJ, Benimeli CS. An Overview on Microbial Degradation of Lindane. MICROBE-INDUCED DEGRADATION OF PESTICIDES 2017. [DOI: 10.1007/978-3-319-45156-5_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Dominguez CM, Parchão J, Rodriguez S, Lorenzo D, Romero A, Santos A. Kinetics of Lindane Dechlorination by Zerovalent Iron Microparticles: Effect of Different Salts and Stability Study. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03434] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carmen M. Dominguez
- Departamento Ingeniería
Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Joana Parchão
- Departamento Ingeniería
Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Sergio Rodriguez
- Departamento Ingeniería
Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - David Lorenzo
- Departamento Ingeniería
Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Arturo Romero
- Departamento Ingeniería
Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Aurora Santos
- Departamento Ingeniería
Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| |
Collapse
|
31
|
Kohli P, Richnow HH, Lal R. Compound-Specific Stable Isotope Analysis: Implications in Hexachlorocyclohexane in-vitro and Field Assessment. Indian J Microbiol 2016; 57:11-22. [PMID: 28148976 DOI: 10.1007/s12088-016-0630-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022] Open
Abstract
Assessment of biotic and abiotic degradation reactions by studying the variation in stable isotopic compositions of organic contaminants in contaminated soil and aquifers is being increasingly considered during the last two decades with development of Compound specific stable isotope analysis (CSIA) technique. CSIA has been recognized as a potential tool for evaluating both qualitative and quantitative degradation with measurement of shifts in isotope ratios of contaminants and their degradation products as its basis. Amongst a wide variety of environmental pollutants including monoaromatics, chlorinated ethenes and benzenes etc., it is only recently that its efficacy is being tested for assessing biodegradation of a noxious pollutant namely hexachlorocyclohexane (HCH), by pure microbial cultures as well as directly at the field site. Anticipating the increase in demand of this technique for monitoring the microbial degradation along with natural attenuation, this review highlights the basic problems associated with HCH contamination emphasizing the applicability of emerging CSIA technique to absolve the major bottlenecks in assessment of HCH. To this end, the review also provides a brief overview of this technique with summarizing the recent revelations put forward by both in vitro and in situ studies by CSIA in monitoring HCH biodegradation.
Collapse
Affiliation(s)
- Puneet Kohli
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Hans H Richnow
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
32
|
San Román I, Galdames A, Alonso ML, Bartolomé L, Vilas JL, Alonso RM. Effect of coating on the environmental applications of zero valent iron nanoparticles: the lindane case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:795-803. [PMID: 27102275 DOI: 10.1016/j.scitotenv.2016.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Commercial stabilized slurry of zero-valent iron nanoparticles (nZVI) as well as laboratory-synthesized polymer-stabilized NZVI nanoparticles were used for lindane (γ-hexachlorocyclohexane) degradation studies in aqueous solution. In the present study, polymer-stabilized iron nanoparticles were stabilized using polyethylene glycol (PEG, Mn ~400 and ~950-1050) and polytetrahydrofuran (PTHF, Mn ~650). To study the effectiveness of the different nanoparticles, a quantitative monitorization of lindane degradation by using solid-phase extraction (SPE) and a qualitative measurement of generated volatile by-products by headspace-solid phase microextraction (HS-SPME) followed by GC/MS were carried out. The obtained data were compared and contrasted with the results obtained in previous work. Results showed that the nanoparticles studied in this work possess superior dechlorination performance compared with previous observations. The freshly prepared Fe(0)-PEG400, Fe(0)-PEG1050 and Fe(0)-PTHF exhibited high reactivity during the dechlorination process of lindane in a very short time. The results obtained with the synthesized nanoparticles were similar to those obtained with commercial nanoparticles. However, in all cases reactivity decreased at reaction's late stage. Degradation of lindane by the studied nanoparticles removed 99.9% of the lindane initial concentration after 72h, except for Fe(0)-PTHF nanoparticles, for which the reaction stopped after 5min. In all cases, the reaction followed a second order kinetics. Finally, comparing the results from this study with our previous work, where different nature polymers were considered (Fe(0)-CMC, Fe(0)-PAA and Fe(0)-PAP), more gradual degradation profile of lindane was observed for Fe(0)-PAA and Fe(0)-CMC. It should be noted that in the present case, the reaction of lindane was speeded up with commercial and Fe(0)-PEG nanoparticles. Nevertheless, in the later case, the composition of by-products was affected by the presence of partially degraded intermediates. Taking into account the current technologies, the high removal rates obtained and the acceptable degradation times required, the proposed technology is suitable for its aimed purpose.
Collapse
Affiliation(s)
- I San Román
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country/EHU, Box 644, 48080 Bilbao, Spain
| | - A Galdames
- Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - M L Alonso
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country/EHU, Box 644, 48080 Bilbao, Spain
| | - L Bartolomé
- Central Analysis Service, Faculty of Science and Technology, University of the Basque Country/EHU, Box 644, 48080 Bilbao, Spain
| | - J L Vilas
- Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - R M Alonso
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country/EHU, Box 644, 48080 Bilbao, Spain
| |
Collapse
|
33
|
Genome Sequence of Pseudomonas sp. HUK17, Isolated from Hexachlorocyclohexane-Contaminated Soil. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00275-16. [PMID: 27081140 PMCID: PMC4832168 DOI: 10.1128/genomea.00275-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas sp. HUK17 has been isolated from hexachlorocyclohexane (HCH) long-term contaminated soil. The genome of strain HUK17 was sequenced to elucidate its adaptation toward HCH and to evaluate the presence of pesticide degradation pathways. Here, we report the annotated draft genome sequence (~2.6 Mbp) of this strain.
Collapse
|
34
|
Sineli PE, Tortella G, Dávila Costa JS, Benimeli CS, Cuozzo SA. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7. World J Microbiol Biotechnol 2016; 32:81. [PMID: 27038951 DOI: 10.1007/s11274-016-2037-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/23/2016] [Indexed: 11/27/2022]
Abstract
The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and β-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and β-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and β-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and β-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers.
Collapse
Affiliation(s)
- P E Sineli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001 MVB, Tucumán, Argentina
| | - G Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - J S Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001 MVB, Tucumán, Argentina
| | - C S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001 MVB, Tucumán, Argentina
- Universidad del Norte Santo Tomás de Aquino (UNSTA), 9 de Julio 165, 4000, Tucumán, Argentina
| | - S A Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001 MVB, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
35
|
Laquitaine L, Durimel A, de Alencastro LF, Jean-Marius C, Gros O, Gaspard S. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:120-127. [PMID: 26686518 DOI: 10.1007/s11356-015-5875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Banana has been a main agricultural product in the French West Indies (Guadeloupe and Martinique) since the 1960s. This crop requires the intensive use of pesticides to prevent attacks by insect pests. Chlorinated pesticides, such as hexachlorocyclohexane (HCH), chlordecone and dieldrin, were used until the beginning of the 1990s, resulting in a generalized diffuse contamination of the soil and water in the areas of banana production, hence the need to develop solutions for cleanup of the polluted sites. The aims of this work were (i) to assess lindane degradation in soil slurry microcosms treated with lindane at 10 mg/L and (ii) to detect the catabolic genes involved in the HCH degradation pathway. The soil slurry microcosm system showed a 40% lindane degradation efficiency at the end of a 30-day experiment. Lower lindane removal was also detected in the abiotic controls, probably caused by pesticide adsorption to soil particles. Indeed, the lindane concentration decreased from 6000 to 1330 ng/mL and from 800 to 340 ng/mL for the biotic and abiotic soils, respectively. Nevertheless, some of the genes involved in the HCH degradation pathway were amplified by polymerase chain reaction (PCR) from crude deoxyribonucleic acid (DNA) extracted from the Guadeloupe agricultural soil, suggesting that HCH degradation is probably mediated by bacteria closely related to the family Sphingomonadaceae.
Collapse
Affiliation(s)
- L Laquitaine
- Laboratoire COVACHIM-M2E, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe à Pitre Cedex, Guadeloupe.
| | - A Durimel
- Laboratoire COVACHIM-M2E, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe à Pitre Cedex, Guadeloupe
| | - L F de Alencastro
- Laboratoire Central Environnemental (GR-CEL), Faculté de l'environnement naturel, architectural et construit (ENAC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - C Jean-Marius
- Laboratoire COVACHIM-M2E, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe à Pitre Cedex, Guadeloupe
| | - O Gros
- UMR UPMC-CNRS-IRD-MNHN, Systématique, Adaptation, Evolution, Equipe, Biologie de la Mangrove, Université des Antilles et de la Guyane, BP 592, 97159, Pointe à Pitre Cedex, Guadeloupe
| | - S Gaspard
- Laboratoire COVACHIM-M2E, EA 3592, Université des Antilles et de la Guyane, BP 250, 97157, Pointe à Pitre Cedex, Guadeloupe
| |
Collapse
|
36
|
Saez JM, Aparicio JD, Amoroso MJ, Benimeli CS. Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Aresta A, Nonnis Marzano C, Lopane C, Corriero G, Longo C, Zambonin C, Stabili L. Analytical investigations on the lindane bioremediation capability of the demosponge Hymeniacidon perlevis. MARINE POLLUTION BULLETIN 2015; 90:143-149. [PMID: 25467876 DOI: 10.1016/j.marpolbul.2014.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Lindane is an organochlorine pesticide that has been widely used to treat agricultural pests. It is of particular concern because of its toxicity, persistence and tendency to bioaccumulate in terrestrial and aquatic ecosystems. In this context, we investigated the ability of the demosponge Hymeniacidon perlevis to bioremediate lindane polluted seawater during in vitro experimentation. Lindane was extracted by solid-phase micro-extraction (SPME) and determined by gas chromatography-mass spectrometry (GC-MS). Furthermore, we assessed the role exerted in lindane degradation by bacteria isolated from the sponge. Sponges showed low mortality in experimental conditions (lindane concentration 1 μg/L) and were able to remove about 50% of the lindane content from seawater in 48 h. Bacteria isolated from sponges showed a remarkable remediating capacity (up to 97% of lindane removed after 8-days). A lindane metabolite was identified, 1,3,4,5,6-pentachloro-cyclohexene. The results obtained are a prelude to the development of future strategies for the in situ bioremediation of this pollutant.
Collapse
Affiliation(s)
- Antonella Aresta
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; Interdepartmental Research Center S.M.A.R.T., University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | | | - Chiara Lopane
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Giuseppe Corriero
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Caterina Longo
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Carlo Zambonin
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; Interdepartmental Research Center S.M.A.R.T., University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Loredana Stabili
- DiSTeBa, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; IAMC, Section of Taranto-CNR, Via Roma, 3-70400 Taranto, Italy.
| |
Collapse
|
38
|
Xia S, Shao M, Zhou X, Pan G, Ni Z. Ti/ZnO–MxOy composites (M = Al, Cr, Fe, Ce): synthesis, characterization and application as highly efficient photocatalysts for hexachlorobenzene degradation. Phys Chem Chem Phys 2015; 17:26690-702. [DOI: 10.1039/c5cp04125b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel organic–inorganic nanoscale layered materials were synthesized by intercalating the Ti-containing Schiff base complex into the interlayer of the ZnM layered double hydroxides (LDHs, M = Al, Cr, Fe, Ce).
Collapse
Affiliation(s)
- Shengjie Xia
- Department of Chemistry
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Mengmeng Shao
- Department of Chemistry
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | | | - Guoxiang Pan
- Department of Materials Chemistry
- School of Life Science
- Huzhou Teachers College
- Huzhou 313000
- P. R. China
| | - Zheming Ni
- Department of Chemistry
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| |
Collapse
|
39
|
Hudson SA, Mashalidis EH, Bender A, McLean KJ, Munro AW, Abell C. Biofragments: an approach towards predicting protein function using biologically related fragments and its application to Mycobacterium tuberculosis CYP126. Chembiochem 2014; 15:549-55. [PMID: 24677424 PMCID: PMC4159592 DOI: 10.1002/cbic.201300697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 11/21/2022]
Abstract
We present a novel fragment-based approach that tackles some of the challenges for chemical biology of predicting protein function. The general approach, which we have termed biofragments, comprises two key stages. First, a biologically relevant fragment library (biofragment library) can be designed and constructed from known sets of substrate-like ligands for a protein class of interest. Second, the library can be screened for binding to a novel putative ligand-binding protein from the same or similar class, and the characterization of hits provides insight into the basis of ligand recognition, selectivity, and function at the substrate level. As a proof-of-concept, we applied the biofragments approach to the functionally uncharacterized Mycobacterium tuberculosis (Mtb) cytochrome P450 isoform, CYP126. This led to the development of a tailored CYP biofragment library with notable 3D characteristics and a significantly higher screening hit rate (14%) than standard drug-like fragment libraries screened previously against Mtb CYP121 and 125 (4% and 1%, respectively). Biofragment hits were identified that make both substrate-like type-I and inhibitor-like type-II interactions with CYP126. A chemical-fingerprint-based substrate model was built from the hits and used to search a virtual TB metabolome, which led to the discovery that CYP126 has a strong preference for the recognition of aromatics and substrate-like type-I binding of chlorophenol moieties within the active site near the heme. Future catalytic analyses will be focused on assessing CYP126 for potential substrate oxidative dehalogenation.
Collapse
Affiliation(s)
- Sean A Hudson
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK) E-mail: Homepage: http://www-abell.ch.cam.ac.uk/
| | - Ellene H Mashalidis
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK) E-mail: Homepage: http://www-abell.ch.cam.ac.uk/
| | - Andreas Bender
- Unilever Centre for Molecular Informatics Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Kirsty J McLean
- Manchester Institute of Biotechnology, University of Manchester131 Princess Street, Manchester, M1 7DN (UK)
| | - Andrew W Munro
- Manchester Institute of Biotechnology, University of Manchester131 Princess Street, Manchester, M1 7DN (UK)
| | - Chris Abell
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK) E-mail: Homepage: http://www-abell.ch.cam.ac.uk/
| |
Collapse
|
40
|
Fang H, Cai L, Yang Y, Ju F, Li X, Yu Y, Zhang T. Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:983-992. [PMID: 24239819 DOI: 10.1016/j.scitotenv.2013.10.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
The abundance and diversity of biodegradation genes (BDGs) and potential degradation pathways of dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and atrazine (ATZ) in freshwater and marine sediments were investigated by metagenomic analysis using 6 datasets (16Gb in total). The datasets were derived using Illumina high-throughput sequencing and were based on BLAST against self-established databases of BDGs, DDT degradation genes (DDGs), HCH degradation genes (HDGs), and ATZ degradation genes (ADGs). The results showed that the abundance and diversity of BDGs, DDGs, HDGs, and ADGs varied with sample source and locations. The lip and mnp genes, which encode for peroxidase, and the carA gene, which encodes for laccase, were detected as the dominant genes for degradation of organic pollutants. The hdt, hdg, and atzB genes, which encode for hydratase, dehalogenase, and ethylaminohydrolase, were found to be the most abundant genes involved in DDT, HCH, and ATZ degradation, respectively. The identified 69 genera capable of degrading organic pollutants were mostly affiliated with Proteobacteria (49.3%) and Actinobacteria (21.7%). Four genera, including Plesiocystis, Anaerolinea, Jannaschia, and Mycobacterium, were the major biodegradation populations in all sediments. In this study, the nearly complete biodegradation pathways of DDT and ATZ were found, and the partial degradation pathway of HCH was detected in all sediments.
Collapse
Affiliation(s)
- Hua Fang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong; Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lin Cai
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ying Yang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Feng Ju
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
41
|
Manna RN, Dybala-Defratyka A. Insights into the elimination mechanisms employed for the degradation of different hexachlorocyclohexane isomers using kinetic isotope effects and docking studies. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rabindra Nath Manna
- Institute of Applied Radiation Chemistry, Faculty of Chemistry; Lodz University of Technology; Zeromskiego 116 Lodz Poland
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry; Lodz University of Technology; Zeromskiego 116 Lodz Poland
| |
Collapse
|
42
|
De Paolis MR, Lippi D, Guerriero E, Polcaro CM, Donati E. Biodegradation of α-, β-, and γ-hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi. Appl Biochem Biotechnol 2013; 170:514-24. [PMID: 23553101 DOI: 10.1007/s12010-013-0147-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 02/18/2013] [Indexed: 11/30/2022]
Abstract
The organochlorine pesticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal isomers α-, β-, and δ- continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. The present study reports the first results on the ability of two Arthrobacter strains, not directly isolated from a HCH-polluted site, to grow in a mineral salt medium containing α-, β-, or γ-HCH (100 mgl(-1)) as sole source of carbon. Growth of cultures and HCHs degradation by Arthrobacter fluorescens and Arthrobacter giacomelloi were investigated after 1, 2, 3, 4, and 7 days of incubation by enumerating colony forming units and GC with ECD detection, respectively. Both bacteria are able to metabolize the HCHs: A. giacomelloi is the most effective one, as after 72 h of incubation it produces 88 % degradation of α-, 60 % of β-, and 56 % of γ-HCH. The formation of possible persistent compounds was studied by GC/MS and by HPLC analysis. Pentachlorocyclohexenes and tetrachlorocyclohexenes have been detected as metabolites, which are almost completely eliminated after 72 h of incubation, while no phenolic compounds were found.
Collapse
Affiliation(s)
- M R De Paolis
- Institute of Agro-environmental and Forest Biology, Research Area of Rome 1, National Research Council, Via Salaria Km. 29,300, 00015 Monterotondo (Roma), Italy
| | | | | | | | | |
Collapse
|
43
|
Alvarez A, Benimeli CS, Saez JM, Fuentes MS, Cuozzo SA, Polti MA, Amoroso MJ. Bacterial bio-resources for remediation of hexachlorocyclohexane. Int J Mol Sci 2012; 13:15086-106. [PMID: 23203113 PMCID: PMC3509629 DOI: 10.3390/ijms131115086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/29/2012] [Accepted: 10/17/2012] [Indexed: 11/25/2022] Open
Abstract
In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.
Collapse
Affiliation(s)
- Analía Alvarez
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- Natural Sciences College and Miguel Lillo Institute, National University of Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina
| | - Claudia S. Benimeli
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- North University of Saint Thomas Aquines, 9 de Julio 165, 4000 Tucumán, Argentina
| | - Juliana M. Saez
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
| | - María S. Fuentes
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
| | - Sergio A. Cuozzo
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- Natural Sciences College and Miguel Lillo Institute, National University of Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina
| | - Marta A. Polti
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- Natural Sciences College and Miguel Lillo Institute, National University of Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina
| | - María J. Amoroso
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- North University of Saint Thomas Aquines, 9 de Julio 165, 4000 Tucumán, Argentina
- Biochemistry, Chemistry and Pharmacy College, National University of Tucumán, Ayacucho 471, 4000 Tucumán, Argentina
| |
Collapse
|
44
|
Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 2012; 29:475-87. [DOI: 10.1007/s11274-012-1201-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/21/2012] [Indexed: 11/30/2022]
|