1
|
Balakrishnan M, Balasubramanian VK, Murugan K, John Kennedy JPK, Dhanasekaran S, Fu SF, Ho ST, Muthuramalingam JB, Chou JY. Unraveling the phenotypic and metabolic responses induced by urea-encapsulated hydrogel beads on Brassica juncea (L.) Czern & Coss. Mol Omics 2025; 21:215-225. [PMID: 39874059 DOI: 10.1039/d4mo00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of Brassica juncea, a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU). Our findings revealed that HBWU-treated plants exhibited commendable plant growth with significantly higher chlorophyll content (11.06 mg/0.1 g) compared to the control (3.67 mg/0.1 g) and U-treated group (6.41 mg/0.1 g). Metabolic analysis identified 17 major intra-cellular metabolites involved in nitrogen metabolism. HBWU treatment significantly boosted nitrogen assimilation in plants, as evidenced by the upregulation of 9 metabolites. Furthermore, a proposed schematic diagram illustrates the HBWU induced-metabolic pathways and nitrogen metabolism in B. juncea. These findings demonstrate the potential of hydrogel-based controlled-release systems to enhance plant growth and nitrogen assimilation.
Collapse
Affiliation(s)
- Muthumari Balakrishnan
- Department of Botany, Alagappa University, Karaikudi, 630 003, India
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
| | | | - Kavitha Murugan
- Department of Botany, Alagappa University, Karaikudi, 630 003, India
| | | | - Subashri Dhanasekaran
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, College of Agriculture, National Chiayi University, Chiayi 600, Taiwan
| | | | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
| |
Collapse
|
2
|
Natsir TA, Iknawati AM, Wanadri ID, Siswanta D, Lusiana RA, Cahyaningrum SE. Environmentally friendly membrane based on chitosan, citric acid, and calcium for slow-release fertilizer. Heliyon 2025; 11:e41378. [PMID: 39958740 PMCID: PMC11825249 DOI: 10.1016/j.heliyon.2024.e41378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 02/18/2025] Open
Abstract
In agriculture, fertilizers are important for plant growth. Among them, conventional fertilizers, particularly urea fertilizers, are popular owing to their low cost and high nitrogen content. However, their use often leads to uneven nitrogen absorption and environmental pollution. Slow-release fertilizers (SRFs), particularly those based on chitosan, offer a solution. This research aims to produce biodegradable chitosan/citric acid/calcium-urea (CS/St/Ca-urea) films to increase the absorption efficiency and use of artificial nitrogen fertilizers (especially urea). Herein, chitosan/citric acid/calcium (CS/St/Ca) films were synthesized and applied as SRFs. Chitosan was dissolved in 1 % acetic acid and added to citric acid at 55 °C for 24 h. Then, calcium oxide (CaO) and urea were added to the CS/St mixture and stirred until homogeneous. Subsequently, the membrane product was characterized by ATR-IR, SEM-EDX, and elemental analysis and its nitrogen solubility was determined using a UV-vis spectrophotometer. The physical properties of the CS/St/Ca were investigated via swelling, hydrophobicity, and tensile strength tests. Results showed that a CS/St at weight ratio of 1:1 can increase the tensile strength by up to 13.6 %. The addition of a filler with a Ca additive, as well as the addition of CaO, can increase the mechanical strength of the membrane. The CS/St/Ca film membranes can function optimally as a urea SRF coating material with a release rate of 3.37-9.46 ppm day-1. The applied kinetic model follows the Higuchi kinetic model, with an R 2 value of 0.9505.
Collapse
Affiliation(s)
| | | | | | - Dwi Siswanta
- Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | |
Collapse
|
3
|
Eddarai EM, El Mouzahim M, Ragaoui B, Eladaoui S, Bourd Y, Bellaouchou A, Boussen R. Review of current trends in chitosan based controlled and slow-release fertilizer: From green chemistry to circular economy. Int J Biol Macromol 2024; 278:134982. [PMID: 39214838 DOI: 10.1016/j.ijbiomac.2024.134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The demand for food is increasing rapidly with the growth of the global population. To ensure global food security, fertilizers are essential. Controlled-release fertilizers (CRFs) are a highly effective type of fertilizer that have been developed to meet this need. While CRFs offer significant advantages over traditional fertilizers, their use has been limited due to high production costs and negative impact on the environment. CRFs are manufactured and applied without considering the resource-use efficiency of the production process or the potential ecological consequences of fertilizer application. To tackle these issues, biopolymer-based CRFs have been developed. These innovative fertilizers are created by coating granules with biodegradable and eco-friendly biopolymers (chitosan, starch and cellulose). In addition, these groundbreaking fertilizers align with the tenets of the circular economy, which involve formulating products that enable a gradual and steady dispensation of nutrients over an extended period. Our objective in embracing these fertilizers is to transcend the traditional linear "take, make, dispose" approach and transition towards a more sustainable and circular model. This approach not only enhances nutrient delivery efficiency but also contributes significantly to reducing the environmental impact associated with conventional fertilizer use. Afterward, the research explored various aspects of controlled-release fertilizers (CRFs), including the mechanisms of nutrient release, the types of coating materials used, and the techniques employed for coating. The study also examined the benefits and challenges associated with CRFs and analyzed how specific parameters influence the nutrient release mechanisms.
Collapse
Affiliation(s)
- El Mehdi Eddarai
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal, Rabat BP 1014, Morocco.
| | - Mouad El Mouzahim
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal, Rabat BP 1014, Morocco
| | - Badreddine Ragaoui
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal, Rabat BP 1014, Morocco
| | - Saleh Eladaoui
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal, Rabat BP 1014, Morocco
| | - Youssef Bourd
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal, Rabat BP 1014, Morocco
| | - Abdelkbir Bellaouchou
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal, Rabat BP 1014, Morocco
| | - Ratiba Boussen
- Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, Agdal, Rabat BP 1014, Morocco
| |
Collapse
|
4
|
Kalita A, Elayarajan M, Janaki P, Suganya S, Sankari A, Parameswari E. Organo-monomers coated slow-release fertilizers: Current understanding and future prospects. Int J Biol Macromol 2024; 274:133320. [PMID: 38950798 DOI: 10.1016/j.ijbiomac.2024.133320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The increasing urge to make an impactful contribution towards attaining nutritional security amidst the ever-rising demand for food, changing climate and maintaining environmental health and safety has become the main focal point for today's researchers globally. Slow-release fertilizers (SRFs) are a broad, dynamic, and advance category of fertilizers but despite its environmental benefits and scientifically proven results it often faces some critical challenges, primarily due to its high cost, often stemming from synthetic coatings, deteriorating soil health and with unrevealed potential environmental impacts. Organo-monomers have gained immense popularity due to their organic origin, biodegradable nature, biocompatibility, bio-sustainability and as a targeted delivery of nutrients in the plant system leading to increase in nutrient use efficiency (NUE). They can form strong bond with other monomers, fertilizers elements and improve the soil quality, carbon sequestration and holistically the environment. This review emphasizes on organo-monomers based SRFs, its synthesis, application and deliberate mechanism of nutrient release; boosting crop productivity and global economy. In conclusion, provided the significant challenges posed by the classical or synthetically coated fertilizers; the application of organo-monomers based SRFs demonstrates immense potential for achieving sustainable yield, to help build a global nutritionally secure population.
Collapse
Affiliation(s)
- Abreeta Kalita
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - M Elayarajan
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - P Janaki
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - S Suganya
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - A Sankari
- Dept. of Horticulture, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - E Parameswari
- Dept. of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| |
Collapse
|
5
|
Raiesi Ardali T, Ma'mani L, Chorom M, Motamedi E, Fathi Gharebaba M. A biocompatible NPK +Fe+Zn slow release fertilizer: synthesis and its evaluation in tomato plant growth improvement. Sci Rep 2024; 14:4640. [PMID: 38409209 PMCID: PMC10897305 DOI: 10.1038/s41598-024-55152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Slow-release fertilizers (SRFs) play an essential and necessary role in sustainable agriculture. Using slow-release and environment friendly fertilizers can increase the growth of plants and reduce the loss of nutrients. Considering the deficiency of iron (Fe) and zinc (Zn) in calcareous soils, a slow-release fertilizer was prepared based on the polymeric nanocomposite, which contains NPK, Fe, and Zn. Its potential was evaluated on tomato plant growth by conducting an experiment in a factorial completely randomized design with three replications. Two levels of salinity (2 and 5 ds m-1, two types of soil texture) clay loam and sandy loam) and five levels of fertilizers were examined in the experiment. To this, the graphene oxide-chitosan coated-humic acid@Fe3O4 nanoparticles (Fe3O4@HA@GO-Cs), and the graphene oxide-chitosan coated-ammonium zinc phosphate (AZP@GO-Cs) were used as Fe and Zn sources, respectively. Then, the optimal Fe and Zn fertilizers in the presence of urea, phosphorus, and potassium slow- release fertilizers (SRF) were investigated under greenhouse conditions. The results indicated that the best improvement in growth and nutrient uptake in plants was achieved by using the SRF. Notably, in the shoots of tomato plants, the nitrogen, phosphorus, potassium, Fe, and Zn concentration increased by 44, 66, 46, 75, and 74% compared to the control. The use of nanofertilizer can be an effective, biocompatible, and economical option to provide Fe and Zn demand in plants.
Collapse
Affiliation(s)
- Tahereh Raiesi Ardali
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mostafa Chorom
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Fathi Gharebaba
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, AREEO, Karaj, Iran
| |
Collapse
|
6
|
Shanmugavel D, Rusyn I, Solorza-Feria O, Kamaraj SK. Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166729. [PMID: 37678530 DOI: 10.1016/j.scitotenv.2023.166729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Agriculture will face the issue of ensuring food security for a growing global population without compromising environmental security as demand for the world's food systems increases in the next decades. To provide enough food and reduce the harmful effects of chemical fertilization and improper disposal or reusing of agricultural wastes on the environment, will be required to apply current technologies in agroecosystems. Combining biotechnology and nanotechnology has the potential to transform agricultural practices and offer answers to both immediate and long-term issues. This review study seeks to identify, categorize, and characterize the so-called smart fertilizers as the future frontier of sustainable agriculture. The conventional fertilizer and smart fertilizers in general are covered in the first section of this review. Another key barrier preventing the widespread use of smart fertilizers in agriculture is the high cost of materials. Nevertheless, smart fertilizers are widely represented on the world market and are actively used in farms that have already switched to sustainable technologies. The advantages and disadvantages of various raw materials used to create smart fertilizers, with a focus on inorganic and organic materials, synthetic and natural polymers, along with their physical and chemical preparation processes, are contrasted in the following sections. The rate and the mechanism of release are covered. The purpose of this study is to provide a deep understanding of the advancements in smart fertilizers during the last ten years. Trends are also recognized and studied to provide insight for upcoming agricultural research projects.
Collapse
Affiliation(s)
- Divya Shanmugavel
- Programa de Nanociencias y Nanotecnología, CINVESTAV - IPN, Hydrogen and Fuel Cells Group, A. Postal 14-760, 07360 CDMX, Mexico
| | - Iryna Rusyn
- Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera St., 12, Lviv, 79013, Ukraine
| | - Omar Solorza-Feria
- Department of Chemistry, CINVESTAV - IPN, Hydrogen, and Fuel Cells Group, A. Postal 14-760, 07360 CDMX, Mexico.
| | - Sathish-Kumar Kamaraj
- Instituto Politécnico Nacional (IPN)-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira (CICATA-Altamira), Carretera Tampico-Puerto Industrial Altamira Km 14.5, C. Manzano, Industrial Altamira, 89600 Altamira, Tamps., Mexico.
| |
Collapse
|
7
|
Riseh RS, Vazvani MG, Kennedy JF. The application of chitosan as a carrier for fertilizer: A review. Int J Biol Macromol 2023; 252:126483. [PMID: 37625747 DOI: 10.1016/j.ijbiomac.2023.126483] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The smart combination of agriculture and other sciences can greatly reduce the limits of fertilizer use. Chitosan is a linear amino polysaccharide with a rigid structure which has hydrophilic and crystal properties. The formation of intermolecular hydrogen bonds the presence of reactive groups and cross-linking, the formation of salts with organic and inorganic acids with complexing and chelating properties ionic conductivity, film formation are the characteristics of chitosan. With the presence of amino groups, chitosan can form a complex with other compounds and also enter the vascular system of plants and lead to the activation of metabolic-physiological pathways of plants. This polymeric compound can bond with other natural polymers and in combination with fertilizers and nutritional elements, on the one hand, it can provide the nutritional needs of the plant and on the other hand, it also helps to improve the soil texture. Chitosan nanomaterials as a Next-generation fertilizers act as plant immune system enhancers through slow, controlled, and targeted delivery of nutrients to plants. Chitosan can assist agricultural researchers and has become an ideal and effective option with its many applications in various fields.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
8
|
Yuan S, Zhou T, Tan Z. New Straw Coating Material for Improving the Slow-Release Performance of Fertilizers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39818-39826. [PMID: 37574720 DOI: 10.1021/acsami.3c06408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In this work, we extracted cellulose from agricultural waste and produced a new straw coating material (ethyl cellulose, EC) through a series of modification operations. The slow-release properties of ethyl cellulose-coated urea (EU) and its absorption and utilization by plants were evaluated. The surface of EU can form a smooth and fine film, and the initial nutrient release rate is only 37.91% that of the uncoated fertilizer. Compared with common urea, the nitrogen of plants cultivated with EU increased by 17.69%, and the leached nitrogen decreased by 61.29%, indicating that EU can reduce nitrogen waste to the greatest extent and continuously supply nutrients to crops. Therefore, the application of EU could be a more practical, environmentally friendly, and sustainable alternative to nitrogen fertilizers.
Collapse
Affiliation(s)
- Shengnan Yuan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1 Lion Hill Street, Hongshan District, Wuhan 430070, People's Republic of China
| | - Tuo Zhou
- State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1 Lion Hill Street, Hongshan District, Wuhan 430070, People's Republic of China
| |
Collapse
|
9
|
Hadadi A, Imessaoudene A, Bollinger JC, Bouzaza A, Amrane A, Tahraoui H, Mouni L. Aleppo pine seeds (Pinus halepensis Mill.) as a promising novel green coagulant for the removal of Congo red dye: Optimization via machine learning algorithm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117286. [PMID: 36640645 DOI: 10.1016/j.jenvman.2023.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Consideration is now being given to the use of metal coagulants to remove turbidity from drinking water and wastewater. Concerns about the long-term impact of non-biodegradable sludge on human health and the potential contamination of aquatic systems are gaining popularity. Recently, alternative biocoagulants have been suggested to address these concerns. In this study, using a 1 M sodium chloride (NaCl) solution, the active coagulating agent was extracted from Pinus halepensis Mill. Seed, and used for the first time to remove Congo red dye, the influence of numerous factors on dye removal was evaluated in order to make comparisons with conventional coagulants. The application of biocoagulant was shown to be very successful, with coagulant dosages ranging from 3 to 12 mL L-1 achieving up to 80% dye removal and yielding 28 mL L-1 of sludge. It was also found that biocoagulant is extremely pH sensitive with an optimum operating pH of 3. Ferric chloride, on the other hand, achieved similar removal rate with higher sludge production (46 mL L-1) under the same conditions. A Fourier Transform Infrared Spectroscopy and proximate composition analysis were undertaken to determine qualitatively the potential active coagulant ingredient in the seeds and suggested the involvement of proteins in the coagulation-flocculation mechanism. The evaluation criteria of the Support vector machine_Gray wolf optimizer model in terms of statistical coefficients and errors reveals quite interesting results and demonstrates the performance of the model, with statistical coefficients close to 1 (R = 0.9998, R2 = 0.9995 and R2 adj = 0.9995) and minimal statistical errors (RMSE = 0.5813, MSE = 0.3379, EPM = 0 0.9808, ESP = 0.9677 and MAE = 0.2382). The study findings demonstrate that Pinus halepensis Mill. Seed extract might be a novel, environmentally friendly, and easily available coagulant for water and wastewater treatment.
Collapse
Affiliation(s)
- Amina Hadadi
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité. Faculté SNVST, Université de Bouira, 10000 Bouira, Algeria.
| | - Ali Imessaoudene
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité. Faculté SNVST, Université de Bouira, 10000 Bouira, Algeria.
| | - Jean-Claude Bollinger
- Laboratoire E2Lim, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France.
| | | | - Abdeltif Amrane
- Univ.Rennes, ENSCR, 11 Allée de Beaulieu, 35708 Rennes, France.
| | - Hichem Tahraoui
- Pharmaceutical Engineering Department, Process Engineering Faculty, Salah Boubnider Constantine 3 University, Constantine, Algeria.
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité. Faculté SNVST, Université de Bouira, 10000 Bouira, Algeria.
| |
Collapse
|
10
|
Han Y, Chen S, Xie B, Wang Y, Fan Y, Meng Q, Zou H, Zhang Y. Waterborne polymer modified with zeolite for environment‐friendly slow‐release coated urea. J Appl Polym Sci 2023. [DOI: 10.1002/app.53633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yanyu Han
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| | - Songling Chen
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| | - Boyu Xie
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| | - Yuqing Wang
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| | - Yiwei Fan
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| | - Qingying Meng
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| | - Hongtao Zou
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| | - Yulong Zhang
- College of Land and Environment Shenyang Agricultural University Shenyang Liaoning China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources Shenyang Liaoning China
- Key Laboratory of Arable Land Conservation in Northeast China Ministry of Agriculture and Rural Affairs Shenyang People's Republic of China
| |
Collapse
|
11
|
Hamidi RM, Siyal AA, Luukkonen T, Shamsuddin RM, Moniruzzaman M. Fly ash geopolymer as a coating material for controlled-release fertilizer based on granulated urea. RSC Adv 2022; 12:33187-33199. [PMID: 36425209 PMCID: PMC9677526 DOI: 10.1039/d2ra06056f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 02/07/2024] Open
Abstract
Nitrogen loss from urea fertiliser due to its high solubility characteristics has led to the invention of controlled release urea (CRU). Majority of existing CRU coatings are produced from a non-biodegradable, toxic and expensive synthetic polymers. This study determines the feasibility of fly ash-based geopolymer as a coating material for urea fertilizer. The effects of fly ash particle size (15.2 μm, 12.0 μm, and 8.6 μm) and solid to liquid (S : L) ratio (3 : 1, 2.8 : 1, 2.6 : 1, 2.4 : 1 and 2.2 : 1) on the geopolymer coating, the characterization such as FTIR analysis, XRD analysis, surface area and pore size analysis, setting time analysis, coating thickness, and crushing strength, and the release kinetics of geopolymer coated urea in water and soil were determined. Lower S : L ratio was beneficial in terms of workability, but it had an adverse impact on geopolymer properties where it increased porosity and decreased mechanical strength to an undesirable level for the CRU application. Geopolymer coated urea prepared from the finest fly ash fraction and lowest S : L ratio demonstrated high mechanical strength and slower urea release profile. Complete urea release was obtained in 132 minutes in water and 15 days in soil from geopolymer-coated urea whereas for uncoated urea it took only 20 minutes in water and 3 days in soil. Thus, geopolymer can potentially be used as a coating material for urea fertilizer to replace commonly used expensive and biodegradable polymer-based coatings.
Collapse
Affiliation(s)
- Rashidah Mohamed Hamidi
- HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Ahmer Ali Siyal
- HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Tero Luukkonen
- University of Oulu, Fibre and Particle Engineering Research Unit P.O. Box 8000 FI-90014 Finland
| | - Rashid M Shamsuddin
- HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Muhammad Moniruzzaman
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management, Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| |
Collapse
|
12
|
Jariwala H, Santos RM, Lauzon JD, Dutta A, Wai Chiang Y. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53967-53995. [PMID: 35624378 DOI: 10.1007/s11356-022-20890-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Fertilizers play an essential role in increasing crop yield, maintaining soil fertility, and provide a steady supply of nutrients for plant requirements. The excessive use of conventional fertilizers can cause environmental problems associated with nutrient loss through volatilization in the atmosphere, leaching to groundwater, surface run-off, and denitrification. To mitigate environmental issues and improve the longevity of fertilizer in soil, controlled release fertilizers (CRFs) have been developed. The application of CRFs can reduce the loss of nutrients, provide higher nutrient use efficiency, and improve soil health simultaneously to achieve the goals of climate-smart agricultural (CSA) practices. The major findings of this review paper are (1) CRFs can prevent direct exposure of fertilizer granule to soil and prevent loss of nutrients such as nitrate and nitrous oxide emissions; (2) CRFs are less affected by the change in environmental parameters, and that can increase longevity in soil compared to conventional fertilizers; and (3) CRFs can maintain required soil nitrogen levels, increase water retention, reduce GHG emissions, lead to optimum pH for plant growth, and increase soil organic matter content. This paper could give good insights into the ongoing development and future perspectives of CRFs for CSA practices.
Collapse
Affiliation(s)
- Hiral Jariwala
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Rafael M Santos
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - John D Lauzon
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Yi Wai Chiang
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
13
|
Slow Release and Water Retention Performance of Poly(Acrylic Acid-Co-Acrylamide)/Fulvic Acid/Oil Shale Semicoke Superabsorbent Composites. Polymers (Basel) 2022; 14:polym14091719. [PMID: 35566887 PMCID: PMC9104033 DOI: 10.3390/polym14091719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
In order to achieve the low cost and multifunction of superabsorbent composites, poly(acrylic acid-co-acrylamide)/fulvic acid/oil shale semicoke (PAMFS) were prepared by free radical copolymerization of fulvic acid (FA), oil shale semicoke (OSSC), acrylic acid (AA) and acrylamide (AM). The characterization results revealed that FA and OSSC were involved in the construction of a three-dimensional (3D) polymeric network via hydrogen bonding and covalent bonding. The water absorbency of PAMFS in distilled water and 0.9 wt% NaCl solution were 724 and 98 g/g, respectively. The FA slow release of PAMFS in distilled water and soil was achieved due to the interaction between FA and the functional groups of polymer matrix by hydrogen bonds and covalent bonds. Furthermore, the potted experiment indicated that the addition of PAMFS to soil can significantly promote plant growth compared with the pure soil, regardless of water stress. Therefore, this superabsorbent composite showed an excellent water absorption and salt resistance performance, as well as nice slow release performance. It has a broad application prospect.
Collapse
|
14
|
Chiaregato CG, França D, Messa LL, Dos Santos Pereira T, Faez R. A review of advances over 20 years on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydr Polym 2022; 279:119014. [PMID: 34980357 DOI: 10.1016/j.carbpol.2021.119014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Over the last 20 years, polysaccharide-based materials have garnered attention in the enhanced efficiency fertilizers (EEFs) research. Biodegradability, non-toxicity, water-solubility, swellability, and ease of chemical modification make these polymers suitable for agricultural applications. In this review, the polysaccharides-based EEFs advances are summarized over the polymer and co-materials selection, the methods, and the chemical/structure aspects necessary for an appropriate production. We also briefly discuss terminologies, nutrient release mechanisms, biodegradation, and future trends. The most used polysaccharides are chitosan, starch, and alginate, and the non-Fickian model most describes the release mechanism. It is dependent on the relaxation of polymer chains by the matrix swelling followed by the nutrient diffusion. EEFs-polymers-based should be designed as more packed and less porous structures to avoid the immediate contact of the fertilizer with the surrounding water, improving fertilizer retention. Furthermore, the preparation methods will determine the scale-up of the material.
Collapse
Affiliation(s)
- Camila Gruber Chiaregato
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Débora França
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Lucas Luiz Messa
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Tamires Dos Santos Pereira
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Roselena Faez
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil.
| |
Collapse
|
15
|
Wei Z, Ahmed Mohamed T, Zhao L, Zhu Z, Zhao Y, Wu J. Microhabitat drive microbial anabolism to promote carbon sequestration during composting. BIORESOURCE TECHNOLOGY 2022; 346:126577. [PMID: 34923079 DOI: 10.1016/j.biortech.2021.126577] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Transforming organic waste into stable carbon by composting is an eco-friendly way. However, the complex environment, huge microbial community and complicated metabolic of composting have limited the directional transformation of organic carbon, which is also not conducive to the fixation of organic carbon. Therefore, this review is based on the formation of humus, a stable by-product of composting, to expound how to promote carbon fixation by increasing the yield of humus. Firstly, we have clarified the transformation regularity of organic matter during composting. Meanwhile, the microhabitat factors affecting microbial catabolism and anabolism were deeply analyzed, in order to provide a theoretical basis for the micro habitat regulation of directional transformation of organic matter during composting. Given that, a method to adjust the directional humification and stabilization of organic carbon has been proposed. Hoping the rapid reduction and efficient stabilization of organic waste can be realized according to this method.
Collapse
Affiliation(s)
- Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Li Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology Strategies for Plant Genetic Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106945. [PMID: 34699644 DOI: 10.1002/adma.202106945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Plant genetic engineering is essential for improving crop yield, quality, and resistance to abiotic/biotic stresses for sustainable agriculture. Agrobacterium-, biolistic bombardment-, electroporation-, and poly(ethylene glycol) (PEG)-mediated genetic-transformation systems are extensively used in plant genetic engineering. However, these systems have limitations, including species dependency, destruction of plant tissues, low transformation efficiency, and high cost. Recently, nanotechnology-based gene-delivery methods have been developed for plant genetic transformation. This nanostrategy shows excellent transformation efficiency, good biocompatibility, adequate protection of exogenous nucleic acids, and the potential for plant regeneration. However, the nanomaterial-mediated gene-delivery system in plants is still in its infancy, and there are many challenges for its broad applications. Herein, the conventional genetic transformation techniques used in plants are briefly discussed. After that, the progress in the development of nanomaterial-based gene-delivery systems is considered. CRISPR-Cas-mediated genome editing and its combined applications with plant nanotechnology are also discussed. The conceptual innovations, methods, and practical applications of nanomaterial-mediated genetic transformation summarized herein will be beneficial for promoting plant genetic engineering in modern agriculture.
Collapse
Affiliation(s)
- Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xiaojun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
17
|
Yin M, Chen H. Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 344:126182. [PMID: 34710600 DOI: 10.1016/j.biortech.2021.126182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the roles of chitosan (CTS) in anaerobic digestion of Waste activated sludge (WAS) were investigated. The results show that the methane production potential of WAS is positively correlated with the CTS content. The presence of 30 g/kg total suspended solids CTS increased the cumulative methane production from 215 ± 1.52 to 272 ± 1.83 mL/g volatile suspended solids. The positively charged amino groups in CTS neutralize the hydroxyl and carboxyl groups of extracellular polymeric substances, which reduces the negative charge on the surface of sludge and promotes sludge agglomeration, thereby inhibiting the release of organic matter. CTS also inhibits hydrolysis and acidification by immobilizing hydrolases and acidulase enzymes. However, CTS flocculates humus to avoid its interference with electron transfer, thereby enhancing the activity of coenzyme F420 and methanogenesis. In addition, CTS increases the abundance of methanogens, which also contributes to methane production.
Collapse
Affiliation(s)
- Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
18
|
Qi Z, Dong Y, He M, Wang M, Li Y, Dai X. Coated, Stabilized Enhanced-Efficiency Nitrogen Fertilizers: Preparation and Effects on Maize Growth and Nitrogen Utilization. FRONTIERS IN PLANT SCIENCE 2021; 12:792262. [PMID: 35003183 PMCID: PMC8733592 DOI: 10.3389/fpls.2021.792262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Coated, slow/controlled release, or stabilized enhanced-efficiency nitrogen fertilizers (EENFs) are effective in improving nitrogen utilization efficiency (NUE) and crop yield. Better performance is expected from coated, stabilized EENFs where urease and nitrification inhibitors are treated in coated fertilizers. Firstly, five coated EENFs with different mass proportions of nature rubber (NR) in coating were prepared: CU0, CU1, CU2, CU3, CU4, and CU5 (0, 10, 20, 30, 40, and 50% of NR in coating). The controlled release performance of CU was tested by hydrostatic release test and the microstructure of controlled release urea, so as to screen the optimal addition ratio of NR (ER: NR = 7:3, CU3). Secondly, two coated, stabilized EENFs, CSU1 and CSU2, were prepared with natural rubber-modified epoxy resin (ER: NR = 7:3) as coating material. Seven treatments of different N fertilization were set up: CK (no N fertilization), urea, CU3, SU1, and SU2 (urease and nitrification inhibitors-treated urea fertilizers), CSU1 and CSU2 (urease and nitrification inhibitors-treated natural rubber-modified epoxy resin-coated urea fertilizers). Ammonia volatilization experiment and column leaching experiment showed that compared with conventional urea, NH3 volatilization loss was reduced by 20% and inorganic N leaching loss was reduced by 26% from CSU2, respectively. In the pot experiment, maize grain yield of 162.92 and 206.96 g/pot was achieved by CSU1 and CSU2, respectively, 41 and 79%, respectively, higher than that achieved by conventional urea. SUs treatments were more effective than conventional urea treatment in improving maize grain yield and NUE, but lower than in CSUs. The NUE, nitrogen fertilizer apparent utilization efficiency, partial factor productivity of applied N, and nitrogen utilization efficiency were 46, 30, 46, and 32%, respectively, higher in CSU1 and 58, 62, 58, and 29%, respectively, higher in CSU2 than in the conventional urea treatment. Compared with CSU1, CSU2 had better agronomic effectiveness with a higher NUE. It is recommended that urease and nitrification inhibitors be sandwiched between urea prill and the coating for preparation of novel, environmentally friendly coated, stabilized EENFs with high agronomic effectiveness, high NUE, and low N loss.
Collapse
Affiliation(s)
- Zenglian Qi
- College of Resources and Environment, Shandong Agricultural University, Taian, China
| | - Yuanjie Dong
- College of Resources and Environment, Shandong Agricultural University, Taian, China
| | - Mingrong He
- Agronomy College, Shandong Agricultural University, Taian, China
| | - Maoying Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, China
| | - Yu Li
- College of Resources and Environment, Shandong Agricultural University, Taian, China
| | - Xinglong Dai
- Agronomy College, Shandong Agricultural University, Taian, China
| |
Collapse
|
19
|
Gao L, Luo H, Wang Q, Hu G, Xiong Y. Synergistic Effect of Hydrogen Bonds and Chemical Bonds to Construct a Starch-Based Water-Absorbing/Retaining Hydrogel Composite Reinforced with Cellulose and Poly(ethylene glycol). ACS OMEGA 2021; 6:35039-35049. [PMID: 34963985 PMCID: PMC8697600 DOI: 10.1021/acsomega.1c05614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The hydrogel prepared by graft copolymerization of starch (ST) and acrylamide (AM) is a commonly used absorbent material; however, due to their irregular network structure and a limited number of hydrophilic groups, starch-based hydrogels have poor water absorption and water retention. To overcome this, here, we provide a new preparation method for starch-based hydrogels. Using cerium ammonium nitrate (CAN) as an initiator, the starch-acrylamide-cellulose (CMC)/poly(ethylene glycol) (S-A-M/PEG) superabsorbent hydrogel was prepared by graft copolymerization. The starch-acrylamide-cellulose/poly(ethylene glycol) hydrogel network is constructed through the synergistic effect of hydrogen bonds and chemical bonds. The experimental results showed that the starch-acrylamide-cellulose/poly(ethylene glycol) superabsorbent hydrogel has a complete network structure that does not easily collapse due to its superior mechanical properties. The water swelling rate reached 80.24 times, and it reached 50.61% water retention after 16 days. This hydrogel has excellent water-absorbing and water-retaining properties, biocompatibility, and degradability, making it useful for further studies in medical, agricultural, and other fields.
Collapse
Affiliation(s)
- Longfei Gao
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Huiyuan Luo
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Qian Wang
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Guirong Hu
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Yuzhu Xiong
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
20
|
Construction of Porous Starch-Based Hydrogel via Regulating the Ratio of Amylopectin/Amylose for Enhanced Water-Retention. Molecules 2021; 26:molecules26133999. [PMID: 34209127 PMCID: PMC8272078 DOI: 10.3390/molecules26133999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022] Open
Abstract
The performance of hydrogels prepared with traditional natural starch as raw materials is considerable; the fixed ratio of amylose/amylopectin significantly limits the improvement of hydrogel structure and performance. In this paper, starch hydrogels were prepared by physical blending and chemical grafting, with the aid of ultrasonic heating. The effects of different amylose/amylopectin ratios on the microstructure and water retention properties of starch hydrogels were studied. The results show that an increase in amylopectin content is beneficial to improve the grafting ratio of acrylamide (AM). The interaction between the AM grafted on amylopectin and amylose molecules through hydrogen bonding increases the pores of the gel network and thins the pore walls. When the amylopectin content was 70%, the water absorption (swelling 45.25 times) and water retention performance (16 days water retention rate 44.17%) were optimal. This study provides new insights into the preparation of starch-based hydrogels with excellent physical and chemical properties.
Collapse
|
21
|
Wang Q, Peng C, Shi L, Liu Z, Zhou D, Meng H, Zhao H, Li F, Zhang M. A Technical System for the Large-Scale Application of Metabolites From Paecilomyces variotii SJ1 in Agriculture. Front Bioeng Biotechnol 2021; 9:671879. [PMID: 34055763 PMCID: PMC8149806 DOI: 10.3389/fbioe.2021.671879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023] Open
Abstract
Compared with endophytes, metabolites from endophytes (MEs) have great potential in agriculture. However, a technique for industrializing the production of MEs is still scarce. Moreover, the establishment of effective methods for evaluating the quality of MEs is hampered by the fact that some compounds with beneficial effects on crops have not been clearly identified. Herein, a system was established for the production, quality control and application of MEs by using the extract from Paecilomyces variotii SJ1 (ZNC). First, the extraction conditions of ZNC were optimized through response surface methodology, after which each batch (500 L) met the consumption requirements of crops in 7,467 hectares. Then, chromatographic fingerprinting and enzyme-linked immunosorbent assay were applied to evaluate the similarity and specificity of unknown effective components in ZNC, ensuring a similarity of more than 90% and a quantitative accuracy of greater than 99.9% for the products from different batches. Finally, the bioactivity of industrially produced ZNC was evaluated in the field, and it significantly increased the potato yields by 4.4–10.8%. Overall, we have established a practical technical system for the large-scale application of ZNC in agriculture.
Collapse
Affiliation(s)
- Qingbin Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China.,Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Liran Shi
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| | - Dafa Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hui Meng
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Hongling Zhao
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Fuchuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
22
|
de Carvalho Arjona J, das Graças Silva-Valenzuela M, Wang SH, Valenzuela-Diaz FR. Biodegradable Nanocomposite Microcapsules for Controlled Release of Urea. Polymers (Basel) 2021; 13:polym13050722. [PMID: 33653016 PMCID: PMC7956393 DOI: 10.3390/polym13050722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Urea is the most used fertilizer around the world as the main source of nitrogen to soil and plants. However, the administration of nitrogen dosage is critical, as its excess can be harmful to the environment. Therefore, the encapsulation of urea to achieve control on its release rates has been considered in several areas. In this work, encapsulation of urea by biodegradable polymer poly(3-hydroxybutyrate) (PHB) and its nanocomposites, namely PHB/MMT and PHB/OMMT, producing microcapsules by emulsion method is carried out. MMT and OMMT refer to Brazilian clays in a natural state and organophilized, respectively. In addition, the microcapsules are thus prepared to have their physicochemical characteristics investigated, then tested for biodegradation. Increment of microcapsules’ crystallinity due to the increased amount of poly(vinylacetate) (PVA), as emulsifier agent in the continuous phase, was confirmed by X-ray diffractometry (XRD) and atomic force microscopy (AFM). The presence of urea within microcapsules was verified by XRD, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The soil biodegradation assessments showed that PHB/OMMT microcapsules present higher degradation rates in sandy soils. The overall results suggest that the composites performed better than neat PHB and are very promising; moreover, PHB/OMMT microcapsules proved to be the best candidate for the controlled-release of urea in soils.
Collapse
|
23
|
Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. PLANTS 2021; 10:plants10020238. [PMID: 33530608 PMCID: PMC7912041 DOI: 10.3390/plants10020238] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the "tailing" effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.
Collapse
|
24
|
Sathisaran I, Balasubramanian M. Physical characterization of chitosan/gelatin-alginate composite beads for controlled release of urea. Heliyon 2020; 6:e05495. [PMID: 33251361 PMCID: PMC7677684 DOI: 10.1016/j.heliyon.2020.e05495] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Polymer-based controlled-release formulations are gaining significant advantage over chemical fertilizers in recent years as they contribute to the preservation of soil fertility by reducing soil pollution in farm lands. In this work, urea (a nitrogen source fertilizer) has been entrapped within chitosan-alginate and gelatin-alginate composite beads at three different concentrations. The physical properties of the polymer composite beads namely the diameter, porosity, yield percentage, Carr's index and Hausner's ratio were determined. These fertilizer-loaded beads were also characterized by Scanning Electron Microscopy (SEM) and Fourier Transform-Infra Red (FT-IR) spectroscopy. Urea enhanced swelling of chitosan-alginate beads through the creation of pores whereas in the case of gelatin-alginate formulations, urea decreased the swelling. The swelling of the polymer composite beads was found to be maximum at pH of 5.6 when compared to that of pH conditions, 7 and 8.5. The chitosan-alginate composite beads were found to possess better fertilizer entrapping efficiency than the gelatin-alginate composite beads. The in vitro urea release studies demonstrated that the urea-entrapped gelatin-alginate beads exhibited slower urea release than that of the chitosan-alginate beads. These controlled release urea formulations were found to follow quasi-fickian diffusion mechanism.
Collapse
Affiliation(s)
- Indumathi Sathisaran
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat 382355, India
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu, India
| | - Murugesan Balasubramanian
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu, India
| |
Collapse
|
25
|
A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers (Basel) 2020; 12:polym12102425. [PMID: 33096639 PMCID: PMC7590028 DOI: 10.3390/polym12102425] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Agriculture is an important sector of the economy, but this industry consumes significant amounts of water, which is a precious and limited natural resource. Irrigation techniques and efforts to mitigate water usage influence the growth, survival, and yield of crops. However, superabsorbent polymers in combination with fertilizers can be employed to obtain sustained release of nutrients and improved water retention capacity of the soil. Despite significant recent progress in this area involving synthetic polyacrylate hydrogels, there are no industrially applicable solutions exhibiting similar performance using natural biopolymers or synthetic polymers enriched with natural components. This review focuses on biodegradable chitosan-based hydrogels (both natural and semi-synthetic), and discusses their potential agricultural and horticultural applications. The methods for synthesizing hydrogels via physical or chemical crosslinking, and the resulting functional properties of recently reported hydrogels, such as water retention and release of active ingredients, are presented herein.
Collapse
|
26
|
Iftime MM, Irimiciuc SA, Agop M, Angheloiu M, Ochiuz L, Vasincu D. A Theoretical Multifractal Model for Assessing Urea Release from Chitosan Based Formulations. Polymers (Basel) 2020; 12:polym12061264. [PMID: 32492849 PMCID: PMC7362081 DOI: 10.3390/polym12061264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
This paper reports the calibration of a theoretical multifractal model based on empirical data on the urea release from a series of soil conditioner systems. To do this, a series of formulations was prepared by in situ hydrogelation of chitosan with salicylaldehyde in the presence of different urea amounts. The formulations were morphologically characterized by scanning electron microscopy and polarized light microscopy. The in vitro urea release was investigated in an environmentally simulated medium. The release data were fitted on five different mathematical models, Korsmeyer–Peppas, Zero order, First order, Higuchi and Hixson–Crowell, which allowed the establishment of a mechanism of urea release. Furthermore, a multifractal model, used for the fertilizer release for the first time, was calibrated using these empirical data. The resulting fit was in good agreement with the experimental data, validating the multifractal theoretical model.
Collapse
Affiliation(s)
- Manuela Maria Iftime
- Romanian Academy of Sciences, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Stefan Andrei Irimiciuc
- National Institute for Laser, Plasma and Radiation Physics—NILPRP, 409 Atomistilor Street, 077125 Bucharest, Romania;
| | - Maricel Agop
- Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Marian Angheloiu
- Center for Services and Research in Advanced Biotechnologies, Calugareni, Sanimed International Impex SRL, Road Bucuresti-Magurele, no. 70 F, sector 5, 077125 Bucharest, Romania;
| | - Lacramioara Ochiuz
- University of Medicine and Farmacy Grigore T. Popa Iasi, 700115 Iaşi, Romania;
- Correspondence:
| | - Decebal Vasincu
- University of Medicine and Farmacy Grigore T. Popa Iasi, 700115 Iaşi, Romania;
| |
Collapse
|
27
|
Han Y, Chen S, Yang M, Zou H, Zhang Y. Inorganic matter modified water-based copolymer prepared by chitosan-starch-CMC-Na-PVAL as an environment-friendly coating material. Carbohydr Polym 2020; 234:115925. [PMID: 32070543 DOI: 10.1016/j.carbpol.2020.115925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022]
Abstract
Inorganic matter modifications were used to improve the hydrophobic properties and slow-release effects of water-based copolymer films. Water-based copolymers were prepared by aqueous polymerization of polyvinyl alcohol, starch, chitosan, and sodium carboxymethyl cellulose, and then, zeolite powder, volcanic ash or biochar were added to prepare the inorganic matter modified water-based copolymer films. The results showed that the inorganic matter modified water-based copolymer films had enhanced thermal stability, reductions in O-H and water vapour permeability, and increased crystallinity and roughness. Compared with water-based copolymer films, the water absorption capacities of the zeolite powder modified water-based copolymer films, volcanic ash modified water-based copolymer films, and biochar modified water-based copolymer films were reduced by 42.8 %, 50.0 % and 39.0 %, and their ammonium permeability was reduced by 53.0 %, 12.1 % and 1.1 %, respectively. Inorganic matter modified water-based copolymer films have properties that make them suitable for use in preparing slow-release coating materials.
Collapse
Affiliation(s)
- Yanyu Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| | - Songling Chen
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| | - Ming Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China.
| | - Yulong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| |
Collapse
|
28
|
Mujtaba M, Khawar KM, Camara MC, Carvalho LB, Fraceto LF, Morsi RE, Elsabee MZ, Kaya M, Labidi J, Ullah H, Wang D. Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. Int J Biol Macromol 2020; 154:683-697. [PMID: 32194112 DOI: 10.1016/j.ijbiomac.2020.03.128] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023]
Abstract
Chitosan has been termed as the most well-known among biopolymers, receiving widespread attention from researchers in various fields mainly, agriculture, food, and health. Chitosan is a deacetylated derivative of chitin, mainly isolated from waste shells of the phylum Arthropoda after their consumption as food. Chitosan molecules can be easily modified for adsorption and slow release of plant growth regulators, herbicides, pesticides, and fertilizers, etc. Chitosan as a carrier and control release matrix that offers many benefits including; protection of biomolecules from harsh environmental conditions such as pH, light, temperatures and prolonged release of active ingredients from its matrix consequently protecting the plant's cells from the hazardous effects of burst release. In the current review, tends to discuss the recent advances in the area of chitosan application as a control release system. Also, future recommendations will be made in light of current advancements and major gaps.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - Khalid Mahmood Khawar
- Ankara University, Faculty of Agriculture, Department of Field Crops, 06100 Ankara, Turkey
| | - Marcela Candido Camara
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Lucas Bragança Carvalho
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Leonardo Fernandes Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Rania E Morsi
- Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt; EPRI-Nanotechnology Center, Egyptian Petroleum Research Institute, 11727 Cairo, Egypt
| | - Maher Z Elsabee
- Department of Chemistry, Faculty of Science, Cairo University, 12613 Cairo, Egypt
| | - Murat Kaya
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar, 23561 Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
29
|
Wang W, Yang S, Zhang A, Yang Z. Preparation and properties of novel corn straw cellulose–based superabsorbent with water‐retaining and slow‐release functions. J Appl Polym Sci 2020. [DOI: 10.1002/app.48951] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weishuai Wang
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural Sciences Beijing 100081 China
| | - Shiqi Yang
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural Sciences Beijing 100081 China
- Key Laboratory of Agro‐Environment and Climate Change, Ministry of Agricultural Beijing 100081 China
| | - Aiping Zhang
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural Sciences Beijing 100081 China
| | - Zhengli Yang
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural Sciences Beijing 100081 China
- Key Laboratory of Agro‐Environment and Climate Change, Ministry of Agricultural Beijing 100081 China
| |
Collapse
|
30
|
UV-light irradiation preparation of soybean residue-based hydrogel composite from inorganic/organic hybrids for degradable slow-release N-fertilizer. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04043-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydr Polym 2019; 223:115040. [PMID: 31427019 DOI: 10.1016/j.carbpol.2019.115040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/02/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
Abstract
The paper reports new soil conditioner systems obtained by in situ hydrogelation of chitosan with salicylaldehyde in the presence of urea fertilizer, designed to address both fertilization and water retention of the soil. The new systems were structural, supramolecular and morphological characterized by FTIR spectroscopy, XRD diffraction, POM and SEM microscopy. The rate of urea release has been investigated by NMR analysis and the release mechanism has been assessed by fitting five mathematical models. The formulations showed high water absorbency of 68 g/g, and they induced water holding capacity in soil up to 154% and an increment of the nitrogen content in soil to almost double, leading to a growth of plants with almost 70% higher compared to the reference soil. All these data revealed the new systems as new multifunctional soil conditioner ecoproducts capable to address both fertilizing and water retention issues, with high potential of application for sustainable agriculture.
Collapse
|
32
|
Xie X, Gao X, Pan C, Wei Z, Zhao Y, Zhang X, Luo S, Cao J. Assessment of Multiorigin Humin Components Evolution and Influencing Factors During Composting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4184-4192. [PMID: 30908023 DOI: 10.1021/acs.jafc.8b07007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Humin (HM) is a complex mixture of molecules produced in the different biological processes, and the structural evolution of HM in the agricultural wastes composting are not well-known. Elucidating and comparing the structural evolution during livestock manure (LMC) and straw wastes (SWC) composting can help one to better understand the fates, features, and environmental impacts of HM. This study exploits excitation emission matrix-parallel factor (EEM-PARAFAC), two-dimensional correlation spectroscopy (2D-CoS), hetero-2DCoS, and structural equation model (SEM) to compare the fate of the HM. We fit a three-component EEM-PARAFAC model to characterize HM extracted from LMC and SWC. The results show that the HM evolution has a significant difference between LMC and SWC. As a result, the opposite change tendency and different change order of HM fluorescent components determine the different synthesis formation and evolution mechanisms. The diverse organic matter composition and dominant microbes might be the reason for the different evolution mechanism. Based on these results, a comprehensive view of the component changes of HM in the composting process is obtained. Furthermore, the superior potential of such an integrated approach during investigating the complex evolution in the environment was also demonstrated.
Collapse
Affiliation(s)
- Xinyu Xie
- College of Life Science , Northeast Agricultural University , Harbin 150030 , China
| | - Xintong Gao
- College of Life Science , Northeast Agricultural University , Harbin 150030 , China
| | - Chaonan Pan
- College of Life Science , Northeast Agricultural University , Harbin 150030 , China
| | - Zimin Wei
- College of Life Science , Northeast Agricultural University , Harbin 150030 , China
| | - Yue Zhao
- College of Life Science , Northeast Agricultural University , Harbin 150030 , China
| | - Xu Zhang
- College of Life Science , Northeast Agricultural University , Harbin 150030 , China
| | - Sheng Luo
- Yi'an County Agricultural Technology Promotion Center , Yi'an , Heilongjiang 161500 , China
| | - Jinxiang Cao
- Yi'an County Agricultural Technology Promotion Center , Yi'an , Heilongjiang 161500 , China
| |
Collapse
|
33
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
34
|
Kong W, Li Q, Li X, Su Y, Yue Q, Gao B. A biodegradable biomass-based polymeric composite for slow release and water retention. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:190-198. [PMID: 30286348 DOI: 10.1016/j.jenvman.2018.09.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/01/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Slow-release fertilizer has been proven to be more effective than traditional fertilizer for providing a long-term stable nutrient supply. Although such fertilizers have been widely investigated, their water-retention properties and biodegradability have not been fully analysed. Composites of fertilizers and polymers provide opportunities to prepare new types of fertilizer with enhanced properties for real applications. Chicken feather protein-graft-poly(potassium acrylate)-polyvinyl alcohol semi-interpenetrating networks forming a super absorbent resin combined with nitrogen (N) and phosphorus (P) (CFP-g-PKA/PVA/NP semi-IPNs SAR) was prepared. The chemically bonded or physically embedded fertilizer compound could be released form the resin matrix to the surrounding soil under irrigation. The synthesis mechanism, morphology, and chemical and mechanical structure of the synthesized composites were investigated. The reactant doses were optimized through response surface methodology (RSM). A 30-day field trial of the prepared SAR was applied to detect the influence of sample particle size, soil salinity, pH, and moisture content on the slow-release behaviour of N and P. The maximum release values of N and P from the composites were 69.46% N and 65.23% P. A 120-day soil burying experiment and 30-day Aspergillus niger (A. niger) inoculation were performed, and the biodegradability and change in microstructure were monitored. The addition of SAR to soil could also improve the water-retention ability of the soil.
Collapse
Affiliation(s)
- Wenjia Kong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Xiaodi Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yuan Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; School of Mathematic and Quantitative Economics, Shandong University of Finance and Economics, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
35
|
Melaj MA, Daraio ME, Vazquez A. Controlled release on sand bed columns and biodegradability in soil of chitosan: Hydroxypropyl methylcellulose films. J Appl Polym Sci 2019. [DOI: 10.1002/app.47532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mariana A. Melaj
- Facultad de Ingeniería; Instituto de Tecnología en Polímeros y Nanotecnología, UBA - CONICET, Avda. Gral. Las Heras 2214; Buenos Aires, C1127AAR Argentina
- Facultad de Ingeniería; UBA, Avda. Paseo Colón 850; Buenos Aires, C1063ACV Argentina
| | - Marta E. Daraio
- Facultad de Ingeniería; UBA, Avda. Paseo Colón 850; Buenos Aires, C1063ACV Argentina
| | - Analía Vazquez
- Facultad de Ingeniería; Instituto de Tecnología en Polímeros y Nanotecnología, UBA - CONICET, Avda. Gral. Las Heras 2214; Buenos Aires, C1127AAR Argentina
| |
Collapse
|
36
|
Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhani Tabar A. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:333-340. [PMID: 29853099 DOI: 10.1016/j.msec.2018.04.083] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/06/2018] [Accepted: 04/27/2018] [Indexed: 01/31/2023]
Abstract
In this study, new slow release fertilizer encapsulated by superabsorbent nanocomposite was prepared by in-situ graft polymerization of sulfonated-carboxymethyl cellulose (SCMC) with acrylic acid (AA) in the presence of polyvinylpyrrolidone (PVP), silica nanoparticles and nitrogen (N), phosphorous (P), and potassium (K) (NPK) fertilizer compound. The prepared materials were characterized by FT-IR, XRD and scanning electron microscopy (SEM) techniques. The incorporation of NPK fertilizer into hydrogel nanocomposite network was verified by results of these analyses. Also, the swelling behavior in various pH and saline solutions as well as water retention capability of the prepared hydrogel nanocomposite was evaluated. The fertilizer release behavior of the NPK loaded hydrogel nanocomposite was in good agreement with the standard of Committee of European Normalization (CEN), indicating its excellent slow release property. These good characteristics revealed that the hydrogel nanocomposite fertilizer formulation can be practically used in agricultural and horticultural applications.
Collapse
Affiliation(s)
- Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Hamid Zebhi
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Dariush Salari
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolreza Mirmohseni
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Adel Reyhani Tabar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|