1
|
Wang Y, Wang F, Ford R, Tang W, Zhou M, Ma B, Zhang M. Dicyandiamide Applications Mitigate the Destructive Effects of Graphene Oxide on Microbial Activity, Diversity, and Composition and Nitrous Oxide Emission in Agricultural Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21449-21460. [PMID: 39288293 DOI: 10.1021/acs.jafc.4c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The widespread production and utilization of graphene oxide (GO) raise concerns about its environmental release and potential ecological impacts, particularly in agricultural soil. Effective nitrogen (N) management, especially through nitrification inhibitors like dicyandiamide (DCD), might mitigate the negative effects of GO exposure on soil microbes via N biostimulation. This study quantified changes in soil physicochemical properties, nitrous oxide (N2O) emissions, microbial activity, biomass, and community after treatments with GO and DCD. The GO exposure significantly reduced bacterial 16S rRNA gene abundance and the biomass of major bacterial phyla. It also stimulated pathways linked to human diseases. However, DCD application alleviated the negative effects of GO exposure on soil bacterial biomass. While DCD application significantly reduced soil N2O emission, the GO application tended to hinder the inhibiting performance of DCD. Our findings highlight the hazards of GO exposure to soil microbes and the potential mitigation strategy with soil N management.
Collapse
Affiliation(s)
- Yan Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
2
|
Afzal S, Alghanem SMS, Alsudays IM, Malik Z, Abbasi GH, Ali A, Noreen S, Ali M, Irfan M, Rizwan M. Effect of biochar, zeolite and bentonite on physiological and biochemical parameters and lead and zinc uptake by maize (Zea mays L.) plants grown in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133927. [PMID: 38447373 DOI: 10.1016/j.jhazmat.2024.133927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Heavy metals (HMs) are common contaminants with major concern of severe environmental and health problems. This study evaluated the effects of organo-mineral amendments (mesquite biochar (MB), zeolite (ZL) and bentonite (BN) alone and in combination) applied at different rates to promote the maize (Zea mays L.) growth by providing essential nutrient and improving the soil physio-chemical properties under zinc (Zn) and lead (Pb) contamination. Result revealed that the incorporation of organo-mineral amendments had significantly alleviated Pb and Zn contamination by maize plants and improved the physiological and biochemical attributes of plants. Combined application of organo-mineral amendments including BMA-1, BMA-2 and BMA-3 performed excellently in terms of reducing Pb and Zn concentrations in both leaves (19-60%, 43-75%, respectively) and roots (24-59%, 42-68%, respectively) of maize. The amendments decreased the extractable, reducible, oxidisable and residual fractions of metals in soil and significantly reduced the soil DTPA-extractable Pb and Zn. BMA-1 substantially improved antioxidant enzyme activities in metal-stressed plants. This study indicated that combined use of organo-mineral amendments can effectively reduce the bioavailability and mobility of Pb and Zn in co-contaminated soils. Combined application of organo-mineral amendments could be viable remediation technology for immobilization and metal uptake by plants in polluted soils.
Collapse
Affiliation(s)
- Sobia Afzal
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | | | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sana Noreen
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ali
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Irfan
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
3
|
Cao H, Zhang X, Wang H, Ding B, Ge S, Zhao J. Effects of Graphene-Based Nanomaterials on Microorganisms and Soil Microbial Communities. Microorganisms 2024; 12:814. [PMID: 38674758 PMCID: PMC11051958 DOI: 10.3390/microorganisms12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The past decades have witnessed intensive research on the biological effects of graphene-based nanomaterials (GBNs) and the application of GBNs in different fields. The published literature shows that GBNs exhibit inhibitory effects on almost all microorganisms under pure culture conditions, and that this inhibitory effect is influenced by the microbial species, the GBN's physicochemical properties, the GBN's concentration, treatment time, and experimental surroundings. In addition, microorganisms exist in the soil in the form of microbial communities. Considering the complex interactions between different soil components, different microbial communities, and GBNs in the soil environment, the effects of GBNs on soil microbial communities are undoubtedly intertwined. Since bacteria and fungi are major players in terrestrial biogeochemistry, this review focuses on the antibacterial and antifungal performance of GBNs, their antimicrobial mechanisms and influencing factors, as well as the impact of this effect on soil microbial communities. This review will provide a better understanding of the effects of GBNs on microorganisms at both the individual and population scales, thus providing an ecologically safe reference for the release of GBNs to different soil environments.
Collapse
Affiliation(s)
- Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Xiao Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Sai Ge
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China;
| | - Jianguo Zhao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| |
Collapse
|
4
|
Di F, Han D, Wang G, Zhao W, Zhou D, Rong N, Yang S. Characteristics of bacterial community structure in the sediment of Chishui River (China) and the response to environmental factors. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 263:104335. [PMID: 38520935 DOI: 10.1016/j.jconhyd.2024.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Sediment microorganisms performed an essential function in the biogeochemical cycle of aquatic ecosystems, and their structural composition was closely related to environmental carrying capacity and water quality. In this study, the Chishui River (Renhuai section) was selected as the research area, and the concentrations of environmental factors in the water and sediment were detected. High⁃throughput sequencing was adopted to reveal the characteristics of bacterial community structures in the sediment. In addition, the response of bacteria to environmental factors was explored statistically. Meanwhile, the functional characteristics of bacterial were also analyzed based on the KEGG database. The results showed that the concentration of environmental factors in the water and sediment displayed spatial differences, with the overall trend of midstream > downstream > upstream, which was related to the wastewater discharge from the Moutai town in the midstream directly. Proteobacteria was the most dominant phylum in the sediment, with the relative abundance ranged from 52.06% to 70.53%. The distribution of genus-level bacteria with different metabolic activities varied in the sediment. Upstream was dominated by Massilia, Acinetobacter, and Thermomonas. In the midstream, Acinetobacter, Cloacibacterium and Comamonas were the main genus. Nevertheless, the abundance of Lysobacter, Arenimonas and Thermomonas was higher in the downstream. Redundancy analysis (RDA) showed that total nitrogen (TN) and total phosphorus (TP) were the main environmental factors which affected the structure of bacterial communities in sediment, while total organic carbon (TOC) was the secondary. The bacterial community was primarily associated with six biological pathway categories such as metabolism. Carbohydrate metabolism and amino acid metabolism were the most active functions in the 31 subfunctions. This study could contribute to the understanding of the structural composition and driving forces of bacteria in the sediment, which might benefit for the ecological protection of Chishui River.
Collapse
Affiliation(s)
- Fei Di
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Donghui Han
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China.
| | - Guang Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Wenbo Zhao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Daokun Zhou
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Nan Rong
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Shou Yang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| |
Collapse
|
5
|
Peña-Álvarez V, Baragaño D, Prosenkov A, Gallego JR, Peláez AI. Assessment of co-contaminated soil amended by graphene oxide: Effects on pollutants, microbial communities and soil health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116015. [PMID: 38290314 DOI: 10.1016/j.ecoenv.2024.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Graphene oxide (GOx) is a nanomaterial with demonstrated capacity to remove metals from water. However, its effects on organic pollutants and metal(loid)s present in polluted soils when used for remediation purposes have not been extensively addressed. Likewise, few studies describe the effects of GOx on edaphic properties and soil biology. In this context, here we assessed the potential of GOx for remediating polluted soil focusing also on different unexplored effects of GOx in soil. To achieve this, we treated soil contaminated with concurrent inorganic (As and metals) and organic pollution (TPH and PAHs), using GOx alone and in combination with nutrients (N and P sources). In both cases increased availability of As and Zn was observed after 90 days, whereas Cu and Hg availability was reduced and the availability of Pb and the concentration of organic pollutants were not significantly affected. The application of GOx on the soil induced a significant and rapid change (within 1 week) in microbial populations, leading to a transient reduction in biodiversity, consistent with the alteration of several soil properties. Concurrently, the combination with nutrients exhibited a distinct behaviour, manifesting a more pronounced and persistent shift in microbial populations without a decrease in biodiversity. On the basis of these findings, GOx emerges as a versatile amendment for soil remediation approaches.
Collapse
Affiliation(s)
- V Peña-Álvarez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | - D Baragaño
- School of Mines and Energy Engineering, University of Cantabria, Blvr. Ronda Rufino Peón 254, 39300 Torrelavega, Cantabria, Spain.
| | - A Prosenkov
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus of Mieres, University of Oviedo, Mieres, Spain
| | - A I Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| |
Collapse
|
6
|
Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fertilizers are indispensable agri-inputs to accomplish the growing food demand. The injudicious use of conventional fertilizer products has resulted in several environmental and human health complications. To mitigate these problems, nanocomposite-based fertilizers are viable alternative options. Nanocomposites, a novel class of materials having improved mechanical strength, barrier properties, and mechanical and thermal stability, are suitable candidates to develop eco-friendly slow/controlled release fertilizer formulations. In this review, the use of different nanocomposite materials developed for nutrient management in agriculture has been summarized with a major focus on their synthesis and characterization techniques, and application aspects in plant nutrition, along with addressing constraints and future opportunities of this domain. Further detailed studies on nanocomposite-based fertilizers are required to evaluate the cost-effective synthesis methods, in-depth field efficacy, environmental fate, stability, etc. before commercialization in the field of agriculture. The present review is expected to help the policy makers and all the stakeholders in the large-scale commercialization and application of nanocomposite-based smart fertilizer products with greater societal acceptance and environmental sustainability in near future.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhadip Paul
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhasis Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
7
|
Fu T, Zhang B, Gao X, Cui S, Guan CY, Zhang Y, Zhang B, Peng Y. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158810. [PMID: 36162572 DOI: 10.1016/j.scitotenv.2022.158810] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China; Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
8
|
Wu J, Liu Q, Wang S, Sun J, Zhang T. Trends and prospects in graphene and its derivatives toxicity research: A bibliometric analysis. J Appl Toxicol 2023; 43:146-166. [PMID: 35929397 DOI: 10.1002/jat.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
The purpose of this paper is to explore the current research status, hot topics, and future prospects in the field of graphene and its derivatives toxicity. In the article, the Web of Science Core Collection database was used as the data source, and the CiteSpace and VOSviewer were used to conduct a visual analysis of the last 10 years of research on graphene and its derivatives toxicity. A total of 8573 articles were included, and we analyzed the literature characteristics of the research results in the field of graphene and its derivatives toxicity, as well as the distribution of authors and co-cited authors; the distribution of countries and institutions; the situation of co-cited references; and the distribution of journals and categories. The most prolific countries, institutions, journals, and authors are China, the Chinese Academy of Sciences, RSC Advances, and Wang, Dayong, respectively. The co-cited author with the most citations was Akhavan, Omid. The five research hotspot keywords in the field of graphene and its derivatives toxicity were "nanomaterials," "exposure," "biocompatibility," "adsorption," and "detection." Frontier topics were "facile synthesis," "antibacterial activity," and "carbon dots." Our study provides perspectives for the study of graphene and its derivatives toxicity and yields valuable information and suggestions for the development of graphene and its derivatives toxicity research in the future.
Collapse
Affiliation(s)
- Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jinfang Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Fang J, Weng Y, Li B, Liu H, Liu L, Tian Z, Du S. Graphene oxide decreases the abundance of nitrogen cycling microbes and slows nitrogen transformation in soils. CHEMOSPHERE 2022; 309:136642. [PMID: 36202372 DOI: 10.1016/j.chemosphere.2022.136642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) has been widely used in many applications due to its excellent properties. Given the extensive production and use of this nanomaterial, its release into the environment is inevitable. However, little is known about the effects of GO on microbial nitrogen transformation and the related processes after GO enters the soil environment. The present study showed that GO significantly reduced soil microbial biomass and caused a decline in microbial diversity after the soils were subjected to various GO concentrations (10, 100, and 1000 mg kg-1) for 4 months. Among them, the abundances of nitrogen transformation related bacteria such as Firmicutes, Nitrospirota, Proteobacteria, Planctomycetota, and Cyanobacteria were significantly decreased with GO incubation. Among the enzymes that are related to nitrogen transformation, nitrate reductase was the most sensitive even at low concentrations of GO, followed by ammonia monooxygenase and urease, which were reduced by 13-31%, 5-26%, and 9-19% respectively, than those of the control. We found that high concentrations of GO significantly increased the retention of soil urea by 32-59%, and the contents of ammonium and nitrate were 22-28% and 55-69% lower compared to those of the control, respectively. Moreover, the response of most of the indicators in the above process to multilayer GO was more significant than that to single layer GO. Overall, this study provides new insights into the comprehensive understanding of GO's impacts on the soil nitrogen cycle.
Collapse
Affiliation(s)
- Jin Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yineng Weng
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Beier Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
10
|
Deng X, Liu R, Hou L. Promotion effect of graphene on phytoremediation of Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74319-74334. [PMID: 35635663 DOI: 10.1007/s11356-022-20765-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Echinacea purpurea (L.) Moench was selected as a remediation plant in this study, and different concentrations of graphene oxide (GO) were added to Cd-contaminated soil. Through pot experiments, the effect of E. purpurea on Cd-contaminated soil was determined at 60 days, 120 days, and 150 days. A preliminary study on the remediation mechanism of GO was explored through changes in the forms of Cd in the rhizosphere soil, soil pH, and soil functional groups. Results showed that the optimal concentration of GO was 0.4 g/kg, and under the condition, the accumulation of Cd in the roots of E. purpurea was as high as 113.69 ± 23.86 mg/kg, and the maximum EF reached 5.87 ± 1.34. Compared with those of the control group, accumulated Cd concentration and EF in the roots increased by 60.34% and 2.32, respectively. Correlation analysis showed that the absorption and accumulation of Cd was negatively correlated with the exchangeable Cd content at 120 days, and the exchangeable Cd was negatively correlated with the relative content of functional groups in the soil with 0.4 g/kg GO (E2). The artificial application of GO to the soil can be used as an effective way to improve the effect of E. purpurea in the remediation of Cd soil pollution, and it has great application potential in the stabilization of plants and vegetations and restoration of high-concentration Cd-contaminated soil.
Collapse
Affiliation(s)
- Xingyu Deng
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Rui Liu
- Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Liqun Hou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 100016, China
| |
Collapse
|
11
|
Long Z, Ma C, Zhu J, Wang P, Zhu Y, Liu Z. Effects of Carbonaceous Materials with Different Structures on Cadmium Fractions and Microecology in Cadmium-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12381. [PMID: 36231683 PMCID: PMC9564624 DOI: 10.3390/ijerph191912381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Carbonaceous materials have proved to be effective in cadmium remediation, but their influences on soil microecology have not been studied well. Taking the structural differences and the maintenance of soil health as the entry point, we chose graphene (G), multi-walled carbon nanotubes (MWCNTs), and wetland plant-based biochar (ZBC) as natural and engineered carbonaceous materials to explore their effects on Cd fractions, nutrients, enzyme activities, and microbial communities in soils. The results showed that ZBC had stronger electronegativity and more oxygen-containing functional groups, which were related to its better performance in reducing soil acid-extractable cadmium (EX-Cd) among the three materials, with a reduction rate of 2.83-9.44%. Additionally, ZBC had greater positive effects in terms of improving soil properties, nutrients, and enzyme activities. Redundancy analysis and correlation analysis showed that ZBC could increase the content of organic matter and available potassium, enhance the activity of urease and sucrase, and regulate individual bacterial abundance, thereby reducing soil EX-Cd. Three carbonaceous materials could maintain the diversity of soil microorganisms and the stability of the microbial community structures to a certain extent, except for the high-dose application of ZBC. In conclusion, ZBC could better immobilize Cd and maintain soil health in a short period of time.
Collapse
Affiliation(s)
- Zihan Long
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chunya Ma
- Longyou Ecological Environmental Protection Agency, Quzhou 324400, China
- Longyou Ecological Environment Monitoring Station, Quzhou 324400, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yelin Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
12
|
The Absorption and Distribution Characteristics of Willow Clones to Copper and Its Detoxification Mechanism. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3170046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoremediation technology is a measure to purify pollutants in soil or water through the absorption, volatilization, root filtration, degradation, and stabilization of plants, and its core is to find plants with large biomass and high enrichment. The wild willow tree found in Tonglushan is a fast-growing Euphorbiaceae plant, which has strong tolerance to the heavy metal copper (Cu) and has the characteristics of developed root system, barren resistance, and high economic value. Taking willow as the research object, this paper studied the composition, copper enrichment sites, morphology, subcellular distribution characteristics and absorption, transportation, and enrichment mechanism of willow root exudates under copper stress through hydroponic and pot experiments. By adding phosphate fertilizers, inducers, and other agronomic control measures, the strengthening technology and mechanism of Cu-contaminated soil phytoremediation were studied. The main research contents and results are as follows: the results of hydroponics and pot experiments show that the willow tree has a certain tolerance to Cu, and Cu mainly accumulates in its roots. Oxalic acid, succinic acid, tartaric acid, citric acid, and malic acid are the main organic acids in willow root exudates. Root exudation activity acidified the rhizosphere soil, increased acid exchangeability, and reducible Cu content, while other forms of Cu content decreased. Root exudates affect the uptake and accumulation of copper by willow trees by altering the bioavailability of copper in soil.
Collapse
|
13
|
Jin M, Liu J, Wu W, Zhou Q, Fu L, Zare N, Karimi F, Yu J, Lin CT. Relationship between graphene and pedosphere: A scientometric analysis. CHEMOSPHERE 2022; 300:134599. [PMID: 35427662 DOI: 10.1016/j.chemosphere.2022.134599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The mass production and application of graphene have gradually expanded from academic research to industrial applications, which will inevitably lead to graphene entering the soil actively and passively. Therefore, the relationship between graphene and the pedosphere has attracted a lot of attention in the last decade. The most important question is whether graphene will harm soil health. Fortunately, the evidence is that graphene can alter soil physicochemical properties and microbial communities to some extent, but not dramatically. On this basis, the role of graphene in soil has been investigated in all directions. This review summarizes the literature on the relationship between graphene and soils. Topics include remediation and sensing of soil using graphene materials, the effects of graphene on soil, and the effects of graphene in soil on plant growth. At the same time, this review also uses bibliometrics to review the history of the topic. The number of papers published each year, participating countries, participating institutions and important articles were analyzed in detail. Finally, based on the published literature, we described the future perspectives of graphene and the pedosphere.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jinsong Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
14
|
Ren W, Liu H, Mao T, Teng Y, Zhao R, Luo Y. Enhanced remediation of PAHs-contaminated site soil by bioaugmentation with graphene oxide immobilized bacterial pellets. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128793. [PMID: 35364531 DOI: 10.1016/j.jhazmat.2022.128793] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation is considered as a promising technology for cleanup of polycyclic aromatic hydrocarbons (PAHs) from contaminated site soil, however, available high-efficiency microbial agents remain very limited. Herein, we explored graphene oxide (GO)-immobilized bacterial pellets (JGOLB) by embedding high-efficiency degrading bacteria Paracoccus aminovorans HPD-2 in alginate-GO-Luria-Bertani medium (LB) composites. Microcosm culture experiments were performed with contaminated site soil to assess the effect of JGOLB on the removal of PAHs. The results showed that JGOLB exhibited greatly improved mechanical strength, larger specific surface area and more enriched mesopores, compared with traditional immobilized bacterial pellets. They significantly increased the removal rate of PAHs by 18.51% compared with traditional bacterial pellets, reaching the removal rate at 62.86% over 35 days of incubation. Moreover, the increase mainly focused on high-molecular-weight PAHs. JGOLB not only greatly increased the abundance of embedded degrading bacteria in soil, but also significantly enhanced the enrichment of potential indigenous degrading bacteria (Pseudarthrobacter and Arthrobacter), the functional genes involved in PAHs degradation and a number of ATP transport genes in the soil. Overall, such nanocomposite bacterial pellets provide a novel microbial immobilization option for remediating organic pollutants in harsh soil environment.
Collapse
Affiliation(s)
- Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haoran Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tingyu Mao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Rui Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Zhang H, Jiang L, Wang H, Li Y, Chen J, Li J, Guo H, Yuan X, Xiong T. Evaluating the remediation potential of MgFe 2O 4-montmorillonite and its co-application with biochar on heavy metal-contaminated soils. CHEMOSPHERE 2022; 299:134217. [PMID: 35288182 DOI: 10.1016/j.chemosphere.2022.134217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel and efficient magnesium ferrite-modified montmorillonite (MgFe2O4-MMT) compound was prepared. MgFe2O4-MMT and biochar were mixed at 0:10, 1:9, 3:7, 4:6, and 10:0 w/w combinations and were used for heavy metal immobilization in soil polluted with multiple heavy metals. MgFe2O4-MMT can significantly increase soil alkalinity, and it exhibited the most optimal effect in immobilization of heavy metals in soil. The amounts of Cd, Pb, Cu, and Zn that were extracted by the toxicity characteristic leaching procedure (TCLP) decreased by 58.4%, 50.3%, 42.9%, and 24.7%, respectively. MgFe2O4-MMT can immobilize heavy metals through electrostatic interactions and cation exchange processes. Although, the immobilization of potentially toxic elements by MgFe2O4-MMT and biochar was inferior to that by MgFe2O4-MMT. The combined application of MgFe2O4-MMT and biochar dramatically increased the diversity and richness of the soil bacterial community. The Chao1 index for M3B7 treatment group was 1.7 and 1.2 times higher than that for the control and MgFe2O4-MMT treatment groups, respectively. The combination of biochar and MgFe2O4-MMT might be a cost-effective and ecological remediation approach for mild Pb and Cd contamination.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Yifu Li
- School of Hydraulic Engineering, Changsha University of Science & Technology, 410004, Changsha, PR China
| | - Jie Chen
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Juanyong Li
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Hai Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Ting Xiong
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
- Institute of Digital Intelligence and Smart Society, Hunan University of Technology and Business, Changsha, 410205, PR China
| |
Collapse
|
16
|
Ouyang P, Liang C, Liu F, Chen Q, Yan Z, Ran J, Mou S, Yuan Y, Wu X, Yang ST. Stimulating effects of reduced graphene oxide on the growth and nitrogen fixation activity of nitrogen-fixing bacterium Azotobacter chroococcum. CHEMOSPHERE 2022; 294:133702. [PMID: 35066073 DOI: 10.1016/j.chemosphere.2022.133702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Graphene has found important applications in various areas and hundred tons of graphene materials are annually produced. It is crucial to investigate both the negative and positive environmental effects of graphene materials to ensure the safe applications and develop environmental applications. In this study, we reported the stimulating effects of reduced graphene oxide (RGO) to nitrogen-fixing bacterium Azotobacter chroococcum. RGO stimulated the cell growth of A. chroococcum at 0.010-0.500 mg/mL according to the growth curves and the colony-forming unit (CFU) increases. RGO wrapped over the A. chroococcum cells without inducing ultrastructural changes. RGO decreased the leakage of cell membrane, but slight oxidative stress was observed in A. chroococcum. RGO promoted the nitrogen fixation activity of A. chroococcum at 0.5 mg/mL according to both isotope dilution method and acetylene reduction activity measurements. Consequently, the increases of soil nitrogen contents were evidenced, in particular about 30% increase of organic nitrogen occurred at 0.5 mg/mL of RGO. In addition, RGO might possibly benefit the plant growth through enhancing the indoleacetic acid production of A. chroococcum. These results highlighted the positive environmental effects of graphene materials to nitrogen-fixing bacteria in nitrogen cycle.
Collapse
Affiliation(s)
- Peng Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Chengzhuang Liang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Fangshi Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Qian Chen
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Ziqiao Yan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Junyao Ran
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Shiyu Mou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Xian Wu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Wen L, Liao B, Liu G, Tang H, Yang S, Wen H, Qin J. The Adsorption and Aging Process of Cadmium and Chromium in Soil Micro-aggregates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:975-990. [PMID: 35040182 DOI: 10.1002/etc.5290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The particle size and components of soil aggregates have played important roles in the migration and transformation of heavy metals. The present study focused on the adsorption behavior and aging characteristics of cadmium (Cd) and chromium (Cr) in various granular aggregates and soil components, which were studied by analyzing the adsorption isotherm, adsorption kinetics, and heavy metal speciation distribution. The results showed that, compared with other aggregates, clay aggregates (0-0.002 mm) had the strongest adsorption effect on Cd and Cr and that there was no significant positive correlation between the adsorption amount and the particle size of aggregates for Cd and Cr. In general, the influence of three components on Cd was organic matter > amorphous iron > free iron oxide, and the influence on Cr was free iron oxide > amorphous iron > organic matter. The adsorption isotherm showed that the correlation coefficient of the Langmuir model (R2 ) was higher than that of the Freundlich model (R2 ), indicating that the adsorption of Cd and Cr by soil aggregates can be well described by the Langmuir model with monolayer adsorption behavior. Kinetic adsorption studies showed that quasi-first-order kinetics and quasi-second-order kinetics were more consistent with the actual adsorption amounts of Cd and Cr in soil aggregates, respectively. At the same time, the forms of Cd and Cr gradually transformed from unstable to stable after entering the soil. After 60 days, Cd was mainly oxidized, and residual, and Cr was mainly reduced and residual. These results provide a theoretical basis for assessing the environmental risks of Cd and Cr and providing prevention and treatment methods. Environ Toxicol Chem 2022;41:975-990. © 2022 SETAC.
Collapse
Affiliation(s)
- Lijia Wen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Bing Liao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Haoran Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Shuang Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Huan Wen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Jie Qin
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, Sichuan, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Liang W, Wang G, Peng C, Tan J, Wan J, Sun P, Li Q, Ji X, Zhang Q, Wu Y, Zhang W. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127993. [PMID: 34920223 DOI: 10.1016/j.jhazmat.2021.127993] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution in soil and water has presented a new challenge for the environmental remediation technology. Nano zero valent iron (nZVI) has excellent adsorbent properties for heavy metals, and thus, exhibits great potential in environmental remediation. Used as supporting materials for nZVI, carbon-based materials, such as activated carbon (AC), biochar (BC), carbon nanotubes (CNTs), and graphene (GNs) with aromatic rings formed by carbon atoms as the skeleton, have a large specific surface area and porous structure. This paper provides a comprehensive review on the advancement of carbon-based nano zero valent iron (C-nZVI) particles for heavy metal remediation in soil and water. First, different types of carbon-based materials and their combination with nZVI, as well as the synthesis methods and common characterization techniques of C-nZVI, are reviewed. Second, the mechanisms for the interactions between contaminants and C-nZVI, including adsorption, reduction, and oxidation reactions are detailed. Third, the environmental factors affecting the remediation efficiency, such as pH, coexisting constituents, oxygen, contact time, and temperature, are highlighted. Finally, perspectives on the challenges for utilization of C-nZVI in the actual contaminated soil and water and on the long-term efficacy and safety evaluation of C-nZVI have been proposed for further development.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
19
|
Bravo D, Braissant O. Cadmium-tolerant bacteria: current trends and applications in agriculture. Lett Appl Microbiol 2022; 74:311-333. [PMID: 34714944 PMCID: PMC9299123 DOI: 10.1111/lam.13594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is considered a toxic heavy metal; nevertheless, its toxicity fluctuates for different organisms. Cadmium-tolerant bacteria (CdtB) are diverse and non-phylogenetically related. Because of their ecological importance these bacteria become particularly relevant when pollution occurs and where human health is impacted. The aim of this review is to show the significance, culturable diversity, metabolic detoxification mechanisms of CdtB and their current uses in several bioremediation processes applied to agricultural soils. Further discussion addressed the technological devices and the possible advantages of genetically modified CdtB for diagnostic purposes in the future.
Collapse
Affiliation(s)
- D. Bravo
- Laboratory of Soil Microbiology & CalorimetryCorporación Colombiana de Investigación Agropecuaria AGROSAVIAMosqueraColombia
| | - O. Braissant
- Department of Biomedical EngineeringFaculty of MedicineUniversity of BaselAllschwillSwitzerland
| |
Collapse
|
20
|
Tian Y, Yu D, Wang Y, Chen G. Performance and responses of aerobic granular sludge at different concentrations of graphene oxide after a single administered dose. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2210-2222. [PMID: 34038020 DOI: 10.1002/wer.1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
To investigate the impact of graphene oxide (GO) under different concentrations (0, 50, 100, 150, and 200 mg/L) on aerobic granular sludge (AGS) after a single administered dose, the performance of nitrogen removal, microbial enzymatic activity, extracellular polymeric substances (EPSs), and microbial community structure was analyzed in batch tests. The results showed that the impact of GO concentrations on AGS was dose- and time-dependent. Short-term GO exposure could accelerate the nitrification process of AGS, while relatively concentrations (≥100 mg/L) inhibited the process when present for extended periods of time. The microbial enzymatic activity showed similar tendency. The production of lactate dehydrogenase release (LDH) in 200 mg/L group was increased 48.04% and EPS contents decreased 30.06% compared to the control group at 30th day and showed that high concentrations of GO have toxic effects on AGS. The microbial bacteria responded differently to the stimulation of different concentrations of GO. PRACTITIONER POINTS: GO affected AGS system performance in concentration- and time-dependent manners. The nitrification rate of AGS increased in the short term and reversed over time. Long-term exposure to high GO concentrations caused toxicity to AGS. Different microorganisms had diverse responses to GO concentrations.
Collapse
Affiliation(s)
- Yuan Tian
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Yanyan Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
21
|
Evariste L, Braylé P, Mouchet F, Silvestre J, Gauthier L, Flahaut E, Pinelli E, Barret M. Graphene-Based Nanomaterials Modulate Internal Biofilm Interactions and Microbial Diversity. Front Microbiol 2021; 12:623853. [PMID: 33841352 PMCID: PMC8032548 DOI: 10.3389/fmicb.2021.623853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), possess unique properties triggering high expectations for the development of new technological applications and are forecasted to be produced at industrial-scale. This raises the question of potential adverse outcomes on living organisms and especially toward microorganisms constituting the basis of the trophic chain in ecosystems. However, investigations on GBMs toxicity were performed on various microorganisms using single species that are helpful to determine toxicity mechanisms but fail to predict the consequences of the observed effects at a larger organization scale. Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L−1, their effects on the diatom physiology, the structure, and the metabolism of bacterial communities were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L−1, influenced the taxonomic composition of diatom-associated bacterial consortium, and increased transiently the bacterial activity related to carbon cycling, with weak toxicity toward the diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial consortium, whereas it influenced more strongly the diatom physiology. When compared to the results from the literature using single species tests, our study suggests that diatoms benefited from diatom-bacteria interactions and that the biofilm was able to maintain or recover its carbon-related metabolic activities when exposed to GBMs.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Paul Braylé
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Silvestre
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Laury Gauthier
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Eric Pinelli
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
22
|
Lu SF, Wu YL, Chen Z, Li T, Shen C, Xuan LK, Xu L. Remediation of contaminated soil and groundwater using chemical reduction and solidification/stabilization method: a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12766-12779. [PMID: 33094457 DOI: 10.1007/s11356-020-11337-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
This study presents a systematic on-site remediation case involving both heavy metal and organic contaminants in soil and groundwater in a historically industrial-used site in Shanghai, China. Lab-scale experiments and field tests were conducted to determine the optimum parameters for the removal of contaminants in soil and groundwater. It has been found that the remediation goal of hexavalent chromium in soil could be achieved with the mass content of added sodium hydrosulfite and ferrous sulfate reaching 3% + 6%. The total chromium in the groundwater was effectively removed, when the mass ratio of sodium metabisulfite was not less than 3 g/L, and the added quick lime made pH value not less than 9. The concentrations of arsenic and 1,2-dichloropropane in the groundwater decreased evidently after extraction and mixing of groundwater. The pH and calcium chloride dosage added should be larger than 9.5 and 5 g/L, respectively, to remove phosphate in groundwater. The removal efficiency of those contaminants was examined and evaluated after the on-site remediation. The results demonstrated that it was feasible to use the chemical reduction and solidification/stabilization methods for the on-site ex situ remediation of this site, which could be referenced for the realistic remediation of similar sites.
Collapse
Affiliation(s)
- Shi-Feng Lu
- Department of Civil Engineering, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710049, Shaanxi, China
| | - Yu-Lin Wu
- SGIDI Engineering Consulting (Group) Co., Ltd., Shanghai Engineering Research Center of Geo-Environment, Shuifeng Road No. 38, Shanghai, 200093, China.
| | - Zhan Chen
- SGIDI Engineering Consulting (Group) Co., Ltd., Shanghai Engineering Research Center of Geo-Environment, Shuifeng Road No. 38, Shanghai, 200093, China
| | - Tao Li
- SGIDI Engineering Consulting (Group) Co., Ltd., Shanghai Engineering Research Center of Geo-Environment, Shuifeng Road No. 38, Shanghai, 200093, China
| | - Chao Shen
- SGIDI Engineering Consulting (Group) Co., Ltd., Shanghai Engineering Research Center of Geo-Environment, Shuifeng Road No. 38, Shanghai, 200093, China
| | - Lin-Kang Xuan
- SGIDI Engineering Consulting (Group) Co., Ltd., Shanghai Engineering Research Center of Geo-Environment, Shuifeng Road No. 38, Shanghai, 200093, China
| | - Ling Xu
- Department of Civil Engineering, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
23
|
Kedves A, Rónavári A, Kónya Z. Long-term effect of graphene oxide on the aerobic granular sludge wastewater treatment process. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104853. [DOI: 10.1016/j.jece.2020.104853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Gong X, Huang D, Liu Y, Zou D, Hu X, Zhou L, Wu Z, Yang Y, Xiao Z. Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111510. [PMID: 33120259 DOI: 10.1016/j.ecoenv.2020.111510] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 05/04/2023]
Abstract
Environment functional materials have been widely used, but whether their effects on the contaminated environment could facilitate phytoremediation is not yet well understood. In this study, starch stabilized nanoscale zerovalent iron (SN), multiwall carbon nanotubes (MW) and tea waste derived biochar (TB) were used to facilitate the phytoremediation of cadmium (Cd) contaminated sediments by Boehmeria nivea (L.) Gaudich. Results showed that 100 mg/kg SN, 500 mg/kg MW and 500 mg/kg TB facilitated phytoremediation, as evidenced by increasing Cd accumulation and/or promoting plant growth. These concentrations of materials increased the reducible fraction of Cd by 9-10% and decreased the oxidizable proportion of Cd by 48-52%, indicating the improvement of Cd bioavailability through converting the oxidizable Cd into reducible form. The activities of urease, phosphatase and catalase, which related to nutrient utilization and oxidative stress alleviation, increased by 20-24%, 25-26%, and 8-9% in the sediments treated with 500 mg/kg MW and 500 mg/kg TB, respectively. In addition, the 16S rRNA gene sequence results showed that these concentrations of materials changed the bacterial diversity. The abundance of Acidobacteria, Actinobacteria, Nitrospirae and Firmicutes were increased by some of the applied materials, which could promote plant growth, change Cd bioavailability and reduce Cd toxicity. These findings indicated that the applied environment functional materials could facilitate the phytoremediation of Cd contaminated environment by changing Cd fractions, sediments properties and bacterial community structure.
Collapse
Affiliation(s)
- Xiaomin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Xi Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Zhou
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhibin Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Yang Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, China
| |
Collapse
|
25
|
Mahmoudi E, Azizkhani S, Mohammad AW, Ng LY, Benamor A, Ang WL, Ba-Abbad M. Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide-silica composite as a multifunctional adsorbent. J Environ Sci (China) 2020; 98:151-160. [PMID: 33097147 DOI: 10.1016/j.jes.2020.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Sepehr Azizkhani
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Law Yong Ng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | | | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Muneer Ba-Abbad
- Gas Processing Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
26
|
Chen X, Zhao Y, Zhang C, Zhang D, Yao C, Meng Q, Zhao R, Wei Z. Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111109. [PMID: 32854897 DOI: 10.1016/j.jenvman.2020.111109] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals (HM) pollution is a major limitation to the application of composting products. Therefore, mitigating the toxicity of HM has attracted wide attention during composting. The toxicity of HM is mainly acted on microorganisms during composting, and the toxicity of different HM speciation is obviously various. There are many pathways to change the speciation to reduce the toxicity during composting. Therefore, in this review, the speciation distribution, toxicity mechanism and remediation ways of HM during composting were discussed in order to better solve HM pollution. The microbial remediation technology holds enormous potential to remediate for HM without damaging composting, however, it is hard to extract HM. The innovation of this review was to outline microbial remediation strategies for HM during composting based on two mechanisms of microbial remediation: extracellular adsorption and intracellular sequestration, to solve the problem how to extract microbial agents from the compost. Ultimately, a novel theoretical method of microbial remediation was proposed to remove HM from the compost.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuang Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin, 150080, China
| | - Changhao Yao
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Qingqing Meng
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Ran Zhao
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Silva LFO, Oliveira MLS, Gonçalves JO, Dotto GL. Identification of mercury and nanoparticles in roots with different oxidation states of an abandoned coal mine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24380-24386. [PMID: 32304064 DOI: 10.1007/s11356-020-08737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The morphology and composition of roots with different degrees of oxidation as a function of time were evaluated aiming to identify possible hazardous elements and nanoparticles. The roots were obtained from an abandoned coal mine located in the city of Criciúma, Santa Catarina, Brazil. From the roots, analyses were performed to identify nanoparticles (NPs) and ultrafine particles (UFPs), containing possible hazardous elements (PHEs) that cause potential environmental risks and impacts on human health. The identification of nanoscale materials requires greater robustness, so advanced integrated techniques have been used. The characterization of different types of roots was done by using focused ion beam (FIB), to evaluate nano-compound assemblies with high-resolution transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS). The results showed the presence of NPs containing Hg, Co, Cr, Ni, and V. The presence of these elements has increased consistently with the increase of C concentration in the roots, suggesting that the PHEs were gradually released from organic matter and inorganic minerals of coal. However, even with their decrease in roots, it was found that these elements still remained in the soil in significant quantities, even after 15 years of inactivation of the coal mine.
Collapse
Affiliation(s)
- Luis Felipe Oliveira Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Marcos Leandro Silva Oliveira
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- IMED Southern College, 304, Passo Fundo, RS, 99070-220, Brazil
| | - Janaína Oliveira Gonçalves
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
28
|
Kedves A, Sánta L, Balázs M, Kesserű P, Kiss I, Rónavári A, Kónya Z. Chronic responses of aerobic granules to the presence of graphene oxide in sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121905. [PMID: 31874760 DOI: 10.1016/j.jhazmat.2019.121905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
The chronic responses of aerobic granular sludge (AGS) to the presence of graphene oxide nanoparticles (GO NPs) (5, 15, 25, 35, 45, 55, 65, 75, 85, and 95 mg/L of GO NPs for 7 days) during biological wastewater treatment processes were investigated. Bioreactor performance, extracellular polymeric substance (EPS) secretion, and microbial community characteristics were assessed. The results showed that the effects of GO NPs on bioreactor performances were dependent on the dose applied and the duration for which it was applied. At concentrations of 55, 75, and 95 mg/L, GO NPs considerably inhibited the efficiency of organic matter and ammonia removal; however, nitrite and nitrate removal rates were unchanged. Biological phosphorus removal decreased even when only low concentrations of GO NPs were used. The secretion of EPS, which could alleviate the toxicity of GO NPs, also changed. The increased amount of nanoparticles also resulted in significant changes to the bacterial community structure. Based on the amplicon sequencing of 16S rRNA genes, Paracoccus sp., Klebsiella sp., and Acidovorax species were identified as the most tolerant strains.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Levente Sánta
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Margit Balázs
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Péter Kesserű
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - István Kiss
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary.
| |
Collapse
|
29
|
Xiong T, Yuan X, Wang H, Jiang L, Wu Z, Wang H, Cao X. Integrating the (311) facet of MnO 2 and the fuctional groups of poly(m-phenylenediamine) in core-shell MnO 2@poly(m-phenylenediamine) adsorbent to remove Pb ions from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122154. [PMID: 32004848 DOI: 10.1016/j.jhazmat.2020.122154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Exposed active facets and functional groups are critical for adsorbents obtaining excellent adsorption properties. In the present study, MnO2@PmPD with exposed active facets was successfully prepared. MnO2,which came from KMnO4 by the sacrificial reductant of PmPD, deposited on the surface of PmPD. Meanwhile, we combined experimental study and theoretical calculations to elucidate the distinct adsorption nature of MnO2@PmPD towards Pb. The surface adsorption of MnO2@PmPD toward Pb was achieved by the interaction between Pb and O atoms on the surface of MnO2. The DFT calculations revealed the facet-dependent adsorption of MnO2 toward Pb. The adsorption affinity of facets toward Pb was in the order of (311) > (111) > (400) > (440), and (311) facet was predominantly adsorption site for Pb. The analysis of partial density of state revealed the strong hybridization between the Pb-p state and O-p states of MnO2. Additionally, the pores of MnO2 provide the interstitial channels for the transportation of Pb into PmPD. The Pb entered the internal of MnO2@PmPD was bonded by the amine and newly formed carboxy groups on PmPD. This study not only develops an efficient adsorbent for heavy metals removing, but also throws light on exemplifying the interaction of Pb with MnO2 based materials.
Collapse
Affiliation(s)
- Ting Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Zhibin Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xuyang Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Department of Civil and Environment Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
30
|
Xiong T, Yuan X, Cao X, Wang H, Jiang L, Wu Z, Liu Y. Mechanistic insights into heavy metals affinity in magnetic MnO 2@Fe 3O 4/poly(m-phenylenediamine) core-shell adsorbent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110326. [PMID: 32066004 DOI: 10.1016/j.ecoenv.2020.110326] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Adsorption represents an attractive mean to remediate polluted water. Unfortunately, the surface positive charges, low surface area and complicated separation procedures inhibit the usability of poly (m-phenylenediamine) (PmPD) as an adsorbent for heavy metal removing. To overcome these drawbacks, a magnetic MnO2@Fe3O4/PmPD core-shell adsorbent was designed to remove heavy metals from water. The MnO2 shell, came from the redox reaction between KMnO4 and PmPD, increased the surface area and changed the surface electronegativity. MnO2@Fe3O4/PmPD could be easily separated from water. It showed a significant increase in heavy metals removal efficiency, with maximum capacities of 438.6 mg/g for Pb(II) and 121.5 mg/g for Cd(II), respectively. The affinity between heavy metals and MnO2@Fe3O4/PmPD were mainly due to electrostatic attraction, ion exchanges and coordinated interaction. Density functional theory (DFT) calculations further confirmed that Pb and Cd were bonded with O atoms. The calculated adsorption energy indicated that the (111) MnO2 facet presented stronger adsorption affinity toward Pb(II) than Cd(II). Additionally, FM150 (150 mg) could regenerate 22 L Pb(II) wastewater upon single passage through the filterable column with a flux of 20 mL/min. Thus, the present work demonstrates the promising potential of using MnO2@Fe3O4/PmPD for efficiently removing heavy metals from wastewater.
Collapse
Affiliation(s)
- Ting Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Xuyang Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Zhibin Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yue Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
31
|
Hou D, Zhang P, Zhang J, Zhou Y, Yang Y, Mao Q, Tsang DCW, Núñez-Delgado A, Luo L. Spatial variation of sediment bacterial community in an acid mine drainage contaminated area and surrounding river basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109542. [PMID: 31569024 DOI: 10.1016/j.jenvman.2019.109542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Microbial community is sensitive to the variations of environment, and it plays an important role in biogeochemical cycling in acid mine drainage (AMD). In this study, an integrated high-throughput absolute abundance quantification (iHAAQ) method was applied to study the dynamics of microbial community and the characteristics of microorganism. The results showed a significant difference in bacterial community with diversity being higher in watershed area. The main influential factors for bacterial communities in watershed were physicochemical properties (e.g., pH and potassium), while in mining areas the main driving factors were metals/metalloids (e.g., As, Zn, and Pb). Notably, the major functions of microbial community were transporter and ABC transporter in mining area, while two-component system was more abundant in watershed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis (level 3). In particular, Phyllobacterium, Bacteroides, and Sulfurovum were demonstrated to be potentially useful bacterial species for bioremediation, which should be a good choice for future studies. These results could facilitate our understanding of microbial diversity in different sediments of mining areas and identify microbial communities for bioremediation projects.
Collapse
Affiliation(s)
- Dongmei Hou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Pan Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Qiming Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Universidade de Santiago de Compostela, Galicia, Spain
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China.
| |
Collapse
|
32
|
Activated biochar with iron-loading and its application in removing Cr (VI) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123642] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Forstner C, Orton TG, Wang P, Kopittke PM, Dennis PG. Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:356-363. [PMID: 31125749 DOI: 10.1016/j.scitotenv.2019.05.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes (CNTs), reduced graphene oxide (rGO) and ammonia-functionalized graphene oxide (aGO), are nanomaterials with useful properties, such as high tensile strength, elasticity and thermal conductivity. However, following their use, their release into the environment is inevitable. While CNTs have been shown to influence soil bacterial diversity, albeit only at concentrations far exceeding predicted rates of release, the effects of rGO have only been examined using pure bacterial cultures, and those of aGO are unknown. Here, we investigated the effects of CNTs, rGO and aGO, at three time points (7, 14 and 30days), and over a range of concentrations (1ng, 1μg and 1mgkg dry soil-1), on soil bacterial diversity using 16S rRNA amplicon sequencing. Graphite was included to facilitate comparisons with a similar and naturally occurring carbon material, while the inclusion of GO allowed the effects of GO modification to be isolated. Bacterial community composition, but not alpha diversity, was altered by all treatments except the low GO, low rGO and high aGO treatments on day 14 only. In all cases, the nanomaterials led to shifts in community composition that were of similar magnitude to those induced by graphite and GO, albeit with differences in the taxa affected. Our study highlights that carbon nanomaterials can induce changes in soil bacterial diversity, even at doses that are environmentally realistic.
Collapse
Affiliation(s)
- Christian Forstner
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Thomas G Orton
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
34
|
Li L, Lin Q, Li X, Li T, He X, Li D, Tao Y. Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas chenduensis. Appl Microbiol Biotechnol 2019; 103:8203-8214. [PMID: 31396678 DOI: 10.1007/s00253-019-10059-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Microbial bioremediation of heavy metal-contaminated soil is a potential technique to reduce heavy metals in crop plants. However, the dynamics and roles of the local microbiota in bioremediation of heavy metal-contaminated soil following microbial application are rarely reported. In this study, we used Pseudomonas chenduensis strain MBR for bioremediation of Cd-contaminated paddy soil and investigated its effects on the dynamics of the local soil bacterial community and Cd accumulation in rice. Cd accumulation in rice grains and roots were significantly reduced by the addition of the strain MBR. The addition of the strain MBR caused greater changes in bacterial communities in rhizosphere soil than in bulk soil. MBR enhanced the roles of microbial communities in transformation of Cd fractions, especially in rhizosphere soil. The strain MBR likely regulated abundant subcommunities more than rare subcommunities to improve Cd bioremediation, especially in rhizosphere soil. Consequently, the dynamics and functional roles of the local microbial communities differed significantly during bioremediation between abundant and rare subcommunities and between rhizosphere soil and bulk soil. This study provides new insight into the microbiota-related mechanisms underlying bioremediation.
Collapse
Affiliation(s)
- Lingjuan Li
- Key Laboratory of Environmental and Applied Microbiology, CAS & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiang Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology & SoWa Research Infrastructure, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Tiezhu Li
- Key Laboratory of Environmental and Applied Microbiology, CAS & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaohong He
- Key Laboratory of Environmental and Applied Microbiology, CAS & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, CAS & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yong Tao
- Key Laboratory of Environmental and Applied Microbiology, CAS & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
35
|
Wang J, Zhang R, Huo Y, Ai Y, Gu P, Wang X, Li Q, Yu S, Chen Y, Yu Z, Chen J, Wang X. Efficient elimination of Cr(VI) from aqueous solutions using sodium dodecyl sulfate intercalated molybdenum disulfide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:251-262. [PMID: 30903881 DOI: 10.1016/j.ecoenv.2019.03.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 05/22/2023]
Abstract
In recent years, the heavy metal ions have been immoderately released into the ecological system and result in potential hazardous to public health. Herein, the sodium dodecyl sulfate intercalated molybdenum disulfide (SDS-MoS2) was synthesized for the adsorption of Cr(VI). The SDS molecule was flat and vertically intercalated into the interlayer of MoS2, which was further evidenced by density functional theory calculations. The capture of Cr(VI) on the sphere-like SDS-MoS2 relied on solution pH. The retention of Cr(VI) on SDS-MoS2 attained 63.92 mg/g, and the removal process was endothermic, spontaneous and increased with temperature increasing. The main removal mechanism of Cr(VI) onto SDS-MoS2 was Cr(VI) fixing on the surface of the composites by chemisorption involving possible Cr-S coordination bonding. More importantly, Cr(VI) passed into the increased interlamination and reacted at the interlamination of SDS-MoS2, which was further proved at molecular level. The results can provide critical information for the application of SDS-MoS2 in Cr(VI) elimination or other kinds of pollutants removal in natural aquatic environment.
Collapse
Affiliation(s)
- Jian Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ruihong Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yingzhong Huo
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Pengcheng Gu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Qian Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yuantao Chen
- Department of Chemistry, Qinghai Normal University, 810008, Xining, Qinghai, PR China
| | - Zhimin Yu
- Department of Biology and Environmental Engineering, Hefei University, Hefei, 230000, PR China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
36
|
Forstner C, Orton TG, Skarshewski A, Wang P, Kopittke PM, Dennis PG. Effects of graphene oxide and graphite on soil bacterial and fungal diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:140-148. [PMID: 30928743 DOI: 10.1016/j.scitotenv.2019.03.360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 05/25/2023]
Abstract
Graphene oxide (GO) is an oxidized form of graphene that is relatively cheap and easy to produce. This has heralded its widespread use in a range of industries, with its likelihood of release into the environment increasing accordingly. In pure culture, GO has been shown to influence bacteria and fungi, but its effects on environmental microbial communities remain poorly characterized, despite the important ecosystem services that these organisms underpin. Here, we characterized the effects of GO and graphite, over time (7, 14 and 30 days) and at three concentrations (1 ng, 1 μg and 1 mg kg dry soil-1), on soil bacterial and fungal diversity using 16S rRNA and ITS2 gene amplicon sequencing. Graphite was included as a reference material as it is widely distributed in the environment. Neither GO or graphite had significant effects on the alpha diversity of microbial communities. The composition of bacterial and fungal communities, however, was significantly influenced by both materials at all doses. With the exception of the lowest GO dose on day 14, these effects were apparent for all treatments over the course of the experiment. Nonetheless, the effects of GO and graphite were of similar magnitude, albeit with some differences in the taxa affected.
Collapse
Affiliation(s)
- Christian Forstner
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Thomas G Orton
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Adam Skarshewski
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
37
|
Kong X, Jin D, Tai X, Yu H, Duan G, Yan X, Pan J, Song J, Deng Y. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:691-700. [PMID: 30849609 DOI: 10.1016/j.scitotenv.2019.02.385] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Bioremediation of organic pollutants has been identified as an economically efficient and environmentally friendly method. Here, a pot experiment was conducted to evaluate the bioremediation efficiency of dibutyl phthalate (DBP) by Gordonia phthalatica sp. nov. QH-11 in agricultural soils, along with the effect of this exogenous organism on the native microbial community and ecosystem functions during the bioremediation process. The results showed that inoculation with strain QH-11 accelerated DBP degradation in the soil and decreased DBP accumulation in plants, thereby reducing the health risks associated with vegetables grown in those soils. High-throughput sequencing demonstrated that both DBP contamination and the bioremediation process significantly altered prokaryotic community composition, structure, and network interactions; however, these effects were greatly reduced after 30 d. Dibutyl phthalate affected the prokaryotic community by influencing soil properties rather than directly impacting on microorganisms. In addition, ecosystem functions, like the nitrogen cycle, were significantly altered. Contamination with DBP promoted nitrogen fixation and the denitrification processes while inhibiting nitrification. Bioremediation may mitigate some of the changes to nitrogen cycling, helping to maintain the balance of prokaryotic community function. According to this study, bioremediation through highly efficient degradation bacteria may be a safe and promising method for reducing PAEs contamination in soil-vegetable systems.
Collapse
Affiliation(s)
- Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Tai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Hao Yu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Junhua Song
- Institute for the Control of Agrochemicals, China Ministry of Agriculture and Rural Affairs, Beijing 100026, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
39
|
Yuan X, Xiong T, Wang H, Wu Z, Jiang L, Zeng G, Li Y. Immobilization of heavy metals in two contaminated soils using a modified magnesium silicate stabilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32562-32571. [PMID: 30242649 DOI: 10.1007/s11356-018-3140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Heavy metal contamination is a severe environmental issue over the world. A lot of work has been done to develop effective stabilizers. In the present work, hydrothermal carbon-modified magnesium silicate (MS-C) was synthesized and used for the remediation of two heavy metal-polluted soils with different physicochemical properties. Soil samples were exposed to different doses of MS-C over 60 days (1, 3, and 5 wt%). The toxicity characteristic leaching procedure (TCLP) and the community bureau of reference sequential extraction procedure (BCR) were used to evaluate the remediation efficiency. The bioavailability of heavy metals in both soils was reduced by 20-86.7%, and the toxicity of heavy metals was reduced by 26.6-73.2% after MS-C added. Meanwhile, soil pH and water soluble organic carbon (WSOC) were increased. In addition, soil microbial biomass was increased, which indicated the improvement of soil condition. The immobilization of heavy metals was mainly caused by electrostatic attraction and cation exchange between MS-C and heavy metals. The significantly negative correlation between extractable heavy metals and pH/WSOC indicated the positive role of pH/WSOC in metal stabilization. Thus, this new stabilizer holds great application potentials for both single and multi-metal-contaminated soil remediation. ᅟ Graphical abstract.
Collapse
Affiliation(s)
- Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Ting Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People's Republic of China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhibin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People's Republic of China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yue Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
40
|
Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D. Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102168. [PMID: 30279389 PMCID: PMC6211031 DOI: 10.3390/ijerph15102168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/09/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023]
Abstract
Increased exploitation and use of petroleum resources is leading to increased risk of petroleum contamination of soil and groundwater. Although phytoremediation is a widely-used and cost-effective method for rehabilitating soils polluted by petroleum, bacterial community structure and diversity in soils undergoing phytoremediation is poorly understood. We investigate bacterial community response to phytoremediation in two distinct petroleum-contaminated soils (add prepared petroleum-contaminated soils) from northwest China, Weihe Terrace soil and silty loam from loess tableland. High-throughput sequencing technology was used to compare the bacterial communities in 24 different samples, yielding 18,670 operational taxonomic units (OTUs). The dominant bacterial groups, Proteobacteria (31.92%), Actinobacteria (16.67%), Acidobacteria (13.29%) and Bacteroidetes (6.58%), increased with increasing petroleum concentration from 3000 mg/kg–10,000 mg/kg, while Crenarchaeota (13.58%) and Chloroflexi (4.7%) decreased. At the order level, RB41, Actinomycetales, Cytophagales, envOPS12, Rhodospirillales, MND1 and Xanthomonadales, except Nitrososphaerales, were dominant in Weihe Terrace soil. Bacterial community structure and diversity in the two soils were significantly different at similar petroleum concentrations. In addition, the dominant genera were affected by available nitrogen, which is strongly associated with the plants used for remediation. Overall, the bacterial community structure and diversity were markedly different in the two soils, depending on the species of plants used and the petroleum concentration.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
- School of Biological and Environmental, Xi'an University, Xi'an 710065, Shaanxi, China.
- Engineering Research Center for Groundwater and Eco-Environment of Shaanxi Province, Xi'an 710054, Shaanxi, China.
| | - Yu Ji
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Chunrong Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Pingping Luo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Yuan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Daniel Nover
- School of Engineering, University of California-Merced, Merced, CA 95343, USA.
| |
Collapse
|
41
|
Zhang Z, Bi X, Li X, Zhao Q, Chen H. Schwertmannite: occurrence, properties, synthesis and application in environmental remediation. RSC Adv 2018; 8:33583-33599. [PMID: 35548828 PMCID: PMC9086891 DOI: 10.1039/c8ra06025h] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022] Open
Abstract
Schwertmannite is a typical iron-derived mineral, which was originally discovered in acid mine drainings and subsequently synthesized in the laboratory. Increasingly, it is seen as having considerable potential as an adsorbent material, which could be used for environmental remediation (such as the treatment/remediation of arsenic, chromium, antimony, fluoride, and organic contaminants). This study reviews current developments, mainly in the preparation, structure, and water treatment of Schwertmannite. Several key issues are discussed in detail, such as synthetic strategy, the structure-property relationships, potential environmental applications, and related mechanisms. Soil remediation by schwertmannite is compared to water treatment, and its application is further evaluated. Finally, the methodologies for water treatment and soil remediation using schwertmannite are also taken into consideration from an environmental point of view.
Collapse
Affiliation(s)
- Zhuo Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China
| | - Xue Bi
- Beijing Junmei Environmental Technology Co., Ltd. Room 1505. Tower B, New Logo International Tower, No. 18A, Zhongguancun South Street, Handian District Beijing, 100081 China
| | - Xintong Li
- Beijing Junmei Environmental Technology Co., Ltd. Room 1505. Tower B, New Logo International Tower, No. 18A, Zhongguancun South Street, Handian District Beijing, 100081 China
| | - Qiancheng Zhao
- Beijing Junmei Environmental Technology Co., Ltd. Room 1505. Tower B, New Logo International Tower, No. 18A, Zhongguancun South Street, Handian District Beijing, 100081 China
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources & Environmental Engineering, School of Water Resources and Environment, China University of Geosciences Beijing 100083 China
| |
Collapse
|
42
|
Effects of light-oxygen conditions on microbial community of photosynthetic bacteria during treating high-ammonia wastewater. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Hu Q, Zeng WA, Li F, Huang Y, Gu S, Cai H, Zeng M, Li Q, Tan L. Effect of Nano Zeolite on the Transformation of Cadmium Speciation and Its Uptake by Tobacco in Cadmium-contaminated Soil. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe study was aimed at exploring the effects of applying ordinary and nano zeolite on the soil pH, soil available cadmium (Cd) content, soil Cd speciation and Cd uptakes by tobacco using pot experiment with simulated Cd contaminated soil indoors. The results showed that soil pH increased and available Cd content reduced with the amount of ordinary and nano zeolite increasing. Compared with the control, the application of ordinary and nano zeolite increased soil pH at 0.47 - 1.05 and 0.73 - 1.57, respectively, and reduced the available Cd contents at 19.3% - 32.7% and 23.2% - 40.5%, respectively. In addition, soil pH had significantly negative correlation with available Cd content in each treatment (p<0.05). Nano zeolite could more effectively reduce Cd contents of all parts of tobacco than ordinary zeolite with the same amount treatments, and Cd content in all parts of tobacco plants was positively correlated with soil available Cd content. The content of exchangeable Cd (EXE) in soil decreased to some extent with different zeolite treatments, application of nano zeolite was better than that of application of ordinary zeolite in reducing Cd bioavailability and transferability. Overall, application of nano zeolite has an advantage over ordinary zeolite in reducing available Cd content in soil and Cd content in tobacco.
Collapse
Affiliation(s)
- Qiulong Hu
- Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei-ai Zeng
- Changsha Tobacco Company of Hunan Province, Changsha, Hunan 410011, China
| | - Fan Li
- Changsha Tobacco Company of Hunan Province, Changsha, Hunan 410011, China
| | - Yanning Huang
- Institute of Agricultural Bio-Resources, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Songsong Gu
- Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hailin Cai
- Changsha Tobacco Company of Hunan Province, Changsha, Hunan 410011, China
| | - Min Zeng
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiang Li
- Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lin Tan
- Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
44
|
Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q. Bacterial Communities in Riparian Sediments: A Large-Scale Longitudinal Distribution Pattern and Response to Dam Construction. Front Microbiol 2018; 9:999. [PMID: 29867892 PMCID: PMC5964209 DOI: 10.3389/fmicb.2018.00999] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/27/2018] [Indexed: 11/15/2022] Open
Abstract
Sediment microbes play major roles in riparian ecosystems; however, little is known about their longitudinal distribution pattern and their responses to dam construction, the most severe human disturbance in river basins. Here, we investigated the variability of sediment bacterial communities along a large-scale longitudinal gradient and between dam-controlled and dam-affected sites in riparian zone of the Lancang River, China. The abundance, activity and diversity of sediment bacteria gradually increased in a downstream direction, but were significantly lower in the dam-affected sites than in the dam-controlled sites. The bacterial community compositions differed significantly between the upper-middle-reach and downstream sites at all control sites, and also between the dam-affected and dam-controlled sites. In the cascade dam area, the relative importance of spatial distance and environmental heterogeneity for bacterial distribution differed between the dam-controlled and dam-affected sites. Spatial distance was the primary cause of variations in bacterial community in dam-controlled site. By contrast, the environmental heterogeneity had more control over the bacterial communities than did the spatial distance in dam-affected site. Network analysis showed that the bacterial community in the dam-affected sites had lower connectivity and stability when compared with that in dam-controlled sites. These results suggest the distinct variations in sediment bacterial community in dam-affected sites, which could enhance our understanding of potential ecological effects caused by dam construction.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
45
|
Jiang D, Zeng G, Huang D, Chen M, Zhang C, Huang C, Wan J. Remediation of contaminated soils by enhanced nanoscale zero valent iron. ENVIRONMENTAL RESEARCH 2018; 163:217-227. [PMID: 29459304 DOI: 10.1016/j.envres.2018.01.030] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The use of nanoscale zero valent iron (nZVI) for in situ remediation of soil contamination caused by heavy metals and organic pollutants has drawn great concern, primarily owing to its potential for excellent activity, low cost and low toxicity. This reviews considers recent advances in our understanding of the role of nZVI and enhanced nZVI strategy in the remediation of heavy metals and persistent organic contaminants polluted soil. The performance, the migration and transformation of nZVI affected by the soil physical and chemical conditions are summarized. However, the addition of nZVI inevitably disturbs the soil ecosystem, thus the impacts of nZVI on soil organisms are discussed. In order to further investigate the remediation effect of nZVI, physical, chemical and biological method combination with nZVI was developed to enhance the performance of nZVI. From a high efficient and environmentally friendly perspective, biological method enhanced nZVI technology will be future research needs. Possible improvement of nZVI-based materials and potential areas for further applications in soil remediation are also proposed.
Collapse
Affiliation(s)
- Danni Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|