1
|
Anggraini Z, Nurliati G, Pratama HA, Sriwahyuni H, Sumarbagiono R, Shadrina N, Mirawaty M, Pamungkas NS, Putra ZP, Yusuf M. A critical review about phytoremediation of heavy metals and radionuclides: from mechanisms to post-remediation strategies. CHEMOSPHERE 2025; 381:144475. [PMID: 40383018 DOI: 10.1016/j.chemosphere.2025.144475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Phytoremediation has emerged as an environmentally friendly and cost-effective solution for mitigating heavy metal and radionuclide contamination in soil and water. While extensive research has been conducted on phytoremediation mechanisms and the effectiveness of various plant species in pollutant uptake, limited attention has been given to the crucial aspect of post-remediation biomass management, particularly for biomass containing heavy metals and radionuclides. This review provides a pioneering perspective by integrating phytoremediation mechanisms with a comprehensive discussion of post-remediation biomass treatment methods, such as incineration, solidification, gasification, and pyrolysis, which are essential for reducing environmental risks. This study's output highlights that solidification is more suitable for radioactive biomass management for safe long-term storage and sustainable radioactive waste management; however, it does not produce value-added products. Meanwhile, gasification offers relatively low-emission biomass treatment compared to incineration and enables superior energy conversion efficiency and lower costs on a large scale compared to pyrolysis. The findings contribute to improving the overall efficiency of phytoremediation and provide insights into post-remediation biomass handling methods, reinforcing the feasibility of phytoremediation as a sustainable large-scale remediation solution. By identifying research gaps and proposing future directions to enhance the sustainability of phytoremediation, this review serves as an advantageous reference for policymakers, researchers, and environmental practitioners in designing effective phytoremediation strategies and post-remediation biomass management policies.
Collapse
Affiliation(s)
- Zeni Anggraini
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia.
| | - Gustri Nurliati
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia.
| | - Hendra Adhi Pratama
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Heru Sriwahyuni
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Raden Sumarbagiono
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Nazhira Shadrina
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Mirawaty Mirawaty
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Niken Siwi Pamungkas
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Zico Pratama Putra
- Research Center for Nuclear Material and Radioactive Waste Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, 15314, Indonesia
| | - Muhammad Yusuf
- Interdisciplinary Research Center for Industrial Nuclear Energy (IRC-INE), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Wen J, Yang R, Li X, Xie R, Wu Y. Migration mechanism of PTEs in polymetallic mines under pioneer phytoremediation: A Lanmuchang mercury-thallium mine perspective. ENVIRONMENTAL RESEARCH 2024; 263:120078. [PMID: 39343344 DOI: 10.1016/j.envres.2024.120078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The establishment of pioneer plants in waste slag sites not only modifies the nutrient content of the waste, but also plays a significant role in regulating the pH and potentially toxic elements (PTEs), thereby providing favorable conditions for the quick introduction of other plants. However, the mechanisms by which pioneer plants impact the migration and transformation of PTEs in polymetallic mines have rarely been studied. In this study, we investigated the effects of pioneer phytoremediation on the migration and transformation of PTEs, specifically thallium (Tl), mercury (Hg), arsenic (As), and antimony (Sb), in mercury-thallium mine waste. The results showed that pioneer phytoremediation increased esters and ethers containing C-O and P-O groups in dissolved organic matter, which subsequently formed soluble complexes with Hg, As, and Sb. Nevertheless, pioneer phytoremediation reduced the migration of Tl in the waste, this was mainly because pioneer phytoremediation reduced Fe3+ in silicate minerals and iron-containing minerals to more reactive Fe2+, thereby increasing the electronegativity (El) of the waste and enhancing its adsorption capacity for metal cations, such as Hg and Tl, thus maintaining electrical neutrality. However, the increased El of the waste was detrimental to the adsorption of negatively charged oxygen-containing anions, such as As and Sb. At the same time, the dissolution of Fe2+ resulted in the release and mobility of As and Sb that had been adsorbed onto iron oxides. The results offer significant theoretical support for guiding the ecological restoration of PTEs in polymetallic mines.
Collapse
Affiliation(s)
- Jichang Wen
- Institute of Rural Revitalization, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Ruijia Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xinlong Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Rong Xie
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Conesa HM, Párraga-Aguado IM, Jiménez FJ, Querejeta JI. Evaluation of the trade-off between water use efficiency and nutrient use efficiency in two semiarid coniferous tree species growing on an organic amended metalliferous mine tailing substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173607. [PMID: 38825195 DOI: 10.1016/j.scitotenv.2024.173607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
We evaluated the ecophysiological responses of two semiarid coniferous tree species, Pinus halepensis and Tetraclinis articulata, growing on a nutrient-poor metalliferous mine tailings substrate to organic amendments (biochar and/or organic municipal waste). The trees were grown in mesocosms under irrigated conditions for 20 months. Then, a comprehensive characterization of soil and plant parameters (including stable isotopes) was carried out. Treatments containing municipal waste showed better soil fertility indicators (approximately 2-fold higher organic carbon and total nitrogen concentrations) and higher plant biomass (up to 5-fold higher) than unamended and only biochar treatments. Trees in most of the treatments exhibited leaf N/P ratios <14 indicating severe N limitation of plant growth. Metal uptake was below phytotoxic levels across all the treatments. Leaf δ13C values correlated positively with δ18O across treatments for both species indicating increasing water use efficiency with tighter stomatal regulation of water flux, and with T. articulata exhibiting tighter stomatal control (higher δ18O values) than P. halepensis. Trees in treatments containing only biochar did not differ in ecophysiological performance from those in the unamended treatments. In contrast, leaf stable isotopes revealed sharply increased of time-integrated photosynthetic activity (favoured by higher leaf N concentrations) combined with lower time-integrated stomatal conductance in the treatments containing municipal waste, indicating greatly enhanced water use efficiency in better nourished plants. Trade-offs between water use efficiency and nutrient (N and P) use efficiency were evident across treatments, with higher leaf nutrient concentrations associated with higher water use efficiency, at the cost of a lower nutrient use efficiency. These trade-offs were not impaired by the high metal concentrations of the tailings substrate, indicating that ecophysiological adjustments in response to changes in plant nutrient status promoted by the addition of organic amendments are critical for the adaptability of native tree species employed in the phytostabilisation of mine tailings.
Collapse
Affiliation(s)
- Héctor M Conesa
- Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica Departamento de Ingeniería Agronómica, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
| | - Isabel M Párraga-Aguado
- Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica Departamento de Ingeniería Agronómica, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; IES Juan Sebastián Elcano, Carretera de Tentegorra, s/n, 30205 Cartagena, Spain.
| | - Francisco J Jiménez
- BIOCYMA, Consultora en Medio Ambiente y Calidad, S.L. Calle Azarbe del Papel, 10, 30007 Murcia, Spain.
| | - José-Ignacio Querejeta
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain.
| |
Collapse
|
4
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
5
|
Li X, Wu Y, Wang H, Wen J, Zhu M. Effects of microorganisms on the migration and transformation of typical heavy metal (loid)s in mercury-thallium mining waste slag during the combined application of fish manure and natural minerals. CHEMOSPHERE 2023:139385. [PMID: 37394189 DOI: 10.1016/j.chemosphere.2023.139385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Mercury-thallium mining waste slag has the characteristics of extremely acidic, low fertility and highly toxic polymetallic composite pollution, making it difficult to be treated. We use nitrogen- and phosphorus-rich natural organic matter (fish manure) and calcium- and phosphorus-rich natural minerals (carbonate and phosphate tailings) individually or in combination to amend the slag, analyze their effects on the migration and transformation of potentially toxic elements (Tl and As) in the waste slag. We set up sterile and non-sterile treatments specifically to further investigate the direct or indirect effect of microorganisms attached to added organic matter on Tl and As. The results showed that addition of fish manure and natural minerals to the non-sterile treatments promoted the release of As and Tl, resulting in an increase in As and Tl concentrations in the tailing lixiviums from 0.57 to 2.38-6.37 μg/L and from 69.92 to 107.51-157.21 μg/L, respectively. Sterile treatments promoted the release of As (from 0.28 to 49.88-104.18 μg/L) and inhibited the release of Tl (from 94.53 to 27.60-34.50 μg/L). Use of fish manure and natural minerals alone or in combination significantly reduced the biotoxicity of the mining waste slag, in which the combination was more efficient. XRD analysis showed that microorganisms in the medium promoted the dissolution of jarosite and other minerals, which indicated that the release and migration of As and Tl in Hg-Tl mining waste slag were closely related to microbial activities. Furthermore, metagenomic sequencing revealed that microorganisms such as Prevotella, Bacteroides, Geobacter, and Azospira, which were abundant in the non-sterile treatments, had remarkable resistance to a variety of highly toxic heavy metals and could affect the dissolution of minerals and the release and migration of heavy metals through redox reactions. Our results may aid in the rapid soilless ecological restoration of related large multi-metal waste slag dumps.
Collapse
Affiliation(s)
- Xingying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Hui Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jichang Wen
- New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Mei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
6
|
Romero-Estonllo M, Ramos-Castro J, San Miguel del Río Y, Rodríguez-Garrido B, Prieto-Fernández Á, Kidd PS, Monterroso C. Soil amendment and rhizobacterial inoculation improved Cu phytostabilization, plant growth and microbial activity in a bench-scale experiment. Front Microbiol 2023; 14:1184070. [PMID: 37455720 PMCID: PMC10346841 DOI: 10.3389/fmicb.2023.1184070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Mine driven trace elements' pollution entails environmental risks and causes soil infertility. In the last decades, in situ techniques such as phytostabilization have become increasingly important as ways to tackle these negative impacts. The aim of this study was to test the individual and combined effects of different aided phytostabilization techniques using substrate from barren tailings of a Cu mine, characterized by extreme infertility (high acidity and deficiency of organic matter and nutrients). The experiment analyzed the growth of Populus nigra L. planted alone (P) or in co-cropping with Trifolium repens L. (PT), in pots containing mine soil amended with compost (1, 10, compost, soil, w/w) non inoculated (NI) or inoculated with plant growth promoting rhizobacteria (PGP), mycorrhizae (MYC) or a combination of bacterial and fungal inocula (PGPMYC). Non-amended, non-planted and non-inoculated reference ports were also prepared. Plants were harvested after 110 days of plant development and several biometric and phytopathological parameters (stem height, aerial biomass, root biomass, wilting, chlorosis, pest and death) and macro and micronutrient composition were determined. The growth substrate was analyzed for several physicochemical (pH, CECe, and exchangeable cations, total C and N, P Olsen and availability of trace elements) and microbiological (community level physiological profiles: activity, richness and diversity) parameters. The use of the amendment, P. nigra plantation, and inoculation with rhizobacteria were the best techniques to reduce toxicity and improve soil fertility, as well as to increase the plant survival and growth. Soil bacterial functional diversity was markedly influenced by the presence of plants and the inoculation with bacteria, which suggests that the presence of plant regulated the configuration of a microbial community in which the inoculated bacteria thrive comparatively better. The results of this study support the use of organic amendments, tolerant plants, and plant growth promoting rhizobacteria to reduce environmental risk and improve fertility of soils impacted by mining.
Collapse
Affiliation(s)
- Marc Romero-Estonllo
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Judith Ramos-Castro
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yaiza San Miguel del Río
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Beatriz Rodríguez-Garrido
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Ángeles Prieto-Fernández
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Petra S. Kidd
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Carmen Monterroso
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Luo Y, Xing R, Wan Z, Chen Y. Vertical distribution of nutrients, enzyme activities, microbial properties, and heavy metals in zinc smelting slag site revegetated with two herb species: Implications for direct revegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163206. [PMID: 37011682 DOI: 10.1016/j.scitotenv.2023.163206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Direct revegetation is an important measure to immobilize heavy metals and improve the microecological properties of metal smelting slag sites. However, the vertical distribution of nutrients, microecological properties, and heavy metals at a directly revegetated metal smelting slag site remains unclear. Here, the distribution characteristics of nutrients, enzyme activities, microbial properties, and heavy metals in the vertical profile at a zinc smelting slag site directly revegetated with two herb species (Lolium perenne and Trifolium repens) for 5 years were investigated. The results showed that the nutrient contents, enzyme activities, and microbial properties decreased with increasing slag depth after revegetation with the two herb species. The nutrient contents, enzyme activities, and microbial properties of the surface slag revegetated with Trifolium repens were better than those in the surface slag revegetated with Lolium perenne. The higher root activity in the surface slag (0-30 cm) resulted in relatively higher contents of pseudo-total and available heavy metals in the surface slag. Moreover, the contents of pseudo-total heavy metals (except for Zn) and available heavy metals in the slag revegetated with Trifolium repens were lower than those in the slag revegetated with Lolium perenne at most slag depths. Overall, the greater phytoremediation efficiency of the two herb species occurred mainly in the surface slag (0-30 cm), and the phytoremediation efficiency of Trifolium repens was higher than that of Lolium perenne. The findings are beneficial for understanding the phytoremediation efficiency of direct revegetation strategies for metal smelting slag sites.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.
| | - Rongrong Xing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yulu Chen
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Sánchez-Castro I, Molina L, Prieto-Fernández MÁ, Segura A. Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon 2023; 9:e16692. [PMID: 37484356 PMCID: PMC10360604 DOI: 10.1016/j.heliyon.2023.e16692] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Most worldwide policy frameworks, including the United Nations Sustainable Development Goals, highlight soil as a key non-renewable natural resource which should be rigorously preserved to achieve long-term global sustainability. Although some soil is naturally enriched with heavy metals (HMs), a series of anthropogenic activities are known to contribute to their redistribution, which may entail potentially harmful environmental and/or human health effects if certain concentrations are exceeded. If this occurs, the implementation of rehabilitation strategies is highly recommended. Although there are many publications dealing with the elimination of HMs using different methodologies, most of those works have been done in laboratories and there are not many comprehensive reviews about the results obtained under field conditions. Throughout this review, we examine the different methodologies that have been used in real scenarios and, based on representative case studies, we present the evolution and outcomes of the remediation strategies applied in real soil-contamination events where legacies of past metal mining activities or mine spills have posed a serious threat for soil conservation. So far, the best efficiencies at field-scale have been reported when using combined strategies such as physical containment and assisted-phytoremediation. We have also introduced the emerging problem of the heavy metal contamination of agricultural soils and the different strategies implemented to tackle this problem. Although remediation techniques used in real scenarios have not changed much in the last decades, there are also encouraging facts for the advances in this field. Thus, a growing number of mining companies publicise in their webpages their soil remediation strategies and efforts; moreover, the number of scientific publications about innovative highly-efficient and environmental-friendly methods is also increasing. In any case, better cooperation between scientists and other soil-related stakeholders is still required to improve remediation performance.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Lázaro Molina
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Ángeles Prieto-Fernández
- Misión Biolóxica de Galicia (CSIC), Sede Santiago de Compostela, Avda de Vigo S/n. Campus Vida, 15706, Santiago de Compostela, Spain
| | - Ana Segura
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
9
|
Sarathchandra SS, Rengel Z, Solaiman ZM. A Review on Remediation of Iron Ore Mine Tailings via Organic Amendments Coupled with Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091871. [PMID: 37176929 PMCID: PMC10181287 DOI: 10.3390/plants12091871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Mining operations degrade natural ecosystems by generating a large quantity of mine tailings. Mine tailings remain in dams/open ponds without further treatment after valuable metals such as iron ore have been extracted. Therefore, rehabilitation of tailings to mitigate the negative environmental impacts is of the utmost necessity. This review compares existing physical, chemical and amendment-assisted phytoremediation methods in the rehabilitation of mine tailings from the perspective of cost, reliability and durability. After review and discussion, it is concluded that amendment-assisted phytoremediation has received comparatively great attention; however, the selection of an appropriate phytoremediator is the critical step in the process. Moreover, the efficiency of phytoremediation is solely dependent on the amendment type and rate. Further, the application of advanced plant improvement technologies, such as genetically engineered plants produced for this purpose, would be an alternative solution. Further research is needed to determine the suitability of this method for the particular environment.
Collapse
Affiliation(s)
- Sajeevee S Sarathchandra
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zakaria M Solaiman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Silva JVDS, Baligar VC, Ahrnet D, de Almeida AAF. Transcriptomic, osmoregulatory and translocation changes modulates Ni toxicity in Theobroma cacao. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:624-633. [PMID: 36791534 DOI: 10.1016/j.plaphy.2023.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Nickel is one of the most released trace elements in the environment and in the case of bioaccumulation in foods and beverages derived from cocoa beans can cause risk to human health. It is very important to understand how plants respond to toxic metals and which are the defense strategies they adopt to mitigate their effects. In the present study we used young plants of T. cacao, submitted to increasing Ni doses (0, 100, 200, 300, 400 and 500 mg Ni kg-1 soil) and evaluated them for a period of 30 days. Doses of Ni, from 300 mg of Ni kg-1 onwards in the soil, promoted changes in photosynthetic, antioxidant, osmoregulatory, transcriptomic and translocation levels, evidenced by the increase in the activity of antioxidant enzymes, proline, glycine betaine, upregulation of the metallothionein 2B gene (Mt2b), and lipid peroxidation of the cell membranes. Foliar gas exchange was severely affected at higher doses of Ni. In addition, reduced levels of stomatal conductivity and transpiration rate were observed from 300 mg Ni kg-1 dose onwards in the soil, which consequently affected CO2 assimilation. Phytostabilization and exclusion mechanisms control the translocation of Ni from the root to the shoot and reduce harmful effects on plant metabolism. Our results highlighted the toxicity of Ni, a trace element often underestimated in T. cacao. In particular, it was noted that doses of 100 and 200 Ni kg-1 soil, although high, do not induce toxicity in T. cacao plants. But Ni toxicity is observed from 300 mg Ni kg-1 soil onwards. This study contributed to the understanding of the harmful effects of higher doses of Ni in cacao plants and the biochemical processes the plant uses to mitigate the effects of this metal.
Collapse
Affiliation(s)
- José Victor Dos Santos Silva
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain; State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Virupax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Dário Ahrnet
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| |
Collapse
|
11
|
Caravaca F, Díaz G, Torres P, Campoy M, Roldán A. Synergistic enhancement of the phytostabilization of a semiarid mine tailing by a combination of organic amendment and native microorganisms (Funneliformis mosseae and Bacillus cereus). CHEMOSPHERE 2023; 312:137106. [PMID: 36336022 DOI: 10.1016/j.chemosphere.2022.137106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The goal of this work was to evaluate the effects of fermented sugar beet residue and inoculation with a native arbuscular mycorrhizal (AM) fungus, Funneliformis mosseae (Nicol. and Gerd.) Gerd. and Trappe, or a native bacterium, Bacillus cereus Frankland & Frankland, alone or in combination, on the establishment of Lygeum spartum L. seedlings grown in a mine tailing under semiarid conditions. We conducted a field study to analyse root and shoot dry biomass, shoot nutrient contents, mycorrhization, plant nitrate reductase (NR) and acid phosphomonoesterase activities, soil enzyme activities and aggregate stability. Ten months after field transplanting, it was found that the three experimental factors had interacted synergistically with regard to shoot and root biomass, with increases of about 410% and 370%, respectively relative to plants in the untreated soil. The treatment combining all three factors increased the root content of all heavy metals, and the levels of nitrogen (N), phosphorus, potassium and NR activity in shoot tissues, whereas it decreased root acid phosphomonoesterase activity. Soil dehydrogenase, protease and β-glucosidase activities, total N content and aggregate stability were increased by the combined treatment. In conclusion, the combination of the organic amendment, the native AM fungus and the native bacterium can be regarded as a suitable tool for phytostabilization with L. spartum due to its ability to enhance the tolerance of plants to heavy metals, improve the plant nutritional status and increase the soil microbial function related to the C cycling.
Collapse
Affiliation(s)
- F Caravaca
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100, Murcia, Spain.
| | - G Díaz
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n. Edf. Laboratorios, 03202, Elche, Alicante, Spain
| | - P Torres
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n. Edf. Laboratorios, 03202, Elche, Alicante, Spain
| | - M Campoy
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100, Murcia, Spain
| | - A Roldán
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
12
|
Ciadamidaro L, Pfendler S, Girardclos O, Zappelini C, Binet P, Bert V, Khasa D, Blaudez D, Chalot M. Mycorrhizal inoculation effects on growth and the mycobiome of poplar on two phytomanaged sites after 7-year-short rotation coppicing. FRONTIERS IN PLANT SCIENCE 2022; 13:993301. [PMID: 36388565 PMCID: PMC9650387 DOI: 10.3389/fpls.2022.993301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
AIMS Afforestation of trace-element contaminated soils, notably with fast growing trees, has been demonstrated to be an attractive option for bioremediation due to the lower costs and dispersion of contaminants than conventional cleanup methods. Mycorrhizal fungi form symbiotic associations with plants, contributing to their tolerance towards toxic elements and actively participating to the biorestoration processes. The aim of this study was to deepen our understanding on the effects of mycorrhizal inoculation on plant development and fungal community at two trace-element contaminated sites (Pierrelaye and Fresnes-sur-Escaut, France) planted with poplar (Populus trichocarpa x Populus maximowiczii). METHODS The 2 sites were divided into 4 replicated field blocks with a final plant density of 2200 tree h-1. Half of the trees were inoculated with a commercial inoculum made of a mix of mycorrhizal species. The sites presented different physico-chemical characteristics (e.g., texture: sandy soil versus silty-loam soil and organic matter: 5.7% versus 3.4% for Pierrelaye and Fresnes-sur-Escaut, respectively) and various trace element contamination levels. RESULTS After 7 years of plantation, inoculation showed a significant positive effect on poplar biomass production at the two sites. Fungal composition study demonstrated a predominance of the phylum Ascomycota at both sites, with a dominance of Geopora Arenicola and Mortierella elongata, and a higher proportion of ectomycorrhizal and endophytic fungi (with the highest values observed in Fresnes-sur-Escaut: 45% and 28% for ECM and endophytic fungi, respectively), well known for their capacity to have positive effects on plant development in stressful conditions. Furthermore, Pierrelaye site showed higher frequency (%) of mycorrhizal tips for ectomycorrhizal fungi (ECM) and higher intensity (%) of mycorrhizal root cortex colonization for arbuscular mycorrhizal fungi (AMF) than Fresnes-sur-Escaut site, which translates in a higher level of diversity. CONCLUSIONS Finally, this study demonstrated that this biofertilization approach could be recommended as an appropriate phytomanagement strategy, due to its capacity to significantly improve poplar productivity without any perturbations in soil mycobiomes.
Collapse
Affiliation(s)
- Lisa Ciadamidaro
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphane Pfendler
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Girardclos
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Cyril Zappelini
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Philippe Binet
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Valerie Bert
- INERIS, Clean Technologies and Circular Economy Unit, SIT, Parc Technologique Alata, BP2, Verneuil-en- Halatte, France
| | - Damase Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | | | - Michel Chalot
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
- Université de Lorraine, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
13
|
Israel A, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022; 11:2591. [PMID: 36076777 PMCID: PMC9455813 DOI: 10.3390/foods11172591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal and aromatic plants (MAPs) have been used worldwide for thousands of years and play a critical role in traditional medicines, cosmetics, and food industries. In recent years, the cultivation of MAPs has become of great interest worldwide due to the increased demand for natural products, in particular essential oils (EOs). Climate change has exacerbated the effects of abiotic stresses on the growth, productivity, and quality of MAPs. Hence, there is a need for eco-friendly agricultural strategies to enhance plant growth and productivity. Among the adaptive strategies used by MAPs to cope with the adverse effects of abiotic stresses including water stress, salinity, pollution, etc., their association with beneficial microorganisms such as arbuscular mycorrhizal fungi (AMF) can improve MAPs' tolerance to these stresses. The current review (1) summarizes the effect of major abiotic stresses on MAPs' growth and yield, and the composition of EOs distilled from MAP species; (2) reports the mechanisms through which AMF root colonization can trigger the response of MAPs to abiotic stresses at morphological, physiological, and molecular levels; (3) discusses the contribution and synergistic effects of AMF and other amendments (e.g., plant growth-promoting bacteria, organic or inorganic amendments) on MAPs' growth and yield, and the composition of distilled EOs in stressed environments. In conclusion, several perspectives are suggested to promote future investigations.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, F-62228 Calais, France
| |
Collapse
|
14
|
Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. ENERGIES 2022. [DOI: 10.3390/en15093445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The choice of optimal plant species for phytoremediation and organic fertilization plays an important role in stabilizing the functions of soils contaminated with heavy metals. The influence of nickel, cobalt and cadmium on the biomass yield and calorific value of Festuca rubra, heavy metal concentrations in soil and plants and the microbiological, biochemical and physicochemical proprieties of soil were analyzed in a pot experiment. The tolerance index (TI) describing Festuca rubra’s ability to tolerate heavy metals, as well as the translocation (TF), accumulation (AF) and bioaccumulation (BF) factors of heavy metals in Festuca rubra were calculated. The experiment was conducted in two series: In soil fertilized and not fertilized with compost. Nickel and cobalt significantly inhibited the growth and development of Festuca rubra. The experiment demonstrated that this plant species can be grown on soil contaminated with heavy metals. Festuca rubra contained on average 46.05% C, 34.59% O, 5.91% H, 3.49% N, 0.19% S and 9.76% ash. Festuca rubra has a stable calorific value which is not affected by heavy metals; therefore, biomass harvested from heavy metal-polluted soil can be used for energy generation. The calorific value of Festuca rubra ranged from 15.924 to 16.790 MJ kg−1 plant d.m., and the heat of combustion from 17.696 to 18.576 MJ kg−1. It has a stable calorific value which is not affected by heavy metals, therefore biomass harvested from heavy metal-polluted soil can be used for energy generation. Festuca rubra is particularly useful for the phytostabilization of soil contaminated with cadmium and cobalt. Compost minimizes the adverse effects of heavy metal pollution on the microbiological, biochemical and physicochemical properties of soil.
Collapse
|
15
|
Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea mays L.) on Soil Polluted with Petrol. MATERIALS 2022; 15:ma15072623. [PMID: 35407954 PMCID: PMC9000311 DOI: 10.3390/ma15072623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023]
Abstract
Petroleum substances are among the xenobiotics that most often contaminate the natural environment. They have a strong effect on soil, water, and other components of the environment. The aim of this pot experiment has been to determine the effect of different soil material amendments (compost, 3%; bentonite, 2% relative to the soil mass or calcium oxide, in amounts corresponding to one full hydrolytic acidity) on the content of heavy metals in aerial parts of maize (Zea mays L.) grown on soil polluted with petrol (0, 2.5, 5, and 10 cm3 kg−1 of soil). The content of all heavy metals, except copper, in the aerial biomass of maize was positively correlated, but biomass yield negatively correlated, with the increasing doses of petrol. The highest increase in the content of heavy metals was noted for chromium and manganese. Materials used for phytostabilisation (compost, bentonite, and calcium oxide) had a significant effect on the content of heavy metals and biomass yield of maize. They contributed to the modified accumulation of elements, especially chromium, copper, and cobalt in the aerial biomass of maize. In comparison with the control series (without material amendments), the application of calcium oxide proved to be most effective. It had the most evident influence on the chemical composition of maize, limiting the accumulation of lead, zinc, manganese, and iron and increasing biomass yield.
Collapse
|
16
|
Cao Y, Tan Q, Zhang F, Ma C, Xiao J, Chen G. Phytoremediation potential evaluation of multiple Salix clones for heavy metals (Cd, Zn and Pb) in flooded soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152482. [PMID: 34954169 DOI: 10.1016/j.scitotenv.2021.152482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Climate-induced flooding makes soil more vulnerable to heavy metal contamination, posing challenges for soil remediation. Salix has the potential to cope with flooding stress and environmental contamination, but its effectiveness in flooded soils with multiple heavy metals has not yet been well assessed. Thus, the present work tested fifteen Salix clones grown in multimetal (Cd, Zn and Pb) contaminated soils under non-flooded versus flooded conditions. The results indicated that all tested Salix clones withstood long-term (90 d) flooding. Compared to the non-flooded condition, the flooded condition reduced the Cd (11.7-90.1%) contents in all organs but dramatically increased the Zn and Pb contents in the roots. The bioconcentration factor values of heavy metals in the aboveground organs were in the order of Cd > Zn > Pb. The tested Salix clones were characterized by high phytoextraction capacity for Cd and Zn under non-flooded condition and phytostabilization trait for Pb under flooded condition. To assess the overall performance of phytoremediation potentials, we attempted to use an analytic hierarchy process-entropy weight (AHP-EW) model, which considered the growth performance, photosynthetic parameters, accumulation, and mobility of toxic metals. Three Salix clones (J1010, P54 and P667) exhibited significant potential for multimetal remediation capacities. The current study provided valuable insights into the phytomanagement of woody plants, and the AHP-EW model is helpful for screening suitable trees for the phytoremediation of heavily multimetal contaminated wetlands.
Collapse
Affiliation(s)
- Yini Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
17
|
Pakostova E, McAlary M, Marshall S, McGarry S, Ptacek CJ, Blowes DW. Microbiology of a multi-layer biosolid/desulfurized tailings cover on a mill tailings impoundment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114030. [PMID: 34749079 DOI: 10.1016/j.jenvman.2021.114030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The Strathcona Waste Water Treatment System (SWWTS; Sudbury, ON, Canada) has received mill tailings from Ni/Cu ore processing from 1970 to present. Demonstration-scale, multi-layer cover systems were installed on selected tailings deposition cells at the SWWTS. The cover systems are comprised of an upper layer of organic carbon-rich material, composed of a layer biosolids fertilizer along with composted municipal food and yard waste, then a layer of desulfurized, fine-grained tailings. Organic carbon components used in these covers promote microbial communities that consume O2, thus decreasing sulfide oxidation rates in the underlying tailings. The aim of this study was to investigate the microbiology of the cover systems and the underlying tailings, using a combination of culture-dependent (most probable number) and culture-independent (16S rRNA gene amplicon sequencing) techniques, and assess the impact of the organic component of the cover system four to six years after implementation. Most tailings samples were characterized by circumneutral bulk pH and low concentrations of dissolved metals. The presence of the organic cover resulted in elevated counts of sulfate-reducers (by two orders of magnitude, compared to control samples) immediately below the organic cover, as well as an increased abundance of heterotrophic species (∼108 cells g-1) at greater depth (∼4 m) in the tailings profile. Mineral-oxidizing microorganisms were also present in the tailings, with neutrophilic sulfur-oxidizers dominating the samples (mean ∼106 cells g-1). Relative abundances of sulfur- and/or iron-oxidizers determined by sequencing ranged from 0.5 to 18.3% of total reads (mean ∼5.6% in amended tailings) and indicated the presence of local microenvironments with ongoing sulfide oxidation. This work provides a detailed characterization of the microbiology of a tailings impoundment with an organic cover, highlighting the opportunities associated with monitoring microbial processes in such remediation systems.
Collapse
Affiliation(s)
- Eva Pakostova
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada; Centre for Sport, Exercise and Life Sciences, Faculty of Health and Wellbeing, Coventry University, Priory Street, Coventry, CV1 5FB, UK.
| | - Mason McAlary
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| | - Stephanie Marshall
- Sudbury Integrated Nickel Operations, 85 Regional Road 8, Onaping, ON, P0M 2R0, Canada.
| | - Samantha McGarry
- Sudbury Integrated Nickel Operations, 85 Regional Road 8, Onaping, ON, P0M 2R0, Canada.
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
18
|
Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. ENVIRONMENTS 2022. [DOI: 10.3390/environments9010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both sectors of the Iberian Pyrite Belt, Portuguese and Spanish, have been exploited since ancient times, but more intensively during and after the second half of the 19th century. Large volumes of polymetallic sulfide ore were extracted in open pits or in underground works, processed without environmental concerns, and the generated waste rocks and tailings were simply deposited in the area. Many of these mining sites were abandoned for years under the action of erosive agents, leading to the spread of trace elements and the contamination of soils, waters and sediments. Some of these mine sites have been submitted to rehabilitation actions, mostly using constructive techniques to dig and contain the contaminated tailings and other waste materials, but the remaining soil still needs to be treated with the best available techniques to recover its ecosystem functions. Besides the degraded physical structure and poor nutritional status of these soils, they have common characteristics, as a consequence of the pyrite oxidation and acid drainage produced, such as a high concentration of trace elements and low pH, which must be considered in the remediation plans. This manuscript aims to review the results from studies which have already covered these topics in the Iberian Pyrite Belt, especially in its Portuguese sector, considering: (i) soils’ physicochemical characteristics; (ii) potentially toxic trace elements’ concentration; and (iii) sustainable remediation technologies to cope with this type of soil contamination. Phytostabilization, after the amelioration of the soil’s properties with organic and inorganic amendments, was investigated at the lab and field scale by several authors, and their results were also considered.
Collapse
|
19
|
Drenning P, Chowdhury S, Volchko Y, Rosén L, Andersson-Sköld Y, Norrman J. A risk management framework for Gentle Remediation Options (GRO). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149880. [PMID: 34525755 DOI: 10.1016/j.scitotenv.2021.149880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Gentle Remediation Options (GRO) are remediation measures involving plants, fungi, bacteria, and soil amendments that can be applied to manage risks at contaminated sites. Several studies and decision-support tools promote the wider range of benefits provided by GRO, but there is still skepticism regarding GRO implementation. Key issues that need to be better communicated are the various risk mitigation mechanisms, the required risk reduction for an envisioned land use, and the time perspective associated with the risk mitigation mechanisms. To increase the viability and acceptance of GRO, the phytomanagement approach implies the combination of GRO with beneficial green land use, gradually reducing risks and restoring ecosystem services. To strengthen the decision basis for GRO implementation in practice, this paper proposes a framework for risk management and communication of GRO applications to support phytomanagement strategies at contaminated sites. The mapping of the risk mitigation mechanisms is done by an extensive literature review and the Swedish national soil guideline value model is used to derive the most relevant human health exposure pathways and ecological risks for generic green land use scenarios. Results indicate that most of the expected risk mitigation mechanisms are supported by literature, but that knowledge gaps still exist. The framework is demonstrated to support the identification of GRO options for the case study site given two envisioned land uses: biofuel park and allotment garden. A more easily understandable risk management framework, as proposed here, is expected to act as a communication tool to educate decision-makers, regulatory bodies and other stakeholders for better understanding of risk mitigation mechanisms and preliminary timeframes of various GRO, particularly in the early stages of a brownfield redevelopment project.
Collapse
Affiliation(s)
- Paul Drenning
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Water & Environment West, COWI AB, 414 58 Gothenburg, Sweden.
| | - Shaswati Chowdhury
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Yevheniya Volchko
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Lars Rosén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; National Road and Transport Research Institute, VTI, 581 95 Linköping, Sweden
| | - Jenny Norrman
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
20
|
Ribeiro PG, Aragão OODS, Martins GC, Rodrigues M, Souza JMP, Moreira FMDS, Li YC, Guilherme LRG. Hydrothermally-altered feldspar reduces metal toxicity and promotes plant growth in highly metal-contaminated soils. CHEMOSPHERE 2022; 286:131768. [PMID: 34426129 DOI: 10.1016/j.chemosphere.2021.131768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Novel green technologies for soil remediation have been focusing on altering soil properties and improving soil health. Hydrothermally-altered feldspar (HYP, HydroPotash), recently developed, is being related as both an efficient amendment to immobilize heavy metals in soils and a plant nutrients source, consisting in a promising technology for revegetation of contaminated sites. In order to evaluate the effectiveness of using HYP for phytostabilization programs, two different soils (Technosol and Oxisol) collected from a smelting site were amended with increasing doses of HYPs (HYP-1 and HYP-2): 15, 30, 60, and 120 Mg ha-1. For comparison, a control (soil without amendment) and a soil amended with zeolite (clinoptilolite) were also included as treatments. After 90 days of incubation, HYPs decreased up to 83.8 % of Cd availability and reduced exchangeable Al up to 100 %. HydroPotash increased pH, cation exchange capacity, and contents of potassium, calcium, and phosphorus, as well as microbial biomass carbon, and fluorescein diacetate hydrolysis of soils. Andropogon gayanus, Eucalyptus grandis, and Heterocondylus vitalbae started growing from the dose of 15 Mg ha-1 HYPs in the Oxisol and 60 Mg ha-1 HYPs in the Technosol. Principal component analysis indicates that plant shoot dry weight was negatively correlated with extractable Cd and Zn and positively with pH, CEC, and Ca content. Besides promoting plant growth, HYPs reduced heavy metals (Cd and Zn) absorption by plants, indicating that HYP has potential use as an amendment in phytostabilization programs.
Collapse
Affiliation(s)
- Paula Godinho Ribeiro
- Federal University of Lavras, Department of Soil Science, School of Agriculture, Lavras, Minas Gerais, Brazil
| | | | | | - Marcos Rodrigues
- APT - Advanced Potash Technologies Ltd., 89 Nexus Way, Grand Cayman, KY1-9007, Cayman Islands
| | - Jean Michel Pereira Souza
- Federal University of Lavras, Department of Soil Science, School of Agriculture, Lavras, Minas Gerais, Brazil
| | | | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | | |
Collapse
|
21
|
Lebrun M, Michel C, Joulian C, Morabito D, Bourgerie S. Rehabilitation of mine soils by phytostabilization: Does soil inoculation with microbial consortia stimulate Agrostis growth and metal(loid) immobilization? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148400. [PMID: 34412406 DOI: 10.1016/j.scitotenv.2021.148400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) soil pollution resulting from mining activities is an important issue that has negative effects on the environment (soil acidification, lack of vegetation, groundwater pollution) and human health (cancer, chronic diseases). In the context of a phytostabilization process for the bioremediation of a mine soil highly contaminated by arsenic (As) and lead (Pb), a pot experiment was set up to study the effect of plant sowing and microbial inoculation on soil properties, metal(loid) (im)mobilization in soil and accumulation in plant, and plant growth. For this, mine soil was sown with endemic metallicolous Agrostis seeds and/or inoculated with endogenous microbial consortia previously selected for their As and Pb tolerance. Agrostis was able to develop on the contaminated mine soil and immobilized metal(loid)s through metal(loid) accumulation in the roots. Its growth was improved by microbial consortium inoculation. Moreover, microbial consortium inoculation increased soil organic content and electrical conductivity, and led to an increase in soil microbial activities (linked to C and P cycles); however, it also induced a metal(loid) mobilization. In conclusion, microbial consortium inoculation stimulated the growth of endemic Agrostis plants and thus ameliorated the phytostabilization of a former mine soil highly polluted by As and Pb. This study is thus a good example of the benefits of coupling several approaches such as phytostabilization and bioaugmentation for the bioremediation of former mine contaminated sites.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Caroline Michel
- BRGM, DEPA, Geomicrobiology and Environmental Monitoring Unit, BP 36009, 45060 Orléans Cedex 2, France
| | - Catherine Joulian
- BRGM, DEPA, Geomicrobiology and Environmental Monitoring Unit, BP 36009, 45060 Orléans Cedex 2, France
| | - Domenico Morabito
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Sylvain Bourgerie
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
22
|
The Effect of Sucrose Supplementation on the Micropropagation of Salix viminalis L. Shoots in Semisolid Medium and Temporary Immersion Bioreactors. FORESTS 2021. [DOI: 10.3390/f12101408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of sucrose concentration on the micropropagation of axillary shoots of willow was investigated. The following factors were examined: the culture system (semisolid medium in glass jars versus liquid medium in temporary immersion bioreactors), the type of explant (apical and basal sections), the frequency of immersion, and CO2 enrichment. Shoots and leaf growth were significantly higher in RITA® bioreactors than in the jars for all the sucrose treatments. Apical or basal sections of willow cultured in bioreactors under high light intensity (150 µmol m−2 s−1) and ventilated six times a day with CO2-enriched air were successfully proliferated without sucrose, whereas shoots cultured in jars did not proliferate well if sucrose concentration was 0.5% or lower. More roots were formed when sucrose was added to the medium. Shoots cultured in bioreactors were successfully acclimatized irrespective of the sucrose treatment and the root biomass when transferred to ex vitro conditions. This is the first report of photoautotrophic willow micropropagation, our results confirm the importance of proper gaseous exchange to attain autotrophy during in vitro propagation.
Collapse
|
23
|
Sun H, Zhang J, Wang R, Li Z, Sun S, Qin G, Song Y. Effects of Vegetation Restoration on Soil Enzyme Activity in Copper and Coal Mining Areas. ENVIRONMENTAL MANAGEMENT 2021; 68:366-376. [PMID: 34313823 DOI: 10.1007/s00267-021-01509-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Mining areas are suffering from serious environmental hazards, such as soil erosion, water pollution as well as land degradation. In this study, two types of mining areas in Anhui Province, China-one a copper mining area and the other a coal mining area-were selected to compare the soil properties under different vegetation restoration conditions, which can be generally classified into reclaimed and non-reclaimed areas. Soil catalase and urease activities and soil chemical properties were chosen to be the main indicators of soil quality. Principal component analysis was used to evaluate the overall soil fertility in the copper and coal mining areas. Results showed that in the copper mining area soil catalase activity was between 12.36 and 19.17 μg g-1 h-1 and urease activity was between 0.03 and 12.05 μg g-1 h-1. And in coal mining area, soil catalase activity was between 3.52 and 9.72 μg g-1 h-1 and urease activity was between 2.71 and 10.81 μg g-1 h-1. Moreover, soil catalase and urease activities in degraded areas were lower than those in reclaimed areas. Soil catalase activity and soil urease activity were significantly correlated with total potassium and total nitrogen, respectively. Soil quality in land types with vegetation restoration was higher than in non-reclaimed areas and old subsidence areas, while soil quality in the copper mining area was generally higher than in the coal mining area. Thus, the optimum measure in this region to ameliorate these degraded soils is vegetation restoration, which helps not only to improve the environment, but also to enhance soil quality in these degraded lands.
Collapse
Affiliation(s)
- Hui Sun
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
- Forestry Academy of Anhui Province, Hefei, 230031, China
| | - Jianfeng Zhang
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China.
| | - Rongjia Wang
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
| | - Zongtai Li
- Forestry Academy of Shandong Province, Jinan, 250014, China
| | - Shiyong Sun
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
| | - Guanghua Qin
- Forestry Academy of Shandong Province, Jinan, 250014, China
| | - Yumin Song
- Forestry Academy of Shandong Province, Jinan, 250014, China
| |
Collapse
|
24
|
Lebrun M, Miard F, Bucci A, Fougère L, Nandillon R, Naclerio G, Scippa GS, Destandeau E, Morabito D, Bourgerie S. The rhizosphere of Salix viminalis plants after a phytostabilization process assisted by biochar, compost, and iron grit: chemical and (micro)-biological analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47447-47462. [PMID: 33895948 DOI: 10.1007/s11356-021-14113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Amendments, such as biochar, compost, and iron grit, used in phytostabilization studies, showed positive effects on soil physico-chemical properties, plant growth, and the microbial community. However, assisted phytostabilization studies do not always focus on the rhizosphere area where soil, plants, and microorganisms are affected by the amendments and plants and microorganisms can also interact with each other. The aims of this study were to evaluate the effects of amendment application on the exudation of organic acids by Salix viminalis plant roots, as well as the effects of amendments and plant development on the soil CHNS contents and the microbial community activity and diversity, assessed by measuring enzyme activities and using Biolog EcoPlatesTM tests and next-generation sequencing analyses. The results of the mesocosm experiment showed that soil C, H, and N contents were increased by amendment application, especially biochar and compost, while the one of S decreased. Enzyme activities, microbial activity, and diversity were also increased by the addition of amendments, except iron grit alone. Finally, the quantity of organic acids exuded by roots were little affected by amendments, which could in part explain the reduced effect of plant development on soil chemical and microbiological parameters. In conclusion, this study showed in particular that biochar and compost were beneficial for the soil CHN contents and the microbial community while affecting poorly Salix viminalis root exudates.
Collapse
Affiliation(s)
- Manhattan Lebrun
- INRA USC1328, LBLGC EA1207, University of Orléans, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Florie Miard
- INRA USC1328, LBLGC EA1207, University of Orléans, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Laetitia Fougère
- CNRS, ICOA, UMR 7311, University of Orléans, 45067, Orléans, France
| | - Romain Nandillon
- INRA USC1328, LBLGC EA1207, University of Orléans, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- French Geological Survey (BRGM), Orléans, France
- Environmental Consulting Engineering, IDDEA, Olivet, France
- ISTO, UMR 7327, CNRS/Orleans University, Orléans, France
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | | | - Domenico Morabito
- INRA USC1328, LBLGC EA1207, University of Orléans, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA1207, University of Orléans, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
25
|
Montofré ÍL, Lam EJ, Ramírez Y, Gálvez ME. Evaluation of copper tailing amendments through poultry waste and ammonium nitrate. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2213-2230. [PMID: 33098495 DOI: 10.1007/s10653-020-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, two amendments, poultry waste and ammonium nitrate, were evaluated to condition and stabilize a mine tailing and thus help the vegetation cover settle. Individually, ammonium nitrate was tested as a nitrogen source and chicken bone ash as a phosphate source. For this, laboratory tests were made on soil columns from the area to be remediated. The mobility and availability of metals and nutrients were determined by analyzing their leachates chemically. The results showed that the use of chicken bone ash decreases soluble metal concentrations, particularly in Fe and soluble Mn. On the other hand, experimental conditions proved that the acidification produced by ammonium nitrate nitrification does not significantly increase the lechate metal content. Therefore, its use for fertilization does not involve phytotoxicity risks. Regarding the availability of macronutrients as well as trace elements, the results showed that the concentrations lie within the ranges suitable for plant nutrition. So, the treatments are effective both for fertilization and phytoremediation.
Collapse
Affiliation(s)
- Ítalo L Montofré
- Mining Business School, ENM, Universidad Católica del Norte, Antofagasta, Chile.
- Mining and Metallurgical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile.
| | - Elizabeth J Lam
- Chemical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile
| | - Yendery Ramírez
- Chemical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile
- School of Engineering Sciences, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
| | - María E Gálvez
- Chemical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
26
|
Cross AT, Zhong H, Lambers H. Incorporating rock in surface covers improves the establishment of native pioneer vegetation on alkaline mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145373. [PMID: 33736352 DOI: 10.1016/j.scitotenv.2021.145373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Rates of tailings production and deposition around the world have increased markedly in recent decades, and have grown asynchronously with safe and environmentally suitable solutions for their storage. Tailings are often produced in regions harbouring biodiverse native plant communities adapted to old, highly-weathered soils. The highly-altered edaphic conditions of tailings compared with natural soils in these areas will likely select against many locally endemic plant species, making phytostabilisation, rehabilitation or ecological restoration of these landforms challenging. METHODS We established four substrate cover composition treatments on a dry-stacked magnetite tailings storage facility in semi-arid Western Australia, representative of standard industry practices for rehabilitating or restoring post-mining landforms in the region. Plots were seeded with a selection of locally native plant species and monitored for five years to determine whether different substrate cover treatments yielded different edaphic conditions (soil moisture, substrate surface temperature and substrate chemistry) and influenced soil development and the success of native vegetation establishment. RESULTS No vegetation established from seeds on unamended tailings with no surface cover, and substrate chemistry changed minimally over five years. In contrast, rock-containing surface covers allowed establishment of up to 11 native plant species from broadcast seeds at densities of ca. 1.5 seedlings m-2, and up to 3.5 seedlings m-2 of five native pioneer chenopods from capture of wind-dispersed seeds from surrounding undisturbed native vegetation. Greater vegetation establishment in rock-containing surface covers resulted from increased heterogeneity (e.g., lower maximum soil temperature, greater water capture and retention, surface microtopography facilitating seed capture and retention, more niches for seed germination). Soil development and bio-weathering occurred most rapidly under the canopy of native pioneer plants on rock-containing surface covers, particularly increases in organic carbon, total nitrogen, and organo-bound aluminium and iron. CONCLUSIONS Seed germination and seedling survival on tailings were limited by extreme thermal and hydrological conditions and a highly-altered biogeochemical environment. The design of surface cover layers appears crucial to achieving closure outcomes on tailings landforms, and designs should prioritise increasing surface heterogeneity through the incorporation of rock or other structure-improving amendments to assist the establishment of pioneer vegetation.
Collapse
Affiliation(s)
- Adam T Cross
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia; EcoHealth Network, 1330 Beacon St, Suite 355a, Brookline, MA 02446, United States.
| | - Hongtao Zhong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| |
Collapse
|
27
|
Nandillon R, Lebrun M, Miard F, Gaillard M, Sabatier S, Morabito D, Bourgerie S. Contrasted tolerance of Agrostis capillaris metallicolous and non-metallicolous ecotypes in the context of a mining technosol amended by biochar, compost and iron sulfate. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1457-1475. [PMID: 31673918 DOI: 10.1007/s10653-019-00447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Metal(loid) contamination of soil, resulting from the mining activities, is a major issue worldwide, due to its negative effects on the environment and health. Therefore, these contaminated soils need to be remediated. One realistic method is the assisted phytostabilization, which aims at establishing a vegetation cover on the soil that will reduce metal(loid) bioavailability and spreading through the prevention of wind erosion and water leaching. In addition, amendments are applied to improve soil conditions and ameliorate plant growth. In this goal, biochar and compost showed good results in terms of amelioration of soil fertility and reduction in lead bioavailability. However, they usually have a negative effect on arsenic. On the contrary, iron sulfate showed capacity to reduce arsenic mobility through interaction with its iron hydroxides. Finally, the choice of the appropriate plant species is crucial for the success of assisted phytostabilization. One good option is to use endemic species, adapted to the metal(loid) stress, with a fast growth and large shoot and root systems. The aims of this study were to (1) evaluate the effects of applying biochar, compost and iron sulfate, alone or combined, to a former mine soil on the soil properties and Agrostis capillaris growth, and (2) assess the difference between two Agrostis capillaris ecotypes, an endemic metallicolous ecotype and a non-metallicolous ecotype. Results of the mesocosm experiment showed that amendment application improved soil properties, i.e., reduced soil acidity, increased nutrient availability and lower metal(loid) stress, the best being the combination biochar-compost-iron sulfate. These ameliorations allowed a better plant growth. Finally, the metallicolous ecotype performed better in terms of growth than the non-metallicolous one and could thus be used in an assisted phytostabilization process on the former mine site.
Collapse
Affiliation(s)
- Romain Nandillon
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
- ISTO, UMR 7327, BRGM, BP 36009, 45060, Orléans, France
| | - Manhattan Lebrun
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090, Pesche, Italy
| | - Florie Miard
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Marie Gaillard
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
| | | | - Domenico Morabito
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
28
|
Garbisu C, Alkorta I, Kidd P, Epelde L, Mench M. Keep and promote biodiversity at polluted sites under phytomanagement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44820-44834. [PMID: 32975751 DOI: 10.1007/s11356-020-10854-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The phytomanagement concept combines a sustainable reduction of pollutant linkages at risk-assessed contaminated sites with the generation of both valuable biomass for the (bio)economy and ecosystem services. One of the potential benefits of phytomanagement is the possibility to increase biodiversity in polluted sites. However, the unique biodiversity present in some polluted sites can be severely impacted by the implementation of phytomanagement practices, even resulting in the local extinction of endemic ecotypes or species of great conservation value. Here, we highlight the importance of promoting measures to minimise the potential adverse impact of phytomanagement on biodiversity at polluted sites, as well as recommend practices to increase biodiversity at phytomanaged sites without compromising its effectiveness in terms of reduction of pollutant linkages and the generation of valuable biomass and ecosystem services.
Collapse
Affiliation(s)
- Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia P812, E-48160, Derio, Spain.
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country, P. O. Box 644, 48080, Bilbao, Spain
| | - Petra Kidd
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigacións Agrobiolóxicas de Galicia (IIAG), 15780, Santiago de Compostela, Spain
| | - Lur Epelde
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia P812, E-48160, Derio, Spain
| | - Michel Mench
- INRAE, BIOGECO, University of Bordeaux, F-33615, Pessac, France
| |
Collapse
|
29
|
Arvizu-Valenzuela LV, Cruz-Ortega R, Meza-Figueroa D, Loredo-Portales R, Chávez-Vergara BM, Mora LN, Molina-Freaner F. Barriers for plant establishment in the abandoned tailings of Nacozari, Sonora, Mexico: the influence of compost addition on seedling performance and tailing properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39635-39650. [PMID: 32651780 DOI: 10.1007/s11356-020-09841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Past mining activities have left a legacy of abandoned mine tailing deposits whose metal contaminants poses serious risks to ecosystems and human health. While the development of a vegetated cover in mine tailings can help in mitigating these risks, the local factors limiting plant establishment in these sites are not well understood, restricting phytostabilization efforts. Here, we explore some of the barriers that limit seedling establishment of two species (Vachellia farnesiana and Prosopis velutina) in a mine tailing deposit located in Nacozari, Sonora, Mexico, and assess whether compost addition can help in overcoming these barriers in pot and field experiments. Our field observations found 20 times more carbon and at least 4 times more nitrogen concentration in areas under vegetated patches than in non-vegetated areas, while a previous study found no difference in metal concentrations and other physicochemical parameters. This suggests that organic matter and nutrients are a major limitation for plant establishment. In agreement with this, species failed to establish without compost addition in the field experiment. Compost addition also had a positive effect on biomass accumulation, pH and microbial activity, but increased the substrate soluble concentration of As, Cu, and Zn. Nonetheless, only Cu, K, and Mo in P. velutina accumulated in tissues at levels considered toxic for animal consumption. Our study documents that compost addition facilitated plant establishment for the phytostabilization of mine tailings and help to prevent the dispersion of most metal contaminants via animal consumption. We encourage the use of complementary strategies to minimize the risk of dispersion of metal contaminants.
Collapse
Affiliation(s)
- Laura V Arvizu-Valenzuela
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, C.P. 83250, Hermosillo, Sonora, Mexico
| | - Rocio Cruz-Ortega
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México, Mexico
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, C.P. 83000, Hermosillo, Sonora, Mexico
| | - René Loredo-Portales
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 83250, Hermosillo, Sonora, Mexico
| | - Bruno M Chávez-Vergara
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México, Mexico
- Laboratorio Nacional de Geoquímica y Mineralogía, C.P. 04510, Ciudad de México, Mexico
| | - Lucy N Mora
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México, Mexico
- Laboratorio Nacional de Geoquímica y Mineralogía, C.P. 04510, Ciudad de México, Mexico
| | - Francisco Molina-Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, C.P. 83250, Hermosillo, Sonora, Mexico.
| |
Collapse
|
30
|
Performance of a Geosynthetic-Clay-Liner Cover System at a Cu/Zn Mine Tailings Impoundment. Appl Environ Microbiol 2020; 86:AEM.02846-19. [PMID: 32033946 DOI: 10.1128/aem.02846-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
The abandoned Kam Kotia Mine (Canada) is undergoing remediation. A geosynthetic-clay-liner (GCL) cover system was installed in the Northern Impounded Tailings (NIT) area in 2008 to isolate acid-generating tailings from water and oxygen and to mitigate sulfide oxidation. The cover system includes a vegetated uppermost soil layer underlain by a granular protective layer (sand), a clay moisture-retaining layer, a GCL, a granular capillary-break material (cushion sand), and a crushed waste rock-capillary break layer installed above the tailings. The goal of this study was to characterize the microbiology of the covered tailings to assess the performance of the cover system for mitigating sulfide bio-oxidation. Tailings beneath the GCL were characterized by high sulfur and low carbon content. The bulk pH of the tailings pore water was circumneutral (∼5.5 to 7.3). Total genomic DNA was extracted from 36 samples recovered from the constituent layers of the cover system and the underlying tailings and was analyzed in triplicates using high-throughput amplicon sequencing of 16S rRNA genes. Iron-oxidizing, sulfur-oxidizing, sulfate-reducing, and aerobic heterotrophic microorganisms were enumerated by use of most probable number enumeration, which identified heterotrophs as the most numerous group of culturable microorganisms throughout the depth profile. Low relative abundances and viable counts of microorganisms that catalyze transformations of iron and sulfur in the covered tailings, compared to previous studies on unreclaimed tailings, indicate that sulfide oxidation rates have decreased due to the presence of the GCL. Characterization of the microbial community can provide a sensitive indicator for assessing the performance of remediation systems.IMPORTANCE Mining activities are accompanied by significant environmental and financial liabilities, including the release of acid mine drainage (AMD). AMD is caused by accelerated chemical and biological oxidation of sulfide minerals in mine wastes and is characterized by low pH and high concentrations of sulfate and metal(loid)s. Microorganisms assume important roles in the catalysis of redox reactions. Our research elucidates linkages among the biogeochemistry of mine wastes and remediation systems and microbial community and activity. This study assesses the performance and utility of geosynthetic-clay-liner cover systems for management of acid-generating mine wastes. Analyses of the microbial communities in tailings isolated beneath an engineered cover system provide a better understanding of the complex biogeochemical processes involved in the redox cycling of key elements, contribute to the remediation of mine wastes, and provide a valuable tool for assessment of the effectiveness of the remediation system.
Collapse
|
31
|
Cao Y, Ma C, Chen H, Chen G, White JC, Xing B. Copper stress in flooded soil: Impact on enzyme activities, microbial community composition and diversity in the rhizosphere of Salix integra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135350. [PMID: 31822423 DOI: 10.1016/j.scitotenv.2019.135350] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Climate change has increased flooding frequency, making the heavy metal polluted areas more vulnerable, and led to increased global land degradation. Information about the alteration of soil microbiota under heavy metal pollution and flooding is still rather limited. Fast-growing trees are candidates for phytoremediation of heavy metal polluted soils. Therefore, the impact of Cu pollution on microbiota in soil used for cultivating Salix integra Thunb. was investigated with and without flooding for 60 d. Bacterial and fungal communities were accessed via partial 16S rRNA (V3-V4) and internal transcribed spacer (ITS) genes. The activity of invertase, urease and cellulase were markedly decreased by 28.5-59%, 55.0-76.7% and 17.3-34.1%, respectively, with increasing Cu levels. Flooding significantly increased the activity of polyphenol oxidase and peroxidase by 56.3% and 41.4% at the highest Cu level compared to its respective non-flooded condition. High Cu concentration significantly decreased the richness and diversity of the bacterial community, and fungi were more sensitive than bacteria under flooding conditions. Redundancy analysis suggests that Cu, Fe and soil organic matter are the key determinants affecting the composition of microbial communities. Our findings provide new insight into the responses of soil microbes to Cu-contamination and contribute to our understanding of metal toxicity in soil-woody plant systems under flooded conditions.
Collapse
Affiliation(s)
- Yini Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Hongjun Chen
- Hunan Commodities Quality Supervision and Inspection Institute, Changsha 410007, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
32
|
Burges A, Fievet V, Oustriere N, Epelde L, Garbisu C, Becerril JM, Mench M. Long-term phytomanagement with compost and a sunflower - Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134529. [PMID: 31693956 DOI: 10.1016/j.scitotenv.2019.134529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
At a former wood preservation site contaminated with Cu, various phytomanagement options have been assessed in the last decade through physicochemical, ecotoxicological and biological assays. In a field trial at this site, phytomanagement with a crop rotation based on tobacco and sunflower, combined with the incorporation of compost and dolomitic limestone, has proved to be efficient in Cu-associated risk mitigation, ecological soil functions recovery and net gain of economic and social benefits. To demonstrate the long-term effectiveness and sustainability of phytomanagement, we assessed here the influence of this remediation option on the diversity, composition and structure of microbial communities over time, through a metabarcoding approach. After 9 years of phytomanagement, no overall effect was identified on microbial diversity; the soil amendments, notably the repeated compost application, led to shifts in soil microbial populations. This phytomanagement option induced changes in the composition of soil microbial communities, promoting the growth of microbial groups belonging to Alphaproteobacteria, many being involved in N cycling. Populations of Nitrososphaeria, which are crucial in nitrification, as well as taxa from phyla Planctomycetacia, Chloroflexi and Gemmatimonadetes, which are tolerant to metal contamination and adapted to oligotrophic soil conditions, decreased in amended phytomanaged plots. Our study provides an insight into population dynamics within soil microbial communities under long-term phytomanagement, in line with the assessment of soil ecological functions and their recovery.
Collapse
Affiliation(s)
- Aritz Burges
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France; University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, P.O. Box 644, E-48080 Bilbao, Spain.
| | - Virgil Fievet
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France
| | - Nadège Oustriere
- Laboratoire Génie Civil et Géoenvironnement (LGCGE), Yncréa Hauts-de-France, Institut Supérieur d'Agriculture, 48 Bld Vauban, 59046 Lille Cedex, France
| | - Lur Epelde
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Carlos Garbisu
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Jose María Becerril
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, P.O. Box 644, E-48080 Bilbao, Spain
| | - Michel Mench
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France
| |
Collapse
|
33
|
Khan MI, Cheema SA, Anum S, Niazi NK, Azam M, Bashir S, Ashraf I, Qadri R. Phytoremediation of Agricultural Pollutants. CONCEPTS AND STRATEGIES IN PLANT SCIENCES 2020. [DOI: 10.1007/978-3-030-00099-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Constantinescu P, Neagoe A, Nicoară A, Grawunder A, Ion S, Onete M, Iordache V. Implications of spatial heterogeneity of tailing material and time scale of vegetation growth processes for the design of phytostabilisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1057-1069. [PMID: 31539938 DOI: 10.1016/j.scitotenv.2019.07.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Phytostabilisation projects for tailing dams depend on processes occurring at spatial scales of 106 m2 and at decadal time scales. Most experiments supporting the design and monitoring of such projects have much smaller spatial and time scales. Usually, they are only designed for one single scale. Here, we report the results of three coupled experiments performed at pot, lysimeter and field plot scales using six sampling periodstimes from 3 to 20 months. The work explicitly accounts for the sampling times when evaluating the effects of amendments on the performance of plants grown in tailing substrates. Two treatments with potentially complementary roles were applied: zeolites to decrease availability of Cd, Cu, Pb and Zn and green fertilizer to increase the availability of nutrients. Zeolites have a positive influence on plant development, especially in the early stages. Analyses of the pooled datasets for all sampling times revealed the possibility of predicting plant physiological variables, such as protein concentrations, pigments and oxidative stress enzyme activities, as a function of the factors extracted by principal component analysis from the metal concentrations in plants, phosphorus concentrations in plants, and sampling times. Two potentially general methodological rules were extracted: account for the spatial geochemical variability of tailings, and cover the broadest possible range of time scales by experiments. The proposed experimental methodology can be of general use for the design of tailing dam remediation technologies with improvements involving the set of measured variables and sampling frequency and by carefully relating the costs to the institutional aspects of tailing dam management.
Collapse
Affiliation(s)
- Paula Constantinescu
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Aurora Neagoe
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Andrei Nicoară
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Anja Grawunder
- Institute of Geosciences, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany.
| | - Stelian Ion
- "Gheorghe Mihoc - Caius Iacob" Institute of Statistical Mathematics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania
| | - Marilena Onete
- Bucharest Institute of Biology, Romanian Academy, Splaiul Independentei no. 296, Bucharest, Romania
| | - Virgil Iordache
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania.
| |
Collapse
|
35
|
Tapia Y, Casanova M, Castillo B, Acuña E, Covarrubias J, Antilén M, Masaguer A. Availability of copper in mine tailings with humic substance addition and uptake by Atriplex halimus. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:651. [PMID: 31628547 DOI: 10.1007/s10661-019-7832-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
The chemical characteristics of mine tailings, organic amendments (doses), and plants are the critical factors that must be evaluated and monitored to ensure the sustainability of phytostabilization. The aim of this study was to evaluate the mobility of copper (Cu) in mine tailings (MT) of the Zone Central of Chile to which commercial humic substances were added, examining their effect on the uptake of Atriplex halimus. Two commercial humic substances (HS1 and HS2) extracted from leonardite (highly oxidized lignite), of different pH and total organic carbon, were evaluated by adsorption curve for Cu. In columns, soluble Cu, pH, and electrical conductivity in leachates were evaluated for MT, MT + HS1, and MT + HS2, and HS1 and HS2 in doses of 120 mg kg-1. In pot assay, seeds were germinated directly in MT and cultivated for 140 days with the addition of HS2 in 120 and 240 mg kg-1. Mine tailing presents high concentration of Cu (2016 ± 223 mg kg-1, pH 6.3 ± 0.1). The results of sequential extraction indicate that Cu is associated with the sulfide fraction of low risk of mobility. The amount of Cu sorbed by HS1 was higher than that sorbed by HS2, and both humic substances showing better fit to the Freundlich than Langmuir model. Lixiviation of Cu was significantly lower in MT + HS1 (0.166 ± 0.043 mg kg-1) and MT + HS2 (0.157 ± 0.018 mg kg-1) than in MT (0.251 ± 0.052 mg kg-1). Copper concentration in plants reached 185.8 ± 37.8 mg kg-1 in the roots and 32.6 ± 7.4 mg kg-1 in the aerial parts cultivated in MT without effect of the humic substance addition in Cu uptake nor growth. Copper concentrations in the aerial parts were adjusted to sufficient or normal levels in plant. A good management of mine tailings through phytostabilization could consider an adequate mixture of humic substances (to avoid leaching of metals) and an organic amendment that provides essential nutrients and increases biomass generation.
Collapse
Affiliation(s)
- Y Tapia
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile.
| | - M Casanova
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile
| | - B Castillo
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile
| | - E Acuña
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile
| | - J Covarrubias
- Departamento de Producción Agrícola, Universidad de Chile, 8820808, Santiago, Chile
| | - M Antilén
- Departamento de Química Orgánica, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - A Masaguer
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| |
Collapse
|
36
|
Yang B, He F, Zhao X, Wang H, Xu X, He X, Zhu Y. Composition and function of soil fungal community during the establishment of Quercus acutissima (Carruth.) seedlings in a Cd-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:150-156. [PMID: 31176179 DOI: 10.1016/j.jenvman.2019.05.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
This study was designed to explore the functions of soil fungal communities in the Cd tolerance of Q. acutissima seedling. Three Cd levels of 15, 30, and 40 mg kg-1 were set up using the soils collected from Q. acutissima forests. The benomyl was applied to inhibit the fungal communities in the soil. Following a 100-day pot cultivation of Q. acutissima seedlings, the plant growth, Cd content, N uptake, and fungal communities were evaluated. The results showed that the root dry weights were significantly reduced after the benomyl addition at the Cd concentrations of 30 and 40 mg kg-1. Root fungi colonization was enhanced under higher Cd concentrations when soil fungi are present (without the benomyl treatment). The fungi associated with root increased the Cd accumulation in the roots while decreased the Cd transfer to the shoot at 40 mg Cd kg-1. The 15N enrichment in root tip was positively correlated with enzyme activities of soil catalase and urease. And the activities of acid phosphatase, catalase, and urease were inhibited at each Cd level. The abundance of the dominant fungal genus differed in their response to Cd contamination. The ectomycorrhizal fungi of Tomentella and Cortinarius were identified under the higher Cd levels (40 mg kg-1). Our results implied Tomentella and Cortinarius could be applied to enhance the capacity of Quercus acutissima in the bioremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan, Shandong, 250102, China
| | - Xiaoxia Zhao
- Jinan Environmental Research Academy, Jinan, Shandong, 250102, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, 250022, China.
| | - Xiaohan Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, 250022, China
| | - Xinhua He
- Centre of Excellence for Soil Biology, School of Resources and Environment, Southwest University, Beibei, Chongqing, 400716, China; School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Yidan Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, 250022, China
| |
Collapse
|
37
|
Usman K, Al-Ghouti MA, Abu-Dieyeh MH. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci Rep 2019; 9:5658. [PMID: 30948781 PMCID: PMC6449511 DOI: 10.1038/s41598-019-42029-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
Heavy metals constitute some of the most significant environmental contaminants today. The abundance of naturally growing Tetraena qataranse around Ras Laffan oil and gas facilities in the state of Qatar reflects its toxitolerant character. This study examined the desert plant's tolerance to Ba, Cd, Cr, Cu, Ni and Pb relative to soil concentration. Analysis by inductively coupled plasma - optical emission spectroscopy (ICP-OES) showed that the plant biomass accumulates higher Cd, Cr, Cu and Ni concentration than the soil, particularly in the root. The bioconcentration factor (BCF) of all metals in the root and shoot indicates the plant's capacity to accumulate these metals. Cd had a translocation factor (TF) greater than one; however, it is less than one for all other metals, suggesting that the plant remediate Cd by phytoextraction, where it accumulates in the shoot and Cr, Cu and Ni through phytostabilization, concentrating the metals in the root. Metals phytostabilization restrict transport, shield animals from toxic species ingestion, and consequently prevent transmission across the food chain. Fourier Transform Infrared Spectroscopy (FTIR) analysis further corroborates ICP-OES quantitative data. Our results suggest that T. qataranse is tolerant of Cd, Cr, Cu, and Ni. Potentially, these metals can accumulate at higher concentration than shown here; hence, T. qataranse is a suitable candidate for toxic metals phytostabilization.
Collapse
Affiliation(s)
- Kamal Usman
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Mohammed H Abu-Dieyeh
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
38
|
España H, Bas F, Zornoza R, Masaguer A, Gandarillas M, Arellano E, Ginocchio R. Effectiveness of pig sludge as organic amendment of different textural class mine tailings with different periods of amendment-contact time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:311-318. [PMID: 30292019 DOI: 10.1016/j.jenvman.2018.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/29/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
The present study assesses the effect of tailing texture (loamy sand (LT) and sandy loam (ST)), dose of pig sludge (0, 50, 100 and 200 t ha-1) and amendment-contact time (14, 28 and 42 days) on physicochemical quality of amended substrate using Lolium perenne var Nui as a bioindicator. The main properties of LT differed of ST in levels of total organic carbon (0.19 and 0.58%), in pH (4.6 and 8.5), total Cu (202 and 1647 mg kg-1) and Zn content (31 and 137 mg kg-1). Soil pore water of experimental substrates was characterized for pH, electrical conductivity (EC) and Cu2+ ion activity (pCu2+) while ammonium nitrogen (NH4+-N), infiltration rate and general physicochemical characteristics were measured in substrates. Shoot biomass (SB), root biomass (RB) and the RB:SB ratio was calculated for L. perenne. The results showed there to be a significant interaction (p < 0.05) between tailing texture, sludge dose and amendment-contact time for pCu2+, infiltration rate, SB, RB, and RB: SB ratio, but not for pH, EC, or NH4+-N. However, sludge dose and amendment-contact time significantly affected all variables. By increasing dosages of pig sludge, pore water pH increased, and this was associated with decreases in pCu2+ and the infiltration rate. High doses of pig sludge (100 and 200 t ha-1) impaired growth of L. perenne irrespective of tailing texture and amendment-contact time, likely because of the rise of EC (up to 14 mS cm-1). For both tailing textures, the highest biomass was obtained after incorporation of 50 t ha-1 of pig sludge, with increasing values as amendment-contact time rose. In conclusion, effective management of pig sludge for tailing reclamation should guarantee doses <50 t ha-1 and amendment-contact time >28 days, irrespective of tailing texture.
Collapse
Affiliation(s)
- Helena España
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Fernando Bas
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Raúl Zornoza
- Sustainable Use, Management, and Reclamation of Soil and Water Research Group, Department of Agrarian Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - Alberto Masaguer
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, E-28040 Madrid, Spain
| | - Mónica Gandarillas
- Instituto de Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Campus Isla Teja, Independencia 641, Valdivia, Chile
| | - Eduardo Arellano
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Rosanna Ginocchio
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
| |
Collapse
|
39
|
Wen J, Li Z, Huang B, Luo N, Huang M, Yang R, Zhang Q, Zhai X, Zeng G. The complexation of rhizosphere and nonrhizosphere soil organic matter with chromium: Using elemental analysis combined with FTIR spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:52-58. [PMID: 29454271 DOI: 10.1016/j.ecoenv.2018.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 05/18/2023]
Abstract
Complexation is a main mechanism controlling the reactions between soil organic matter (SOM) and heavy metals, which still have not been fully understood up to date. The objective of this study was to compare the SOM composition of nonrhizosphere and rhizosphere in low Cr treatment with that in high Cr treatment and to find out how metal concentrations affect the complexation with SOM. The results revealed that both the hydroxyl and the carboxyl were significantly different under different Cr treatment groups. For nonrhizosphere samples, the high Cr treatment tended to have less hydroxyl contents and more structural changes on hydroxyl (3389-3381 cm-1) than the low Cr treatment (3389-3388 cm-1), while in the rhizosphere samples the reverse happened. The gap of the different Cr treated band area in the rhizosphere samples (44 a.u of the gap) was greatly smaller than that in the nonrhizosphere samples (576 a.u of the gap). In both the rhizosphere and nonrhizosphere samples, the high Cr treatment showed greater structural changes on carboxylic acids (11, 12 a.u changes based on the control) than the low Cr treatment (4, 6 a.u). The unsaturated carboxylic acids could account for downward frequency shift and the contents in the nonrhizosphere samples were slightly greater than that in the rhizosphere samples. This study used elemental analysis combined with FTIR spectroscopy to explore the effects of metal concentrations on the complexation of Cr with SOM and the composition of SOM. These findings give a way to understanding part of the complexation mechanisms between the metal and SOM.
Collapse
Affiliation(s)
- Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ren Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiuqing Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
40
|
Luo Y, Wu Y, Wang H, Xing R, Zheng Z, Qiu J, Yang L. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018. [PMID: 29541981 DOI: 10.1007/s11356-018-1573-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.
Collapse
Affiliation(s)
- Youfa Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Institute of Applied Ecology, Guizhou University, Guiyang, 550025, China.
| | - Hu Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Rongrong Xing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhilin Zheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jing Qiu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Lian Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
41
|
Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 2018; 8:216. [PMID: 29651381 DOI: 10.1007/s13205-018-1237-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/02/2018] [Indexed: 10/17/2022] Open
Abstract
Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.
Collapse
|
42
|
Burges A, Alkorta I, Epelde L, Garbisu C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:384-397. [PMID: 28862473 DOI: 10.1080/15226514.2017.1365340] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Since the emergence of phytoremediation, much research has focused on its development for (i) the removal of metals from soil and/or (ii) the reduction of metal bioavailability, mobility, and ecotoxicity in soil. Here, we review the lights and shades of the two main strategies (i.e., phytoextraction and phytostabilization) currently used for the phytoremediation of metal contaminated soils, irrespective of the level of such contamination. Both strategies face limitations to become successful at commercial scale and, then, often generate skepticism regarding their usefulness. Recent innovative approaches and paradigms are gradually establishing these phytoremediation strategies as suitable options for the management of metal contaminated soils. The combination of these phytotechnologies with a sustainable and profitable site use (a strategy called phytomanagement) grants value to the many benefits that can be obtained during the phytoremediation of metal contaminated sites, such as, for instance, the restoration of important ecosystem services, e.g. nutrient cycling, carbon storage, water flow regulation, erosion control, water purification, fertility maintenance, etc.
Collapse
Affiliation(s)
- Aritz Burges
- a Department of Conservation of Natural Resources , NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, Soil Microbial Ecology Group , Derio , Spain
| | - Itziar Alkorta
- b Department of Biochemistry and Molecular Biology , BIOFISIKA Institute (CSIC-UPV/EHU), University of the Basque Country , Bilbao , Spain
| | - Lur Epelde
- a Department of Conservation of Natural Resources , NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, Soil Microbial Ecology Group , Derio , Spain
| | - Carlos Garbisu
- a Department of Conservation of Natural Resources , NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, Soil Microbial Ecology Group , Derio , Spain
| |
Collapse
|
43
|
Schröder P, Beckers B, Daniels S, Gnädinger F, Maestri E, Marmiroli N, Mench M, Millan R, Obermeier MM, Oustriere N, Persson T, Poschenrieder C, Rineau F, Rutkowska B, Schmid T, Szulc W, Witters N, Sæbø A. Intensify production, transform biomass to energy and novel goods and protect soils in Europe-A vision how to mobilize marginal lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1101-1123. [PMID: 29132720 DOI: 10.1016/j.scitotenv.2017.10.209] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 05/27/2023]
Abstract
The rapid increase of the world population constantly demands more food production from agricultural soils. This causes conflicts, since at the same time strong interest arises on novel bio-based products from agriculture, and new perspectives for rural landscapes with their valuable ecosystem services. Agriculture is in transition to fulfill these demands. In many countries, conventional farming, influenced by post-war food requirements, has largely been transformed into integrated and sustainable farming. However, since it is estimated that agricultural production systems will have to produce food for a global population that might amount to 9.1 billion by 2050 and over 10 billion by the end of the century, we will require an even smarter use of the available land, including fallow and derelict sites. One of the biggest challenges is to reverse non-sustainable management and land degradation. Innovative technologies and principles have to be applied to characterize marginal lands, explore options for remediation and re-establish productivity. With view to the heterogeneity of agricultural lands, it is more than logical to apply specific crop management and production practices according to soil conditions. Cross-fertilizing with conservation agriculture, such a novel approach will provide (1) increased resource use efficiency by producing more with less (ensuring food security), (2) improved product quality, (3) ameliorated nutritional status in food and feed products, (4) increased sustainability, (5) product traceability and (6) minimized negative environmental impacts notably on biodiversity and ecological functions. A sustainable strategy for future agriculture should concentrate on production of food and fodder, before utilizing bulk fractions for emerging bio-based products and convert residual stage products to compost, biochar and bioenergy. The present position paper discusses recent developments to indicate how to unlock the potentials of marginal land.
Collapse
Affiliation(s)
- P Schröder
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, GmbH, COMI, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany..
| | - B Beckers
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - S Daniels
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - F Gnädinger
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, GmbH, COMI, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - E Maestri
- University of Parma, Department of Chemistry, Life Sci. Environm. Sustainability, - Parco Area delle Scienze 11A, I-43124 Parma, Italy
| | - N Marmiroli
- University of Parma, Department of Chemistry, Life Sci. Environm. Sustainability, - Parco Area delle Scienze 11A, I-43124 Parma, Italy
| | - M Mench
- UMR BIOGECO INRA 1202, Bordeaux University, France
| | - R Millan
- CIEMAT - Departamento de Medio Ambiente, Avenida Complutense 40, E-28040 Madrid, Spain
| | - M M Obermeier
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, GmbH, COMI, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - N Oustriere
- UMR BIOGECO INRA 1202, Bordeaux University, France
| | - T Persson
- NIBIO - Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| | | | - F Rineau
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - B Rutkowska
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - T Schmid
- CIEMAT - Departamento de Medio Ambiente, Avenida Complutense 40, E-28040 Madrid, Spain
| | - W Szulc
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - N Witters
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - A Sæbø
- NIBIO - Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| |
Collapse
|
44
|
Quintela-Sabarís C, Marchand L, Kidd PS, Friesl-Hanl W, Puschenreiter M, Kumpiene J, Müller I, Neu S, Janssen J, Vangronsveld J, Dimitriou I, Siebielec G, Gałązka R, Bert V, Herzig R, Cundy AB, Oustrière N, Kolbas A, Galland W, Mench M. Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1388-1398. [PMID: 28531917 DOI: 10.1016/j.scitotenv.2017.04.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 05/11/2023]
Abstract
Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.
Collapse
Affiliation(s)
- Celestino Quintela-Sabarís
- BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France; Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela 15706, Spain.
| | | | - Petra S Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela 15706, Spain
| | - Wolfgang Friesl-Hanl
- AIT Austrian Institute of Technology, GmbH, Energy Department, 3430 Tulln, Austria
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences Vienna - BOKU, Department of Forest and Soil Sciences, 3430 Tulln, Austria
| | - Jurate Kumpiene
- Luleå University of Technology, Waste Science & Technology, SE-97187 Luleå, Sweden
| | - Ingo Müller
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, Pillnitz, 01326 Dresden, Germany
| | - Silke Neu
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, Pillnitz, 01326 Dresden, Germany
| | - Jolien Janssen
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Ioannis Dimitriou
- Swedish University of Agriculture Sciences, Department of Crop Production Ecology, SE-750 07 Uppsala, Sweden
| | - Grzegorz Siebielec
- Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Rafał Gałązka
- Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Valérie Bert
- INERIS, Technologies and Sustainable and Clean Processes, Parc Technologique Alata, BP2, 60650 Verneuil en Halatte, France
| | - Rolf Herzig
- Phytotech Foundation (PT-F), and AGB-Bioindikation Umweltbeobachtung und oekologische Planung Quartiergasse, Bern, Switzerland
| | - Andrew B Cundy
- Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton, SO14 3ZH, UK
| | | | - Aliaksandr Kolbas
- BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France; Brest State University named after A.S. Poushkin, 224016, Brest, Belarus
| | | | - Michel Mench
- BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France
| |
Collapse
|
45
|
Radziemska M, Vaverková MD, Baryła A. Phytostabilization-Management Strategy for Stabilizing Trace Elements in Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14090958. [PMID: 28841169 PMCID: PMC5615495 DOI: 10.3390/ijerph14090958] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Contamination of soil by copper (Cu) has become a serious problem throughout the world, causing the reduction of agricultural yield and harmful effects on human health by entering the food chain. A glasshouse pot experiment was designed to evaluate the potential use of halloysite as an immobilizing agent in the aided phytostabilization of Cu-contaminated soil, using Festuca rubra L. The content of Cu in plants, i.e., total and extracted by 0.01 M CaCl2, was determined using the method of spectrophotometry. Cu content in the tested parts of F. rubra differed significantly when halloysite was applied to the soil, as well as with increasing concentrations of Cu. The addition of halloysite significantly increased plant biomass. Cu accumulated in the roots, thereby reducing its toxicity to the aerial parts of the plant. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using F. rubra in phytostabilization techniques.
Collapse
Affiliation(s)
- Maja Radziemska
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Magdalena D Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Anna Baryła
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
46
|
The Biogeophysical Effects of Revegetation around Mining Areas: A Case Study of Dongsheng Mining Areas in Inner Mongolia. SUSTAINABILITY 2017. [DOI: 10.3390/su9040628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Rinklebe J, Kumpiene J, Du Laing G, Ok YS. Biogeochemistry of trace elements in the environment - Editorial to the special issue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 186:127-130. [PMID: 27939094 DOI: 10.1016/j.jenvman.2016.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|