1
|
Zhao S, Li H, Wang Q, Liu R, Lai X, Sumpradit T, Khan A, Qu J. Eliminated high lipid inhibition in the anaerobic digestion of food waste for biomethane production by engineered E. coli with cell surface display lipase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123037. [PMID: 39447365 DOI: 10.1016/j.jenvman.2024.123037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Food waste (FW) with high content of lipid typically inhibits anaerobic digestion (AD) and methane production. In this study, a novel whole-cell catalyst was created to degrade lipid by displaying lipase on the E. coli cells surface to improve FW anaerobic digestion. The methane production rose, going from 25.78 to 161.77 mL/g VS, with a greater VS removal rate of 66.3% compared to CK group (29.6%). Long-chain fatty acids (LCFAs) was similarly reduced from 1733.6 mg/L to 337 mg/L. Microbial community analysis showed the relative abundance of Acinetbacter and Hydrogenophaga were increased from 1.7% to 6.6% and 1.3%-4.9%, respectively for substrates degradation. The methanogenic Methanosarcina increased from 24.7% to 52.3% for methane production. This study provided a potential approach that might be used to lessen lipid inhibition and improve anaerobic digestion of food waste.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hanyan Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, PR China
| | - Rui Liu
- College of International Education, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xinyan Lai
- College of International Education, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Percy AJ, Edwin M. A comprehensive review on the production and enhancement techniques of gaseous biofuels and their applications in IC engines with special reference to the associated performance and emission characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173087. [PMID: 38763185 DOI: 10.1016/j.scitotenv.2024.173087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
The increasing global demand for energy, coupled with environmental concerns associated with fossil fuels, has led to the exploration of alternative fuel sources. Gaseous biofuels, derived from organic matter, have gained attention due to their renewable nature and clean combustion characteristics. The paper extensively explores production pathways for gaseous biofuels, including biogas, syngas, and hydrogen, providing insightful discussions on various sources and processes. The energy content, physical, and chemical properties of gaseous biofuels have been analysed, highlighting their potential as viable alternatives to conventional fuels. Distinctive properties of biogas, producer gas, and hydrogen that impact combustion characteristics and engine efficiency in IC engines are underscored. Furthermore, the review systematically reviews enhancement techniques for gaseous biofuels, encompassing strategies to augment quality, purity, and combustion efficiency. Various methods, ranging from substrate pretreatment for biogas to membrane separation for hydrogen, illustrate effective means of enhancing fuel performance. Rigorous examination of performance parameters such as brake thermal efficiency, specific fuel consumption and emissions characteristics such as NOx, CO, CO2, HC of gaseous biofuels in dual-fuel mode emphasizes efficiency and environmental impact, offering valuable insights into their feasibility as engine fuels. The findings of this review will serve as a valuable resource for researchers, engineers, and policymakers involved in alternative fuels and sustainable transportation, while also highlighting the need for further research and development to fully unlock the potential of gaseous biofuels in IC engines.
Collapse
Affiliation(s)
- A Jemila Percy
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India
| | - M Edwin
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India.
| |
Collapse
|
3
|
Prasanna Kumar D, Mishra RK, Chinnam S, Binnal P, Dwivedi N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:33-49. [PMID: 39660169 PMCID: PMC11630644 DOI: 10.1016/j.biotno.2024.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 12/12/2024]
Abstract
The excessive discharge and accumulation of solid organic waste into the environment is of severe concern across the globe. Thus, an efficient waste management system is important to mitigate health risks to humans, minimize harmful impacts on the environment, and ensure a sustainable ecosystem. The organic waste is converted into value-added products either using microorganisms or heat energy; these methods are commonly known as biochemical and thermochemical techniques. The biochemical process has the advantage of higher selectivity of the products and lower processing temperatures. The principal conversion processes of this category are fermentation and anaerobic digestion (AD). This review article focuses on AD, a potential method for treating organic waste and creating a variety of products with added value. Here we present the digestibility of various organic wastes, the role of microorganisms, the decomposition process, co-substrates, digester designs, biogas yields, by-products, environmental impacts, and overall techno-economical effectiveness of the process. Further, this review offers insights into new directions for AD for waste treatment and future research without compromising the overall feasibility and environmental sustainability.
Collapse
Affiliation(s)
- D.Jaya Prasanna Kumar
- Department of Chemical Engineering, Ramaiah Institute of Technology Bengaluru, Karnataka, 560054, India
| | - Ranjeet Kumar Mishra
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sampath Chinnam
- Department of Chemistry, Ramaiah Institute of Technology Bengaluru, Karnataka, 560054, India
| | - Prakash Binnal
- Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, Karnataka, 572102, India
| | - Naveen Dwivedi
- Department of Biotechnology Engineering, Chandigarh University, Mohali, 140413, India
| |
Collapse
|
4
|
Kintl A, Hammerschmiedt T, Vítěz T, Brtnický M, Vejražka K, Huňady I, Látal O, Elbl J. Possibility of using tannins to control greenhouse gas production during digestate storage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:75-83. [PMID: 36442329 DOI: 10.1016/j.wasman.2022.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The presented paper deals with the testing of a possibility to reduce emissions of undesirable greenhouse gases (CH4, CO2; NOx) and their mixture (biogas) during the storage of digestate using applications of secondary plant metabolites (tannins). The experiment was conducted in laboratory conditions in which the digestate was placed in fermentation chambers. Prior to the fermentation process, preparations were applied to the digestate, which contained tannins: Tanenol Antibotrytis (TA), Tanenol Clar (TC) and Tanenol Rouge (TR) in three concentrations (0.5, 1.0 and 2.0% w/w). The application of these preparations demonstrably affected the production of biogas and the contents of CH4, CO2 and N therein. The application of TR preparation in the concentration of 1.0% and 2.0% significantly reduced the production of biogas as compared with all variants. The preparation further inhibited the process of CH4 development. In contrast, the other preparations with the content of different kinds of TA and TC increased the production of biogas (on average by 15%), CH4 (on average by 7%) and CO2 (on average by 12%) as compared with the control variant and TR variant. These two variants reduced the concentration of N in biogas on average by 38%. Thus, the tested Tanenol tannin preparations can be used in different concentrations either to control emissions of greenhouse gases during the storage of digestate or, in case of increased production of CO2 for its reuse in order to increase methane yields in the process of anaerobic fermentation.
Collapse
Affiliation(s)
- Antonín Kintl
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic.
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Tomáš Vítěz
- Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 621 00 Brno, Czech Republic.
| | - Karel Vejražka
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic.
| | - Igor Huňady
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic.
| | - Oldřich Látal
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Jakub Elbl
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
5
|
Li B, Dinkler K, Zhao N, Ran X, Sobhi M, Dong R, Müller J, Xiong W, Huang G, Guo J, Oechsner H. Response of phosphorus speciation to organic loading rates and temperatures during anaerobic co-digestion of animal manures and wheat straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155921. [PMID: 35577093 DOI: 10.1016/j.scitotenv.2022.155921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/02/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The world is facing huge phosphate (P) shortage and anaerobic digestion (AD) is a recognized technology to promote nutrient (N and P) recycling. The composition of P speciation in the digestate is essential for the fertilizing effect. However, how P speciation in the digestates interacts with the AD process conditions is unknown. Therefore, interaction of P speciation in digestates with AD process conditions was investigated by using a chemical sequential extraction method (Hedley fractionation) and X-ray diffraction; specifically, the effects of organic loading rate (OLR), temperature, and substrate composition were investigated. The results showed that OLR and feedstock affected P speciation in the digestate significantly due to different ion species and ionic strengths. The H2O-P concentration in chicken manure with straw (CMS) and dairy manure with straw (DMS) digestates decreased by 44.04-48.76% and 48.88-50.49%, respectively, as the OLR increased from 2 to 4 kg VS m-3 d-1. Simultaneously, HCl-P increased by 38.02-44.01% in the CMS digestates due to Ca-P and Mg-P formation, indicating that Ca-P and Mg-P formation was positively correlated with OLR, whereas P mobility decreased. Further, thermophilic temperature conditions were more conducive for the formation of insoluble P than mesophilic temperature conditions in the digestates due to the thermodynamic driving force of the reactions. The results would facilitate the understanding of P transformation in the AD process under the influence of feedstock, OLR, and temperature. From the viewpoint of nutrient management, lower OLR and temperature are more beneficial for a fast P availability, whereas higher OLR and temperature are more helpful for storage and export because of P precipitated into solid phase of digestate.
Collapse
Affiliation(s)
- Bowen Li
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, People's Republic of China
| | - Konstantin Dinkler
- The State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Stuttgart 70593, Germany
| | - Nan Zhao
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, People's Republic of China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xueling Ran
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, People's Republic of China
| | - Mostafa Sobhi
- Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Renjie Dong
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, People's Republic of China
| | - Joachim Müller
- Institute of Agricultural Engineering, Tropics and Subtropics, University of Hohenheim, Stuttgart 70599, Germany
| | - Wei Xiong
- Hubei Lvxin Ecological Technology Co., Ltd., Yicheng 441400, China
| | - Guangqun Huang
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, People's Republic of China
| | - Jianbin Guo
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, People's Republic of China.
| | - Hans Oechsner
- The State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Stuttgart 70593, Germany
| |
Collapse
|
6
|
Yoosefian SH, Ebrahimi R, Hosseinzadeh Samani B, Maleki A. Modification of bioethanol production in an innovative pneumatic digester with non-thermal cold plasma detoxification. BIORESOURCE TECHNOLOGY 2022; 350:126907. [PMID: 35227915 DOI: 10.1016/j.biortech.2022.126907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
An anaerobic pneu-mechanical digester (PD) was designed to ferment lignocellulosic compounds. So, wheat and rice straws were pretreated using an ultrasound-acid, and then thermal-acid hydrolysis was conducted. Hydrolysis optimization was performed using the response surface method and the optimal points for time, temperature, and acid concentration were 45 min, 148.4 °C, and 2.04 % v/v, respectively. Cold plasma was then used as detoxification to reduce the amount of inhibitory compounds and acids. This method was capable of reducing the amounts of acetic acid, formic acid and furfural by 73, 83 and 68 % in hydrolyzed biomass, respectively. The biomass was fermented in a PD for 20 days and compared with a conventional digester (CD). The obtained results showed that the PD could increase the efficiency of bioethanol by 37 % in the detoxified state and 22 % in the non-detoxified state after 20 days of fermentation compared to the CD. Moreover, H2S, CO and O2 were measured during fermentation process. In PD, the amount of H2S and O2 was lower than CD, but CO was significantly higher in the PD.
Collapse
Affiliation(s)
- Seyedeh Hoda Yoosefian
- Department of Mechanical Engineering of Biosystems, Shahrekord University, 8818634141 Shahrekord, Iran
| | - Rahim Ebrahimi
- Department of Mechanical Engineering of Biosystems, Shahrekord University, 8818634141 Shahrekord, Iran.
| | | | - Ali Maleki
- Department of Mechanical Engineering of Biosystems, Shahrekord University, 8818634141 Shahrekord, Iran
| |
Collapse
|
7
|
Palù M, Peprah M, Tsapekos P, Kougias P, Campanaro S, Angelidaki I, Treu L. In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion. BIORESOURCE TECHNOLOGY 2022; 348:126754. [PMID: 35077815 DOI: 10.1016/j.biortech.2022.126754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, the effects of bioaugmentation of typically dominant hydrogenotrophic methanogens to CSTR co-digesting cheese whey and manure, under in-situ biomethanation operations were investigated. Reactors working at mesophilic (37 °C) and thermophilic (55 °C) conditions were independently treated and examined in terms of microbial composition and process dynamics. Addition of Methanoculleus bourgensis in the mesophilic reactor led to a stable biomethanation, and an improved microbial metabolism, resulting in 11% increase in CH4 production rate. 16S rRNA and biochemical analyses revealed an enrichment in syntrophic and acidogenic species abundance. Moreover, nearly total volatile fatty acids conversion was observed. Differently, Methanothermobacter thermautotrophicus addition in the thermophilic reactor did not promote biogas upgrading performance due to incomplete H2 conversion and inefficient community adaptation to H2 excess, ultimately favoring acetoclastic methanogenesis. Bioaugmentation constitutes a viable tool to strengthen in-situ upgrading processes and paves the way to the development of more sophisticated and robust microbial inoculants.
Collapse
Affiliation(s)
- Matteo Palù
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35121, Italy
| | - Maria Peprah
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation DIMITRA, Thermi, Thessaloniki 57001, Greece
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35121, Italy; CRIBI Biotechnology Center, University of Padova, Padova 35131, Italy.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35121, Italy
| |
Collapse
|
8
|
Roslund MI, Puhakka R, Nurminen N, Oikarinen S, Siter N, Grönroos M, Cinek O, Kramná L, Jumpponen A, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. ENVIRONMENT INTERNATIONAL 2021; 157:106811. [PMID: 34403882 DOI: 10.1016/j.envint.2021.106811] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In modern urban environments children have a high incidence of inflammatory disorders, including allergies, asthma, and type1 diabetes. The underlying cause of these disorders, according to the biodiversity hypothesis, is an imbalance in immune regulation caused by a weak interaction with environmental microbes. In this 2-year study, we analyzed bacterial community shifts in the soil surface in day-care centers and commensal bacteria inhabiting the mouth, skin, and gut of children. We compared two different day-care environments: standard urban day-care centers and intervention day-care centers. Yards in the latter were amended with biodiverse forest floor vegetation and sod at the beginning of the study. RESULTS Intervention caused a long-standing increase in the relative abundance of nonpathogenic environmental mycobacteria in the surface soils. Treatment-specific shifts became evident in the community composition of Gammaproteobacteria, Negativicutes, and Bacilli, which jointly accounted for almost 40 and 50% of the taxa on the intervention day-care children's skin and in saliva, respectively. In the year-one skin swabs, richness of Alpha-, Beta-, and Gammaproteobacteria was higher, and the relative abundance of potentially pathogenic bacteria, including Haemophilus parainfluenzae, Streptococcus sp., and Veillonella sp., was lower among children in intervention day-care centers compared with children in standard day-care centers. In the gut, the relative abundance of Clostridium sensu stricto decreased, particularly among the intervention children. CONCLUSIONS This study shows that a 2-year biodiversity intervention shapes human commensal microbiota, including taxa that have been associated with immune regulation. Results indicate that intervention enriched commensal microbiota and suppressed the potentially pathogenic bacteria on the skin. We recommend future studies that expand intervention strategies to immune response and eventually the incidence of immune-mediated diseases.
Collapse
Affiliation(s)
- Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Nathan Siter
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Ondřej Cinek
- Department of Pediatrics, Second Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Lenka Kramná
- Department of Pediatrics, Second Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan KS66506, KS, United States of America
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Juho Rajaniemi
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Turku, Finland.
| |
Collapse
|
9
|
Banu JR, Kumar G, Chattopadhyay I. Management of microbial enzymes for biofuels and biogas production by using metagenomic and genome editing approaches. 3 Biotech 2021; 11:429. [PMID: 34603908 DOI: 10.1007/s13205-021-02962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Non-renewable fossil fuels such as bitumen, coal, natural gas, oil shale, and petroleum are depleting over the world owing to unrestricted consumption. Biofuels such as biodiesel, biobutanol, bioethanol, and biogas are considered an eco-friendly and cost-effective alternatives of fossil fuels. For energy sustainability, the production of advanced biofuels is required. The advancement of genetic and metabolic engineering in microbial cells played a significant contribution to biofuels overproduction. Essential approaches such as next-generation sequencing technologies and CRISPR/Cas9-mediated genome editing of microbial cells are required for the mass manufacture of biofuels globally. Advanced "omics" approaches are used to construct effective microorganisms for biofuels manufacturing. A new investigation is required to augment the production of lignocellulosic-based biofuels with minimal use of energy. Advanced areas of metabolic engineering are introduced in the manufacture of biofuels by the use of engineered microbial strains. Genetically modified microorganisms are used for the production of biofuels in large quantities at a low-cost.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| | - Gopalakrishnan Kumar
- Faculty of Science and Technology, Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Forus, Box 8600, 4036 Stavanger, Norway
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| |
Collapse
|
10
|
Zhu A, Qin Y, Wu J, Ye M, Li YY. Characterization of biogas production and microbial community in thermophilic anaerobic co-digestion of sewage sludge and paper waste. BIORESOURCE TECHNOLOGY 2021; 337:125371. [PMID: 34126356 DOI: 10.1016/j.biortech.2021.125371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
To recover the biogas from sewage sludge and paper waste (PW), the methanogenic performance of thermophilic anaerobic co-digestion of sewage sludge with PW was assessed by a continuous experiment. The effects on the biogas production and microbial community were investigated by changing the PW ratio from 0 to 66.7%. The optimal performance was obtained at the ratio of sewage sludge: PW = 4:6 (total solids), where the COD removal efficiency and biogas production increased from 58.34±5.90% to 72.92±0.08% and 438±53 to 594±72 mL/g-VSadded, respectively. By investigating the trend of carbohydrate and protein degradation rates, the competition between carbohydrate and protein degradation was quantified. The critical PW addition ratio was about (63.64%), where the protein degradation rate decreased to zero with increasing PW addition. Meanwhile, the microbial analysis showed that cellulolytic bacteria outcompeted proteolytic bacteria and to be the predominant group after PW addition.
Collapse
Affiliation(s)
- Aijun Zhu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jing Wu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Min Ye
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
11
|
Rapid Two Stage Anaerobic Digestion of Nejayote through Microaeration and Direct Interspecies Electron Transfer. Processes (Basel) 2020. [DOI: 10.3390/pr8121614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Corn is one of the main food products in Mexico. The elaboration of corn-derived products generates wastewater with a high organic load (nejayote). Anaerobic digestion is an indicated treatment for wastewater with high organic loads. The results of this study show that the application of microaeration in the hydrolysis-fermentative reactor increased the percentage of volatile fatty acids (VFA) available in the medium by 62%. The addition of a conductive material, such as granulated activated carbon (GAC), promotes DIET (Direct interspecies electrons transfer) in the methanogenic UASB reactor increasing the methane yield by 55%. Likewise, a great diversity of exoelectrogenic bacteria, with the ability to donate electrons DIET mechanisms, were developed in the GAC biofilm, though interestingly, Peptoclostridium and Clostridium (17.3% and 12.75%, respectively) were detected with a great abundance in the GAC biofilm. Peptoclostridium has not been previously reported as a participant in DIET process.
Collapse
|
12
|
Qian H, Liu S, Wang P, Huang Y, Lou Y, Huang L, Jiang C, Zhang D. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina. Bioelectrochemistry 2020; 136:107635. [DOI: 10.1016/j.bioelechem.2020.107635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/11/2023]
|
13
|
Fernandez-Bayo JD, Simmons CW, VanderGheynst JS. Characterization of digestate microbial community structure following thermophilic anaerobic digestion with varying levels of green and food wastes. ACTA ACUST UNITED AC 2020; 47:1031-1044. [DOI: 10.1007/s10295-020-02326-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022]
Abstract
Abstract
The properties of digestates generated through anaerobic digestion are influenced by interactions between the digester microbial communities, feedstock properties and digester operating conditions. This study investigated the effect of varying initial feedstock carbon to nitrogen (C/N) ratios on digestate microbiota and predicted abundance of genes encoding lignocellulolytic activity. The C/N ratio had a significant impact on the digestate microbiome. Feedstocks with intermediate C/N ratio (20–27) (where higher biomethane potential was observed) showed higher relative abundance of archaea compared to feedstocks with C/N ratios at 17 and 34. Within microbial networks, four microbial clusters and eight connector microorganisms changed significantly with the C/N ratio (P < 0.05). Feedstocks with C/N < 23 were richer in organisms from the family Thermotogaceae and genus Caldicoprobacter and enhanced potential for degradation of maltose, galactomannans, melobiose and lactose. This study provides new insights into how anaerobic digestion conditions relate to the structure and functional potential of digester microbial communities, which may be relevant to both digester performance and subsequent utilization of digestates for composting or amending soil.
Collapse
Affiliation(s)
- Jesus D Fernandez-Bayo
- grid.27860.3b 0000 0004 1936 9684 Department of Biological and Agricultural Engineering University of California One Shields Ave. 95616 Davis CA USA
- grid.27860.3b 0000 0004 1936 9684 Department of Food Science and Technology University of California One Shields Ave. 95616 Davis CA USA
| | - Christopher W Simmons
- grid.27860.3b 0000 0004 1936 9684 Department of Food Science and Technology University of California One Shields Ave. 95616 Davis CA USA
| | - Jean S VanderGheynst
- grid.27860.3b 0000 0004 1936 9684 Department of Biological and Agricultural Engineering University of California One Shields Ave. 95616 Davis CA USA
- grid.266686.a 0000000102217463 Department of Bioengineering University of Massachusetts Dartmouth MA USA
| |
Collapse
|
14
|
Obtaining Granules from Waste Tannery Shavings and Mineral Additives by Wet Pulp Granulation. Molecules 2020; 25:molecules25225419. [PMID: 33228107 PMCID: PMC7699417 DOI: 10.3390/molecules25225419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
This paper presents the results of research on the granulation process of leather industry waste, i.e., tanning shavings. It is economically justified to granulate this waste together with mineral additives that are useful in the processes of their further processing. Unfortunately, the granulation of raw, unsorted shavings does not obtain desired results due to their unusual properties. In this study, the possibilities of agglomeration of this waste were examined by a new method consisting of the production and then the granulation of wet pulp. During granulation, no additional binding liquid is added to the granulated bed. As part of this work, the specific surface of granulated shavings, the granulometric composition of the obtained agglomerates, and their strength parameters were determined. The use of a vibrating disc granulator, the addition of a water glass solution (in the pulp), dolomite, and gypsum made it possible to obtain durable, mechanically stable granules.
Collapse
|
15
|
Biogas from Tannery Solid Waste Anaerobic Digestion Is Driven by the Association of the Bacterial Order Bacteroidales and Archaeal Family Methanosaetaceae. Appl Biochem Biotechnol 2020; 192:482-493. [PMID: 32399839 DOI: 10.1007/s12010-020-03326-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
The search for renewable energies has been one of the biggest challenges of the last decades. Sludge and solid wastes of many sources have been used to produce biogas of high calorific value. Thus, this work aimed to evaluate the biogas production of solid waste originating from a tannery that uses chromium salts as a tanning agent and to characterize the physicochemical parameters and microbial composition of the biogas-producing biomass. Wastes were collected and the parameters were evaluated at the initial and final time points of the anaerobic incubation process. At the end of 150 days, there was a production of 26.1 mL g-1 VSS of biogas with 52% of methane. The highest amount of biomethane observed was related to the archaeal family Methanosaetaceae and bacterial order Bacteroidales. Knowledge about changes in the microbial composition can provide tools for manipulation, isolation, and inoculation of the microorganisms inside the bioreactors to maximize methane production.
Collapse
|
16
|
Genome Analyses and Genome-Centered Metatranscriptomics of Methanothermobacter wolfeii Strain SIV6, Isolated from a Thermophilic Production-Scale Biogas Fermenter. Microorganisms 2019; 8:microorganisms8010013. [PMID: 31861790 PMCID: PMC7022856 DOI: 10.3390/microorganisms8010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
In the thermophilic biogas-producing microbial community, the genus Methanothermobacter was previously described to be frequently abundant. The aim of this study was to establish and analyze the genome sequence of the archaeal strain Methanothermobacter wolfeii SIV6 originating from a thermophilic industrial-scale biogas fermenter and compare it to related reference genomes. The circular chromosome has a size of 1,686,891 bases, featuring a GC content of 48.89%. Comparative analyses considering three completely sequenced Methanothermobacter strains revealed a core genome of 1494 coding sequences and 16 strain specific genes for M. wolfeii SIV6, which include glycosyltransferases and CRISPR/cas associated genes. Moreover, M. wolfeii SIV6 harbors all genes for the hydrogenotrophic methanogenesis pathway and genome-centered metatranscriptomics indicates the high metabolic activity of this strain, with 25.18% of all transcripts per million (TPM) belong to the hydrogenotrophic methanogenesis pathway and 18.02% of these TPM exclusively belonging to the mcr operon. This operon encodes the different subunits of the enzyme methyl-coenzyme M reductase (EC: 2.8.4.1), which catalyzes the final and rate-limiting step during methanogenesis. Finally, fragment recruitment of metagenomic reads from the thermophilic biogas fermenter on the SIV6 genome showed that the strain is abundant (1.2%) within the indigenous microbial community. Detailed analysis of the archaeal isolate M. wolfeii SIV6 indicates its role and function within the microbial community of the thermophilic biogas fermenter, towards a better understanding of the biogas production process and a microbial-based management of this complex process.
Collapse
|
17
|
Temperature Effects on Methanogenesis and Sulfidogenesis during Anaerobic Digestion of Sulfur-Rich Macroalgal Biomass in Sequencing Batch Reactors. Microorganisms 2019; 7:microorganisms7120682. [PMID: 31835811 PMCID: PMC6955875 DOI: 10.3390/microorganisms7120682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Methanogenesis and sulfidogenesis, the major microbial reduction reactions occurring in the anaerobic digestion (AD) process, compete for common substrates. Therefore, the balance between methanogenic and sulfidogenic activities is important for efficient biogas production. In this study, changes in methanogenic and sulfidogenic performances in response to changes in organic loading rate (OLR) were examined in two digesters treating sulfur-rich macroalgal waste under mesophilic and thermophilic conditions, respectively. Both methanogenesis and sulfidogenesis were largely suppressed under thermophilic relative to mesophilic conditions, regardless of OLR. However, the suppressive effect was even more significant for sulfidogenesis, which may suggest an option for H2S control. The reactor microbial communities developed totally differently according to reactor temperature, with the abundance of both methanogens and sulfate-reducing bacteria being significantly higher under mesophilic conditions. In both reactors, sulfidogenic activity increased with increasing OLR. The findings of this study help to understand how temperature affects sulfidogenesis and methanogenesis during AD.
Collapse
|
18
|
Zhang J, Luo W, Wang Y, Li G, Liu Y, Gong X. Anaerobic cultivation of waste activated sludge to inoculate solid state anaerobic co-digestion of agricultural wastes: Effects of different cultivated periods. BIORESOURCE TECHNOLOGY 2019; 294:122078. [PMID: 31525587 DOI: 10.1016/j.biortech.2019.122078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
This study investigated effects of waste activated sludge (WAS) after anaerobic cultivation as inoculum on solid-state anaerobic digestion (SSAD) of agricultural wastes. WAS was anaerobically cultivated for 0, 20 and 50 days and then used as inoculum for co-digestion at substrate/inoculum (S/I) ratios of 2 and 4, respectively. Results showed that treatments inoculated with cultivated WAS exhibited better buffering capability. The highest cumulative methane production (218 L/kg VS) was achieved when inoculating WAS after 50 days of cultivation at the S/I ratio of 2. Fresh WAS without any anaerobic cultivation as inoculum led to digestion instability with significant acidification and limited biogas production, particularly at the S/I ratio of 4. Microbial analysis deciphered that Methanosarcina was the dominant archaea in all treatments and its relative abundance increased with the extension of WAS cultivation time. Hence, WAS after prolonged anaerobic cultivation could be a favorable inoculum for SSAD of agricultural wastes.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yaya Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; College of Mechanical and Electrical Engineering, Agriculture University of Hebei, Baoding, Hebei 071000, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yifei Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Gong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Banach A, Ciesielski S, Bacza T, Pieczykolan M, Ziembińska-Buczyńska A. Microbial community composition and methanogens' biodiversity during a temperature shift in a methane fermentation chamber. ENVIRONMENTAL TECHNOLOGY 2019; 40:3252-3263. [PMID: 29683411 DOI: 10.1080/09593330.2018.1468490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
More information on the connection between anaerobic digestion (AD) parameters and composition of the microbial community involved in the AD process is required to gain a better understanding of how a bioreactor functions. The aim of this study was to analyse the composition of microbial communities and the dynamics of methanogens' biodiversity changes during the shift from mesophilic (38°C) to thermophilic (55°C) conditions during biogas production. The total microbial composition was examined via the metagenomic approach based on 16S rRNA gene sequencing, whereas the methanogen communities were analysed using PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) of mcrA. Even though the temperature is one of the crucial parameters affecting microorganisms involved in the AD process, the results presented here revealed that there were no statistically significant differences in bacterial community composition between the mesophilic and thermophilic phases of the process. The most abundant phyla were found to be Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. However, the methanogens' community genotypic structure as examined by the PCR-DGGE method changed under thermophilic conditions. The temperature had the strongest impact on the archaeal methanogens in the fermentation chamber directly after implementing the temperature shift. A relatively higher biogas yield and average content of CH4 in the produced biogas were observed under thermophilic conditions.
Collapse
Affiliation(s)
- Anna Banach
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, The Silesian University of Technology , Gliwice , Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Tomasz Bacza
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, The Silesian University of Technology , Gliwice , Poland
| | - Marek Pieczykolan
- Regional Center for Water and Wastewater Management Co. , Tychy , Poland
| | - Aleksandra Ziembińska-Buczyńska
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, The Silesian University of Technology , Gliwice , Poland
| |
Collapse
|
20
|
Li L, Qin Y, Kong Z, Wu J, Kubota K, Li YY. Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:709-717. [PMID: 30380478 DOI: 10.1016/j.scitotenv.2018.10.292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The thermophilic anaerobic co-digestion of food waste and paper waste was successfully operated with a 0% to 70% fraction of paper waste. The variation of functional microbial community was investigated by 16S rRNA gene analysis. The results indicated that the hydrolyzing bacterial community changed from carbohydrate/protein-degrading bacteria to cellulose-degrading bacteria when the paper waste ratio was higher than 50%. Significant changes in the taxon responsible for cellulose degradation were found depending on the paper waste fraction. Cellulose-degrading bacteria outcompeted lactic acid bacteria in the degradation of monosaccharide, resulting in a decline in the proportion of lactic acid bacteria and the absence of an accumulation of lactic acid. At high paper waste ratios, because the cellulose-degrading bacteria, such as Defluviitoga tunisiensis, were more likely to degrade monosaccharides directly to acetate and hydrogen rather than to propionate and butyrate, the abundance of syntrophs was reduced. The variation of those bacteria with high H2-producing ability significantly influenced the proportion of hydrogenotrophic archaea. The change in the microbial community as the paper waste fraction increased was illustrated with regard to anaerobic degradation steps.
Collapse
Affiliation(s)
- Lu Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jing Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
21
|
Zhang M, Zhang Y, Li Z, Zhang C, Tan X, Liu X, Wan C, Yang X, Lee DJ. Anaerobic co-digestion of food waste/excess sludge: substrates - products transformation and role of NADH as an indicator. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:197-206. [PMID: 30472563 DOI: 10.1016/j.jenvman.2018.11.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The process of anaerobic co-digestion is vital importance to resource recovery from organic solid wastes such as food waste and municipal sludge. However, its application is hindered by the limited understanding on the complex substrates-products transformation reactions and mechanisms therein. In this study, food waste (FW) and excess sludge (ES) from municipal wastewater treatment were mixed at various ratios (ES/FW 5:0, 4:1, 2:1, 1:1, 1:2, 1:4, w/w), and the co-digestion process was studied in a batch test. The consumption of substrates including soluble proteins and carbohydrates, the variation in the intermediates such as various volatile fatty acids, and the production of hydrogen and methane gases were monitored. The results suggested that 4:1 was likely the optimal ratio where substrates were consumed and biogas generated efficiently, whereas 1:2 and 1:4 caused severe inhibition. Fermentation of ES alone produced mainly acetic and propionic acid, while the addition of FW led to butyric acid type fermentation. Intermediates in the fermentation liquid were tentatively identified, and the levels of NADH quantified using 3D-excitation/emission fluorescence spectrometry. One class of the intermediates, tryptophan-like proteins were correlated to the butyric acid accumulation in ES/FW mixtures, and NADH level was proposed as an indicator of VFAs production activities.
Collapse
Affiliation(s)
- Min Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Chen Zhang
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Xue Yang
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
22
|
Improved Methanogenic Communities for Biogas Production. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-10516-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Tossavainen M, Katyal Chopra N, Kostia S, Valkonen K, Sharma AK, Sharma S, Ojala A, Romantschuk M. Conversion of biowaste leachate to valuable biomass and lipids in mixed cultures of Euglena gracilis and chlorophytes. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Kong D, Zhang K, Liang J, Gao W, Du L. Methanogenic community during the anaerobic digestion of different substrates and organic loading rates. Microbiologyopen 2018; 8:e00709. [PMID: 30112808 PMCID: PMC6528610 DOI: 10.1002/mbo3.709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
Three anaerobic reactors using pig manure (PM), maize straw (MS), and a mixture of the two as substrates were compared for archaeal community structure and diversity, and for methanogens response to increased organic loading rate (OLR, expressed in the mass of volatile solid (VS)). Methanogenic archaeal richness during codigestion of pig manure with maize straw (ACE: 2412) was greater than that during the others (ACE: 1225, 1467) at an OLR of 4 g L−1 day−1, accompanied by high specific methane yield. Euryarchaeota and Crenarchaeota predominated during overall digestion of different substrates; with relative abundances of 63.5%–99.0% and 1.0%–36.3%, respectively. Methanosarcina was the predominant genus that accounted for 33.7%–79.8% of the archaeal community. The diversity in the PM digester decreased with increase in OLR, but increased in the MS digester. The diversity was stable during the codigestion with increased OLR. The relative abundances of hydrogenotrophic methanogens increased by 2.6 and 2.1 folds; the methanogenic community shifted from acetoclastic to hydrogenotrophic methanogens during digestion of MS, and of the mixture of MS and PM. Canonical correspondence analysis revealed a strong relationship between reactor parameters and methanogenic community.
Collapse
Affiliation(s)
- Dewang Kong
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China.,College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - Wenxuan Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - Lianzhu Du
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| |
Collapse
|
25
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018; 102:5045-5063. [PMID: 29713790 PMCID: PMC5959977 DOI: 10.1007/s00253-018-8976-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
26
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018. [PMID: 29713790 DOI: 10.1007/s00253-018-8976-7)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
27
|
Abstract
Broad and increasing interest in sustainable wastewater treatment has led a paradigm shift towards more efficient means of treatment system operation. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. Anaerobic membrane bioreactors (AnMBRs) have been identified as an attractive option for producing high quality and nutrient-rich effluents during the treatment of municipal wastewaters. The introduction of direct effluent reuse does, however, raise several safety concerns related to its application. Among those concerns are the microbial threats associated with pathogenic bacteria as well as the emerging issues associated with antibiotic-resistant bacteria and the potential for proliferation of antibiotic resistance genes. Although there is substantial research evaluating these topics from the perspectives of anaerobic digestion and membrane bioreactors separately, little is known regarding how AnMBR systems can contribute to pathogen and antibiotic resistance removal and propagation in wastewater effluents. The aim of this review is to provide a current assessment of existing literature on anaerobic and membrane-based treatment systems as they relate to these microbial safety issues and utilize this assessment to identify areas of potential future research to evaluate the suitability of AnMBRs for direct effluent reuse.
Collapse
|
28
|
Tossavainen M, Nykänen A, Valkonen K, Ojala A, Kostia S, Romantschuk M. Culturing of Selenastrum on diluted composting fluids; conversion of waste to valuable algal biomass in presence of bacteria. BIORESOURCE TECHNOLOGY 2017; 238:205-213. [PMID: 28433909 DOI: 10.1016/j.biortech.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Growth and fatty acid production of microalga Selenastrum sp. with associated bacteria was studied in lab-scale experiments in three composting leachate liquids. Nutrient reduction in cultures was measured at different initial substrate strengths. A small, pilot-scale photobioreactor (PBR) was used to verify lab-scale results. Similar growth conditions supported growth of both Selenastrum and bacteria. CO2 feed enhanced the production of biomass and lipids in PBR (2.4gL-1 and 17% DW) compared to lab-scale (0.1-1.6gL-1 and 4.0-6.5% DW) experiments. Also prolonged cultivation time increased lipid content in PBR. At both scales, NH4-N with an initial concentration of ca. 40mgL-1 was completely removed from the biowaste leachate. In lab-scale, maximal COD reduction was over 2000mgL-1, indicating mixotrophic growth of Selenastrum. Co-cultures are efficient in composting leachate liquid treatment, and conversion of waste to biomass is a promising approach to improve the bioeconomy of composting plants.
Collapse
Affiliation(s)
- Marika Tossavainen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland.
| | - Anne Nykänen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Kalle Valkonen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Anne Ojala
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Department of Forest Sciences, P.O. Box 27, 00014 University of Helsinki, Finland
| | - Silja Kostia
- Faculty of Technology, Lahti University of Applied Sciences, Ståhlberginkatu 10, 15110 Lahti, Finland
| | - Martin Romantschuk
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Institute of Environmental Sciences, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
29
|
Chiu SLH, Lo IMC. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24435-24450. [PMID: 27380183 DOI: 10.1007/s11356-016-7159-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.
Collapse
Affiliation(s)
- Sam L H Chiu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Sel İ, Çakmakcı M, Özkaya B, Suphi Altan H. Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 56:310-317. [PMID: 27444845 DOI: 10.1016/j.wasman.2016.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively.
Collapse
Affiliation(s)
- İlker Sel
- Yildiz Technical University Environmental Engineering Department, Davutpasa Campus, 34220 Esenler, İstanbul, Turkey.
| | - Mehmet Çakmakcı
- Yildiz Technical University Environmental Engineering Department, Davutpasa Campus, 34220 Esenler, İstanbul, Turkey
| | - Bestamin Özkaya
- Yildiz Technical University Environmental Engineering Department, Davutpasa Campus, 34220 Esenler, İstanbul, Turkey
| | - H Suphi Altan
- Ortadogu Enerji A.S. Kaptanpasa M. Piyalepasa Blv. No: 73 Sisli, İstanbul, Turkey
| |
Collapse
|
31
|
Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning. Extremophiles 2016; 20:795-808. [DOI: 10.1007/s00792-016-0855-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/14/2016] [Indexed: 01/23/2023]
|
32
|
Lin Q, De Vrieze J, Li J, Li X. Temperature affects microbial abundance, activity and interactions in anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 209:228-236. [PMID: 26970926 DOI: 10.1016/j.biortech.2016.02.132] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community.
Collapse
Affiliation(s)
- Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jo De Vrieze
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
33
|
Theiss J, Rother M, Röske K. Influence of DNA isolation method on the investigation of archaeal diversity and abundance in biogas plants. Arch Microbiol 2016; 198:619-28. [PMID: 27089887 DOI: 10.1007/s00203-016-1221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 11/26/2022]
Abstract
Various methods are available for DNA isolation from environmental samples. Because the chemical and biological composition of samples such as soil, sludge, or plant material is different, the effectiveness of DNA isolation can vary depending on the method applied and thus, have a substantial effect on the results of downstream analysis of the microbial community. Although the process of biogas formation is being intensely investigated, a systematic evaluation of kits for DNA isolation from material of biogas plants is still lacking. Since no DNA isolation kit specifically tailored for DNA isolation from sludge of biogas plants is available, this study compares five commercially available kits regarding their influence on downstream analyses such denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR). The results show that not all kits are equally suited for the DNA isolation from samples of different biogas plants, but highly reproducible DGGE fingerprints as well as qPCR results across the tested samples from biogas reactors using different substrate compositions could be produced using selected kits.
Collapse
Affiliation(s)
- Juliane Theiss
- Sächsische Akademie der Wissenschaften zu Leipzig, Karl-Tauchnitz-Straße 1, 04107, Leipzig, Germany
| | - Michael Rother
- Technische Universität Dresden, Professur für Mikrobielle Diversität, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Kerstin Röske
- Sächsische Akademie der Wissenschaften zu Leipzig, Karl-Tauchnitz-Straße 1, 04107, Leipzig, Germany.
| |
Collapse
|
34
|
Kern T, Fischer MA, Deppenmeier U, Schmitz RA, Rother M. Methanosarcina flavescens sp. nov., a methanogenic archaeon isolated from a full-scale anaerobic digester. Int J Syst Evol Microbiol 2016; 66:1533-1538. [PMID: 26763977 DOI: 10.1099/ijsem.0.000894] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, strictly anaerobic, methanogenic archaeon, strain E03.2T, was isolated from a full-scale biogas plant in Germany. Cells were non-motile sarcina-like cocci, occurring in aggregates. Strain E03.2T grew autotrophically on H2 plus CO2, and additionally cells could utilize acetate, methanol, moni-, di- and trimethylamine as carbon and energy sources; however, growth or methanogenesis on formate was not observed. Yeast extract and vitamins stimulated growth but were not mandatory. The optimal growth temperature of strain E03.2T was approximately 45 °C; maximal growth rates were obtained at about pH 7.0 in the presence of approximately 6.8 mM NaCl. The DNA G+C content of strain E03.2T was 41.3 mol%. Phylogenetic analyses based on 16S rRNA gene and mcrA sequences placed strain E03.2T within the genus Methanosarcina. Based on 16S rRNA gene sequence similarity strain E03.2T was related to seven different species of the genus Methanosarcina, but most closely related to Methanosarcina thermophila TM-1T. Phenotypic, physiological and genomic characteristics indicated that strain E03.2T represents a novel species of the genus Methanosarcina, for which the name Methanosarcina flavescens sp. nov. is proposed. The type strain is E03.2T ( = DSM 100822T = JCM 30921T).
Collapse
Affiliation(s)
- Tobias Kern
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin A Fischer
- Institut für Allgemeine Mikrobiologie, Universität Kiel, 24118 Kiel, Germany
| | - Uwe Deppenmeier
- Institut für Mikrobiologie und Biotechnologie, Universität Bonn, 53115 Bonn, Germany
| | - Ruth A Schmitz
- Institut für Allgemeine Mikrobiologie, Universität Kiel, 24118 Kiel, Germany
| | - Michael Rother
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
35
|
Tuyet NT, Dan NP, Vu NC, Trung NLH, Thanh BX, De Wever H, Goemans M, Diels L. Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:597-606. [PMID: 26877043 DOI: 10.2166/wst.2015.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m(3).d. The volumetric biogas production of the digester was 1.94 ± 0.34 m(3)/m(3).d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.
Collapse
Affiliation(s)
- Nguyen Thi Tuyet
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam E-mail:
| | - Nguyen Phuoc Dan
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam E-mail:
| | - Nguyen Cong Vu
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam E-mail:
| | - Nguyen Le Hoang Trung
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam E-mail:
| | - Bui Xuan Thanh
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam E-mail:
| | - Heleen De Wever
- Vlaamse Instelling voor Technologisch Onderzoek NV (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Marcel Goemans
- University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ludo Diels
- University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
36
|
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Pühler A, Sczyrba A, Schlüter A. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:156. [PMID: 27462367 PMCID: PMC4960831 DOI: 10.1186/s13068-016-0565-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/12/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biofuel production from conversion of biomass is indispensable in the portfolio of renewable energies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are of special interest. RESULTS Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermophilic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the thermophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisiensis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total. A combined assembly comprised 80.3 % of all reads and resulted in the prediction of 1.59 million genes on assembled contigs. Genome binning yielded genome bins comprising the prevalent distinctive phyla Cloacimonetes, Spirochaetes, Fusobacteria and Thermotogae. Comparative genome analyses between the most dominant Thermotogae bin and the very closely related Defluviitoga tunisiensis L3 genome originating from the same BGP revealed high genetic similarity. This finding confirmed applicability and reliability of the binning approach. The four highly covered genome bins of the other three distinct phyla showed low or very low genetic similarities to their closest phylogenetic relatives, and therefore indicated their novelty. CONCLUSIONS In this study, the 16S rRNA gene sequencing approach and a combined metagenome assembly and binning approach were used for the first time on different production-scale biogas plants and revealed insights into the genetic potential and functional role of so far unknown species.
Collapse
Affiliation(s)
- Yvonne Stolze
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madis Rumming
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Henke
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
37
|
Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion. Folia Microbiol (Praha) 2015; 60:531-9. [PMID: 25921720 DOI: 10.1007/s12223-015-0396-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/16/2015] [Indexed: 01/31/2023]
Abstract
Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus.
Collapse
|
38
|
Saha S, Badhe N, De Vrieze J, Biswas R, Nandy T. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures. BIORESOURCE TECHNOLOGY 2015; 189:370-378. [PMID: 25913884 DOI: 10.1016/j.biortech.2015.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Low temperature (<20 °C) limits bio-methanation of sewage. Literature shows that hydrogenotrophic methanogens can adapt themselves to low temperature and methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor.
Collapse
Affiliation(s)
- Shaswati Saha
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Neha Badhe
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Jo De Vrieze
- Laboratory of Microbial Ecology & Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Rima Biswas
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| | - Tapas Nandy
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| |
Collapse
|
39
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
40
|
Ghasimi DSM, Tao Y, de Kreuk M, Zandvoort MH, van Lier JB. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:171. [PMID: 26500697 PMCID: PMC4618146 DOI: 10.1186/s13068-015-0355-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/09/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND In this research, the feasibility of, and population dynamics in, one-step anaerobic sequencing batch reactor systems treating the fine sieved fraction (FSF) from raw municipal wastewater was studied under thermophilic (55 °C) and mesophilic (35 °C) conditions. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter (mesh size 350 micron). FSF is a heterogeneous substrate that mainly consists of fibres originating from toilet paper and thus contains a high cellulosic fraction (60-80 % of total solids content), regarded as an energy-rich material. RESULTS Results of the 656-day fed-batch operation clearly showed that thermophilic digestion was more stable, applying high organic loading rates (OLR) up to 22 kg COD/(m(3) day). In contrast, the mesophilic digester already failed applying an OLR of 5.5 kg COD/(m(3) day), indicated by a drop in pH and increase in volatile fatty acids (VFAs). The observed viscosity values of the mesophilic sludge were more than tenfold higher than the thermophilic sludge. 454-pyrosequencing of eight mesophilic and eight thermophilic biomass samples revealed that Bacteroides and aceticlastic methanogen Methanosaeta were the dominant genera in the mesophilic digester, whereas OP9 lineages, Clostridium and the hydrogenotrophic methanogen Methanothermobacter dominated the thermophilic one. CONCLUSIONS Our study suggests that applying thermophilic conditions for FSF digestion would result in a higher biogas production rate and/or a smaller required reactor volume, comparing to mesophilic conditions.
Collapse
Affiliation(s)
- Dara S. M. Ghasimi
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Yu Tao
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- />Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ the UK
| | - Merle de Kreuk
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Marcel H. Zandvoort
- />Waternet, Korte Ouderkerkerdijk 7, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Jules B. van Lier
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|