1
|
Torres L, Saucedo-Lucero JO, Aizpuru A, Arriaga S. Post-Treatment of CO₂ Emissions With Microalgae: Magnetic Field-Induced Improvements in an AirLift Photoreactor. Biotechnol Bioeng 2025. [PMID: 40415302 DOI: 10.1002/bit.29032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Atmospheric pollution from volatile organic compounds (VOCs) and rising global temperatures due to greenhouse gases (GHGs) emissions, such as carbon dioxide (CO2) pose significant threats to air quality and public health. Coupled biological systems can mitigate VOC emissions, generating CO2, which is then assimilated by microalgae. Static magnetic field (SMF) stimulation has been shown to enhance microalgal growth and CO2 fixation. This study evaluated the impact of SMF on CO2 fixation in an airlift photoreactor (ARL) following VOCs treatment in a semi-continuous stirred tank reactor (S-CSTR) processing toluene vapors. The ARL was exposed to SMF at 45 mT for 6, 4, and 2 h d-1. Results demonstrated a 96% increase in CO2 capture after 4 h of exposure, while removing 45% of the remanent toluene. The highest biomass increase (12%) occurred after 6 h of exposure, whereas total chlorophyll content peaked at 18.4 mg L-1 under 4 h of SMF, compared with 6.8 mg L-1 in the control. Therefore, 4 h exposure at 45 mT was identified as the optimal condition, balancing VOCs reduction, CO2 mitigation, and high pigment production. Microalgal cultures under SMF present a promising and versatile approach for air pollution control and carbon valorization, offering potential economic benefits through biomass applications and supporting circular economy initiatives.
Collapse
Affiliation(s)
- Luis Torres
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), San Luis Potosí, Mexico
- CIATEC AC, Centro de Innovación Aplicada en Tecnologías Competitivas, León, Mexico
| | | | - Aitor Aizpuru
- Instituto de Ecologia, Universidad del Mar, San Pedro Pochutla, Oaxaca, Mexico
| | - Sonia Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), San Luis Potosí, Mexico
| |
Collapse
|
2
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
3
|
Li H, Meng F. Efficiency, mechanism, influencing factors, and integrated technology of biodegradation for aromatic compounds by microalgae: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122248. [PMID: 37490964 DOI: 10.1016/j.envpol.2023.122248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Aromatic compounds have received widespread attention because of their threat to ecosystem and human health. However, traditional physical and chemical methods are criticized due to secondary pollution and high cost. As a result of ecological security and the ability of carbon sequestration, biodegradation approach based on microalgae has emerged as a promising alternative treatment for aromatic pollutants. In light of the current researches, the degradation efficiency of BTEX (benzene, toluene, ethylbenzene, and xylene), polycyclic aromatic hydrocarbons (PAHs), and phenolic compounds by microalgae was reviewed in this study. We summarized the degradation pathways and metabolites of p-xylene, benzo [a]pyrene, fluorene, phenol, bisphenol A, and nonylphenol by microalgae. The influence factors on the degradation of aromatic compounds by microalgae were also discussed. The integrated technologies based on microalgae for degradation of aromatic compounds were reviewed. Finally, this study discussed the limitations and future research needs of the degradation of these compounds by microalgae.
Collapse
Affiliation(s)
- Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
4
|
Oliva G, Pahunang RR, Vigliotta G, Zarra T, Ballesteros FC, Mariniello A, Buonerba A, Belgiorno V, Naddeo V. Advanced treatment of toluene emissions with a cutting-edge algal bacterial photo-bioreactor: Performance assessment in a circular economy perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163005. [PMID: 36965731 DOI: 10.1016/j.scitotenv.2023.163005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/13/2023]
Abstract
A novel approach for the treatment of VOCs (by using toluene used as a model compound) and the simultaneous conversion of carbon dioxide into valuable biomass has been investigated by using a combination of an activated sludge moving bed bioreactor (MBBR) and an algal photo-bioreactor (PBR). The first unit (MBBR, R1) promoted toluene removal up to 99.9 % for inlet load (IL) of 119.91 g m-3 d-1. The CO2 resulting from the degradation of toluene was then fixed in PBR (R2), with a fixation rate up to 95.8 %. The CO2 uptake was promoted by algae, with average production of algal biomass in Stage VI of 1.3 g L-1 d-1. In the contest of the circular economy, alternative sources of nutrients have been assessed, using synthetic urban wastewater (UWW) and dairy wastewater (DWW) for liquid renewal. The produced biomass with DWW showed a high lipid content, with a maximum productivity of 450.25 mg of lipids L-1 d-1. The solution proposed may be thus regarded as a sustainable and profitable strategy for VOCs treatment in a circular economy perspective.
Collapse
Affiliation(s)
- Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rekich R Pahunang
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines; Department of Environmental Engineering, Western Mindanao State University, Normal Rd., Zamboanga, 7000, Zamboanga del Sur, Philippines
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Florencio C Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines
| | - Aniello Mariniello
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
5
|
Patel AK, Singhania RR, Albarico FPJB, Pandey A, Chen CW, Dong CD. Organic wastes bioremediation and its changing prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153889. [PMID: 35181362 DOI: 10.1016/j.scitotenv.2022.153889] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 05/21/2023]
Abstract
Increasing inappropriate anthropogenic activities and industrialization have resulted in severe environmental pollution worldwide. Their effective treatment is vital for general health concerns. Depending on the characteristics of pollutants, the severity of pollution may differ. For sustainable treatment of polluted environments, bioremediation is accepted as the most efficient, economical, and environmentally friendly method hence largely preferred. However, every bioremediation technique has its own unique advantages and limitations due to its defined applications criteria. In bioremediation, microorganisms play a decisive role in detoxification by degrading, mineralizing and accumulating various forms of harmful and biodegradable pollutants from the surroundings and transforming them into less lethal forms. Bioremediation is performed ex-situ or in-situ, based on location of polluted site as well as characteristics, type and strength of the pollutants. Furthermore, the most popular methodologies for bioremediation include bioaugmentation, biostimulation, bioattenuation among others which depend on the prevailing environmental factors into the microbial system. Implementing them appropriately and effectively under ex-situ or in-situ method is extremely important not only for obtaining efficient treatment but also for the best economic, environmental, and social impacts. Therefore, this review aims to analyze various bioremediation methods for organic pollutants remediation from soil/sediments and wastewater, their strength, limitation, and insights for the selection of appropriate bioremediation techniques based on nature, types, degree, and location of the pollution. The novelty aspect of the article is to give updates on several key supporting technologies which have recently emerged and exhibited great potential to enhance the present bioremediation efficiency such as nanobubble, engineered biochar, mixotrophic microalgae, nanotechnology etc. Moreover, amalgamation of these technologies with existing bioremediation facilities are significantly changing the scenario and scope of environmental remediation towards sustainable bioremediation.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Fisheries and Marine Research Station (FaMaRS), Fisheries and Marine Sciences Department, College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
6
|
Full-Scale Odor Abatement Technologies in Wastewater Treatment Plants (WWTPs): A Review. WATER 2021. [DOI: 10.3390/w13243503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of air pollutants from the operation of wastewater treatment plants (WWTPs) is often a cause of odor annoyance for the people living in the surrounding area. Odors have been indeed recently classified as atmospheric pollutants and are the main cause of complaints to local authorities. In this context, the implementation of effective treatment solutions is of key importance for urban water cycle management. This work presents a critical review of the state of the art of odor treatment technologies (OTTs) applied in full-scale WWTPs to address this issue. An overview of these technologies is given by discussing their strengths and weaknesses. A sensitivity analysis is presented, by considering land requirements, operational parameters and efficiencies, based on data of full-scale applications. The investment and operating costs have been reviewed with reference to the different OTTs. Biofilters and biotrickling filters represent the two most applied technologies for odor abatement at full-scale plants, due to lower costs and high removal efficiencies. An analysis of the odors emitted by the different wastewater treatment units is reported, with the aim of identifying the principal odor sources. Innovative and sustainable technologies are also presented and discussed, evaluating their potential for full-scale applicability.
Collapse
|
7
|
Chalupa J, Pocik O, Halecky M, Kozliak E. Thermophilic waste air treatment of an airborne ethyl acetate/toluene mixture in a bubble column reactor: Stability towards temperature changes. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:120744. [PMID: 31812476 DOI: 10.1016/j.jhazmat.2019.120744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/04/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Thermophilic waste air treatment in a lab-scale bubble column reactor (BCR) was used to remove an ethyl acetate/toluene mixture under both mesophilic and thermophilic conditions, at 30-50 °C. Additional tests, e.g., toluene mass transfer measurement and monitoring of microbial population development, explained the observed bioreactor response to the conducted loading tests and temperature changes. The maximum overall elimination capacity at thermophilic conditions (50 °C) was 136.9 g·m-3 h-1, however hysteresis in elimination capacity was observed in response to ascending/descending temperature and inlet concentration changes. Representatives of genera Cupriavidus, Variovorax and order Rhodospirillales were found to be predominant in the degrading microbial population, depending on the operating temperature. Thermobacillus and Blastocatella were abundant at high (50 °C) and low (30 °C) temperatures, respectively. The observed gradual shift in microbial population caused a small yet significant gradual change in developing a preference for toluene at the expense of ethyl acetate, which explains the observed hysteresis. Yet, the whole bioreactor removal efficiency remained similar at the same temperature, thus demonstrating the advantages of using thermophiles in bioreactors with temperature variation, such as robustness and flexibility.
Collapse
Affiliation(s)
- Jan Chalupa
- University of Chemistry and Technology, Prague, Department of Biotechnology, Technicka 5, 166 28, Prague, Czech Republic
| | - Ondrej Pocik
- University of Chemistry and Technology, Prague, Department of Biotechnology, Technicka 5, 166 28, Prague, Czech Republic
| | - Martin Halecky
- University of Chemistry and Technology, Prague, Department of Biotechnology, Technicka 5, 166 28, Prague, Czech Republic.
| | - Evguenii Kozliak
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
8
|
Oliva G, Ángeles R, Rodríguez E, Turiel S, Naddeo V, Zarra T, Belgiorno V, Muñoz R, Lebrero R. Comparative evaluation of a biotrickling filter and a tubular photobioreactor for the continuous abatement of toluene. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120860. [PMID: 31302359 DOI: 10.1016/j.jhazmat.2019.120860] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/20/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The negative effects of volatile organic compounds (VOCs) on humans' health and the environment have boosted the enforcement of regulations, resulting in the need of effective and environmentally friendly off-gas treatment technologies. In this work, the synergism between microalgae and bacteria was investigated as a sustainable platform to enhance the biological degradation of toluene, herein selected as a model VOC. An innovative algal-bacterial tubular photobioreactor (TPBR) was systematically compared with a conventional biotrickling filter (BTF). The BTF supported average removal efficiencies close to those obtained in the TPBR (86 ± 9% and 88 ± 4%, respectively) at the highest inlet load (∼23 g m3 h-1) and lowest gas residence time (0.75 min). However, the BTF was more sensitive towards the accumulation of secondary metabolites. In this regard, photosynthetic O2 supplementation (resulting in dissolved oxygen concentrations of ∼7.3 mg O2 L-1) and CO2 consumption by microalgae (which reduced the impact of acidification) enhanced toluene abatement performance and process stability.
Collapse
Affiliation(s)
- Giuseppina Oliva
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Roxana Ángeles
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Elisa Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Sara Turiel
- Department of Biodiversity and Environmental Management, University of León, 24071 León, Spain
| | - Vincenzo Naddeo
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Tiziano Zarra
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
9
|
Chen CY, Wang GH, Tsai CT, Tsai TH, Chung YC. Removal of toluene vapor in the absence and presence of a quorum-sensing molecule in a biotrickling filter and microbial composition shift. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:256-265. [PMID: 31662034 DOI: 10.1080/10934529.2019.1684120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Toluene is highly toxic and mutagenic, and it is generally used as an industrial solvent. Thus, toluene removal from air is necessary. To solve the problem of reducing high toluene concentrations with a short gas retention time (GRT), a quorum-sensing molecule [N-(3-oxododecanoyl)-L-homoserine lactone] (OHL) was added to a biotrickling filter (BTF). In this study, a BTF was used to treat synthetic and natural waste gases containing toluene. An extensive analysis was performed to understand the removal efficiency, removal characteristics, and bacterial community of the BTF. The addition of 20 μM OHL to the BTF significantly improved toluene removal, and more than 99.2% toluene removal was achieved at a GRT of 0.5 min when natural waste gas containing toluene (590-1020 ppm or 2.21-3.83 g m-3) was introduced. The maximum inlet load for toluene was 337.9 g m-3 h-1. Moreover, the BTF exhibited satisfactory adaptability to shock loading and shutdown operations. Pseudomonadaceae (33.0%) and Comamonadaceae (26.3%) were predominant bacteria in the system after a 98-day operation. These bacteria were responsible for toluene degradation. The optimal moisture content and low pressure drop for system operations demonstrated that the BTF was energy and cost efficient. Therefore, processing through a BTF with OHL is a favorable technique for toluene treatment.
Collapse
Affiliation(s)
- Chih-Yu Chen
- Department of Tourism and Leisure, Hsing Wu University, Taipei, Taiwan
| | - Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, China
| | - Cheng-Ta Tsai
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
10
|
Performance of an integrated reactor with airlift loop and sedimentation for municipal wastewater treatment: A 150 m
3
/d pilot case study. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Coronado-Apodaca KG, Vital-Jácome M, Buitrón G, Quijano G. A step-forward in the characterization of microalgal consortia: Microbiological and kinetic aspects. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Anbalagan A, Toledo-Cervantes A, Posadas E, Rojo EM, Lebrero R, González-Sánchez A, Nehrenheim E, Muñoz R. Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: Evaluation of tubular algal-bacterial photobioreactor. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|