1
|
Shen H, Zhang Q, Li M, Tan X, Dong X, Wang H. Research on intensive nitrogen removal of municipal sewage by mainstream anaerobic ammonia oxidation process. CHEMOSPHERE 2024; 367:143622. [PMID: 39461438 DOI: 10.1016/j.chemosphere.2024.143622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO3--N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.
Collapse
Affiliation(s)
- Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xibei Tan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoqian Dong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Torres MJ, Bellido-Pedraza CM, Llamas A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life (Basel) 2024; 14:940. [PMID: 39202682 PMCID: PMC11355400 DOI: 10.3390/life14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas-bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas-bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential.
Collapse
Affiliation(s)
- María J. Torres
- Correspondence: (M.J.T.); (A.L.); Tel.: +34-957-218352 (M.J.T. & A.L.)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
4
|
Iman Shayan S, Youssef S, van der Steen P, Zhang Q, Ergas SJ. Algal-bacterial shortcut nitrogen removal model with seasonal light variations. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1725-1740. [PMID: 38619899 DOI: 10.2166/wst.2024.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.
Collapse
Affiliation(s)
- Sahand Iman Shayan
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Avenue ENG 030, Tampa, FL 33620, USA
| | - Steve Youssef
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Avenue ENG 030, Tampa, FL 33620, USA
| | - Peter van der Steen
- Department of Environmental Engineering and Water Technology, IHE - Delft, P.O. Box 3015, Delft, DA 2601, The Netherlands
| | - Qiong Zhang
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Avenue ENG 030, Tampa, FL 33620, USA
| | - Sarina J Ergas
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Avenue ENG 030, Tampa, FL 33620, USA E-mail:
| |
Collapse
|
5
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
6
|
Segredo-Morales E, González E, Figueira A, Díaz O. A bibliometric analysis of published literature on membrane photobioreactors for wastewater treatment from 2000 to 2022. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1724-1749. [PMID: 37830994 PMCID: wst_2023_295 DOI: 10.2166/wst.2023.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the focus on limiting greenhouse gas emissions, microalgae-based technology is a promising approach for wastewater treatment, combining cost-effective operation, nutrient recovery, and assimilation of CO2. In addition, membrane technology supports process intensification and wastewater reclamation. Based on a bibliometric analysis, this paper evaluated the literature on membrane photobioreactors to highlight promising areas for future research. Specifically, efforts should be made on advancing knowledge of interactions between algae and bacteria, analysing different strategies for membrane fouling control and determining the conditions for the most cost-effective operation. The Scopus® database was used to select documents from 2000 to 2022. A set of 126 documents were found. China is the country with the highest number of publications, whereas the most productive researchers belong to the Universitat Politècnica de València (Spain). The analysis of 50 selected articles provides a summary of the main parameters investigated, that focus in increasing the biomass productivity and nutrient removal. In addition, microalgal-bacterial membrane photobioreactor seems to have the greatest commercialisation potential. S-curve fitting confirms that this technology is still in its growth stage.
Collapse
Affiliation(s)
- Elisabet Segredo-Morales
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España E-mail:
| | - Enrique González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España
| | - Andrés Figueira
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España
| | - Oliver Díaz
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España
| |
Collapse
|
7
|
Carvalho VCF, Fradinho JC, Oehmen A, Reis MAM. Long term operation of a phototrophic biological nutrient removal system: Impact of CO 2 concentration and light exposure on process performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117490. [PMID: 36801686 DOI: 10.1016/j.jenvman.2023.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The utilization of non-aerated microalgae-bacterial consortia for phototrophic biological nutrient removal (photo-BNR) has emerged as an alternative to conventional wastewater treatment. Photo-BNR systems are operated under transient illumination, with alternating dark-anaerobic, light-aerobic and dark-anoxic conditions. A deep understanding of the impact of operational parameters on the microbial consortium and respective nutrient removal efficiency in photo-BNR systems is required. The present study evaluates, for the first time, the long-term operation (260 days) of a photo-BNR system, fed with a COD:N:P mass ratio of 7.5:1:1, to understand its operational limitations. In particular, different CO2 concentrations in the feed (between 22 and 60 mg C/L of Na2CO3) and variations of light exposure (from 2.75 h to 5.25 h per 8 h cycle) were studied to determine their impact on key parameters, like oxygen production and availability of polyhydroxyalkanoates (PHA), on the performance of anoxic denitrification by polyphosphate accumulating organisms. Results indicate that oxygen production was more dependent on the light availability than on the CO2 concentration. Also, under operational conditions with a COD:Na2CO3 ratio of 8.3 mg COD/mg C and an average light availability of 5.4 ± 1.3 W h/g TSS, no internal PHA limitation was observed, and 95 ± 7%, 92 ± 5% and 86 ± 5% of removal efficiency could be achieved for phosphorus, ammonia and total nitrogen, respectively. 81 ± 1.7% of the ammonia was assimilated into the microbial biomass and 19 ± 1.7% was nitrified, showing that biomass assimilation was the main N removal mechanism taking place in the bioreactor. Overall, the photo-BNR system presented a good settling capacity (SVI ∼60 mL/g TSS) and was able to remove 38 ± 3.3 mg P/L and 33 ± 1.7 mg N/L, highlighting its potential for achieving wastewater treatment without the need of aeration.
Collapse
Affiliation(s)
- V C F Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - J C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| | - A Oehmen
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - M A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| |
Collapse
|
8
|
Nagabalaji V, Maharaja P, Nishanthi R, Sathish G, Suthanthararajan R, Srinivasan SV. Effect of co-culturing bacteria and microalgae and influence of inoculum ratio during the biological treatment of tannery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118008. [PMID: 37146488 DOI: 10.1016/j.jenvman.2023.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
This present investigation is carried out to study the effect of algal and bacterial inoculum concentrations on the removal of organic pollutants and nutrients from the tannery effluent by the combined symbiotic treatment process. The bacterial and microalgal consortia was developed in laboratory setup and mixed together to perform this study. The Influence of algae and bacteria inoculum concentrations on the removal of pollutants such as Chemical Oxygen Demand (COD) and Total Kjeldahl Nitrogen (TKN) were studied using statistical optimization through Response surface methodology. For the design of experimental set up and optimization, full factorial Central composite design was used. The profiles of pH, Dissolved Oxygen (DO) and nitrate were also monitored and studied. The inoculum concentrations of microalgae and bacteria showed significant effect on Co-culturing on COD, TKN and nitrate removals as major response. The linear effect of bacterial inoculum has positive dominant influence on COD and TKN removal efficiencies. Nitrate utilization by microalgae increases with the increase in microalgal inoculum concentration. The maximum removal efficiencies of COD and TKN with 89.9% and 80.9% were obtained at optimum bacterial and algal inoculum concentrations of 6.7 g/L and 8.0 g/L respectively. These outcomes of this study are immensely favorable for maximizing the COD and nitrogen (nutrients) removal capabilities of microalgae-bacterial consortia in tannery effluent.
Collapse
Affiliation(s)
- Velmurugan Nagabalaji
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| | - Pounsamy Maharaja
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | - Rajendiran Nishanthi
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | - Ganesan Sathish
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | | | - Shanmugham Venkatachalam Srinivasan
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Stable year-round nutrients removal and recovery from wastewater by technical-scale Algal Turf Scrubber (ATS). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Bhatt P, Bhandari G, Turco RF, Aminikhoei Z, Bhatt K, Simsek H. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119688. [PMID: 35793713 DOI: 10.1016/j.envpol.2022.119688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, Uttarakhand, India
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA
| | - Zahra Aminikhoei
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Fisheries Research Center, Chabahar, Iran
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
11
|
Gan X, Klose H, Reinecke D. Optimizing nutrient removal and biomass production of the Algal Turf Scrubber (ATS) under variable cultivation conditions by using Response Surface Methodology. Front Bioeng Biotechnol 2022; 10:962719. [PMID: 36147532 PMCID: PMC9486005 DOI: 10.3389/fbioe.2022.962719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigated and optimized the nutrient remediation efficiency of a simple low-cost algal biofilm reactor, the algal turf scrubber (ATS), for wastewater treatment. Combined effects of three cultivation variables—total inorganic carbon, nitrogen-to-phosphorous (N:P) ratio, and light intensity—were examined. The ATS nutrient removal efficiency and biomass productivity were analyzed considering the response surface methodology (RSM). The maximum removal rates of total P and N were 8.3 and 19.1 mg L−1 d−1, respectively. As much as 99% of total P and 100% of total N were removed within 7 days. Over the same period, the dissolved oxygen concentration and pH value of the medium increased. The optimal growth conditions for simultaneous maximum P and N removal and biomass productivity were identified. Our RSM-based optimization results provide new insights into the combined effect of nutrient and light availability on the ATS remediation efficiency and biomass productivity.
Collapse
Affiliation(s)
- Xinyu Gan
- IBG2-Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Holger Klose
- IBG2-Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Diana Reinecke
- IBG2-Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- *Correspondence: Diana Reinecke,
| |
Collapse
|
12
|
Mu R, Jia Y, Qi F, Guo Q, Qin X, Ma G, Meng Q, Yu G. Microalgal-bacterial consortia for efficient wastewater treatment: Optimization using response surface methodology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10756. [PMID: 35918066 DOI: 10.1002/wer.10756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The performance of microalgal-bacterial consortia in wastewater treatment and biomass production needs to be further optimized to meet increasingly stringent effluent standards and operating costs. Besides, due to uncontrollability of ambient conditions, it is generally believed that operating conditions (e.g., aeration) respond to ambient conditions (e.g., illumination). Therefore, response surface methodology (RSM) based on Box-Behnken design was used in this study to analyze the removal of chemical oxygen demand (COD), NH3 -N and TP, and algal biomass of the microalgal-bacterial consortia within 48 h. The results showed that under medium illumination intensity (5000 lx), photoperiod (12:12) and aeration rate (0.55 L min -1 ), the removal efficiency of COD, NH3 -N and TP was the highest, and the maximal biomass growth rates were 95.43%, 95.49%, 89.42% and 99.63%, respectively. However, as the limited critical removal requirements of TP, the effluent standards can only be achieved within the small illumination intensity and photoperiod available range, even under medium aeration conditions, which means that under fixed operating conditions, the effective operation range will be very limited. In addition, based on RSM and differential equation analysis, the further study indicated that the effective treatment range can be greatly expanded within aeration responding, which meets the discharge standard of pollutants in China. PRACTITIONER POINTS: Illumination was responded by aeration for optimizing performance of microalgal-bacterial consortium for wastewater treatment and biomass productivity. The strategy of optimization was based on response surface methodology. The maximum effect on wastewater treatment and biomass productivity was based on partial differential equations and quadratic inhomogeneous equations. Limited to critical TP-removal requirements, effluent standards can meet only in the small-usable range of illumination, under medium aeration.
Collapse
Affiliation(s)
- Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Qingyang Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xiaowen Qin
- Shandong Institute of Metrology, Jinan, China
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Qianya Meng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Gejiang Yu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
13
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
14
|
A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants. Processes (Basel) 2022. [DOI: 10.3390/pr10020399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Algae-based wastewater treatment technologies are promising green technologies with huge economical potential and environmental co-benefits. However, despite the immense research, work, and achievement, no publications were found wherein these technologies have been successfully applied in an operational environment for nitrogen and phosphorus removal of secondary treated effluent in municipal wastewater treatment plants. Based on a literature review and targeted comprehensive analysis, the paper seeks to identify the main reasons for this. The reliability (considering inlet wastewater quality variations, operating conditions and process control, algae harvesting method, and produced biomass) as well as the technology readiness level for five types of reactors are discussed. The review shows that the reactors with a higher level of control over the technological parameters are more reliable but algal post-treatment harvesting and additional costs are barriers for their deployment. The least reliable systems continue to be attractive for research due to the non-complex operation and relieved expenditure costs. The rotating biofilm systems are currently undertaking serious development due to their promising features. Among the remaining research gaps and challenges for all the reactor types are the identification of the optimal algal strains, establishment of technological parameters, overcoming seasonal variations in the effluent’s quality, and biomass harvesting.
Collapse
|
15
|
Mojiri A, Zhou JL, Ratnaweera H, Rezania S, Nazari V M. Pharmaceuticals and personal care products in aquatic environments and their removal by algae-based systems. CHEMOSPHERE 2022; 288:132580. [PMID: 34687686 DOI: 10.1016/j.chemosphere.2021.132580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The consumption of pharmaceuticals and personal care products (PPCPs) has been widely increasing, yet up to 90-95% of PPCPs consumed by human are excreted unmetabolized. Moreover, the most of PPCPs cannot be fully removed by wastewater treatment plants (WWTPs), which release PPCPs to natural water bodies, affecting aquatic ecosystems and potentially humans. This study sought to review the occurrence of PPCPs in natural water bodies globally, and assess the effects of important factors on the fluxes of pollutants into receiving waterways. The highest ibuprofen concentration (3738 ng/L) in tap water was reported in Nigeria, and the highest naproxen concentration (37,700 ng/L) was reported in groundwater wells in Penn State, USA. Moreover, the PPCPs have affected aquatic organisms such as fish. For instance, up to 24.4 × 103 ng/g of atenolol was detected in P. lineatus. Amongst different technologies to eliminate PPCPs, algae-based systems are environmentally friendly and effective because of the photosynthetic ability of algae to absorb CO2 and their flexibility to grow in different wastewater. Up to 99% of triclosan and less than 10% of trimethoprim were removed by Nannochloris sp., green algae. Moreover, variable concentrations of PPCPs might adversely affect the growth and production of algae. The exposure of algae to high concentrations of PPCPs can reduce the content of chlorophyll and protein due to producing reactive oxygen species (ROS), and affecting expression of some genes in chlorophyll (rbcL, psbA, psaB and psbc).
Collapse
Affiliation(s)
- Amin Mojiri
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway; Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mansoureh Nazari V
- School of Pharmacy, University of 17 August 1945, Jakarta, 14350, Indonesia
| |
Collapse
|
16
|
Dayana Priyadharshini S, Suresh Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117989. [PMID: 34433126 DOI: 10.1016/j.envpol.2021.117989] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems. In comparison to the conventional method of remediation, there are opportunities to commercially viable businesses interest with phycoremediation, thus by achieving cost reductions and renewable bioenergy options. Phycoremediation is an intriguing stage for treating wastewater since it provides tertiary bio-treatment while producing potentially valuable biomass that may be used for a variety of applications. Furthermore, the phycoremediation provides the ability to remove heavy metals as well as harmful organic substances, without producing secondary contamination. In this review, the role of microalgae in treating different wastewaters and the process parameters affecting the treatment and future scope of research have been discussed. Though several algae are employed for wastewater treatment, species of the genera Chlamydomonas, Chlorella, and Scenedesmus are extensively utilized. Interestingly, there is a vast scope for employing algal species with high flocculation capacity and adsorption mechanisms for the elimination of microplastics. In addition, the algal biomass generated during phycoremediation has been found to possess high protein and lipid contents, promising their exploitation in biofuel, food and animal feed industries.
Collapse
Affiliation(s)
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
17
|
Cui H, Yu J, Zhu X, Cui Y, Ji C, Zhang C, Xue J, Jia X, Qin S, Li R. Advanced treatment of chicken farm flushing wastewater by integrating Fenton oxidation and algal cultivation process for algal growth and nutrients removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113543. [PMID: 34392095 DOI: 10.1016/j.jenvman.2021.113543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Algae based wastewater treatment has been considered as the most promising win-win strategy for nutrients removal and biomass accumulation. However, the poor linking between traditional wastewater treatment and algal cultivation limits the achievement of this goal. In this study, a novel combination of Fenton oxidation and algal cultivation (CFOAC) system was investigated for the treatment of chicken farm flushing wastewater (CFFW). Fenton oxidation (FO) was adopted to reduce the excessive ammonia nitrogen, which might inhibit the algal growth. The results showed that single FO pretreatment removed 70.5 %, 96.7 %, 86.1 %, and 96.2 % of TN, TAN, TP, and COD, respectively. The highest biomass (235.8 mg/L/d) and lipid (77.3 mg/L/d) productivities were achieved on optimized CFOAC system after 7 days batch cultivation. Accordingly, the nutrients removal efficiencies increased to almost 100 %. Further fatty acid profile analysis showed that algae grown on optimal CFOAC system accumulated a high level of total lipids (32.8 %) with C16-C18 fatty acid as the most abundant compositions (accounting for over 60.6 %), which were propitious to biodiesel production. In addition, this CFOAC system was magnified from 1 L flask to 50 L horizontal pipe photobioreactor (HPPB) in semi-continuously culture under optimal conditions. The average biomass and lipid productivities were 995.7 mg/L/d and 320.6 mg/L/d, respectively, when cultured at 6 days hydraulic retention time with 1/3 substitution every two days. These findings proved that the novel CFOAC system is efficient in nutrients removal, algal cultivation, and biomass production for advanced treatment of CFFW.
Collapse
Affiliation(s)
- Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; State Key Laboratory of Integrative Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Jie Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaoli Zhu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; State Key Laboratory of Integrative Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China.
| |
Collapse
|
18
|
Leong YK, Huang CY, Chang JS. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113193. [PMID: 34237671 DOI: 10.1016/j.jenvman.2021.113193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Following the escalating human population growth and rapid urbanization, the tremendous amount of urban and industrial waste released leads to a series of critical issues such as health issues, climate change, water crisis, and pollution problems. With the advantages of a favorable carbon life cycle, high photosynthetic efficiencies, and being adaptive to harsh environments, algae have attracted attention as an excellent agent for pollution prevention and waste phycoremediation. Following the concept of circular economy and biorefinery for sustainable production and waste minimization, this review discusses the role of four different algal-based wastewater treatment technologies, including high-rate algal ponds (HRAPs), HRAP-absorption column (HRAP-AC), hybrid algal biofilm-enhanced raceway pond (HABERP) and algal turf scrubber (ATS) in waste management and resource recovery. In addition to the nutrient removal mechanisms and operation parameters, recent advances and developments have been discussed for each technology, including (1) Innovative operation strategies and treatment of emerging contaminants (ECs) employing HRAPs, (2) Biogas upgrading utilizing HRAP-AC system and approaches of O2 minimization in biomethane, (3) Operation of different HABERP systems, (4) Life-cycle and cost analysis of HRAPs-based wastewater treatment system, and (5) Value-upgrading for harvested algal biomass and life-cycle cost analysis of ATS system.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Mu R, Jia Y, Ma G, Liu L, Hao K, Qi F, Shao Y. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1217-1230. [PMID: 33305497 DOI: 10.1002/wer.1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The rise in living standards has generated a demand for higher aquatic environmental quality. The microalgal community and the surrounding organic molecules, environmental factors, and microorganisms, such as bacteria, are together defined as the phycosphere. The bacteria in the phycosphere can form consortia with microalgae through various forms of interaction. The study of the species in these consortia and their relative proportions is of great significance in determining the species and strains of stable algae that can be used in sewage treatment. This article summarizes the following topics: the interactions between microalgae and bacteria that are required to establish consortia; how symbiosis between algae and bacteria is established; microalgal competition with bacteria through inhibition and anti-inhibition strategies; the influence of environmental factors on microalgal-bacterial aggregates, such as illumination conditions, pH, dissolved oxygen, temperature, and nutrient levels; the application of algal-bacterial aggregates to enhance biomass production and nutrient reuse; and techniques for studying the community structure and interactions of algal-bacterial consortia, such as microscopy, flow cytometry, and omics. PRACTITIONER POINTS: Community structures in microalgal-bacterial consortia in wastewater treatment. Interactions between algae and bacteria in wastewater treatment. Effects of ecological factors on the algal-bacterial community in wastewater treatment. Economically recycling resources from algal-bacterial consortia based on wastewater. Technologies for studying microalgal-bacterial consortia in wastewater treatment.
Collapse
Affiliation(s)
- Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | | | - Kaixuan Hao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
20
|
Ronan P, Kroukamp O, Liss SN, Wolfaardt G. Interaction between CO2-consuming autotrophy and CO2-producing heterotrophy in non-axenic phototrophic biofilms. PLoS One 2021; 16:e0253224. [PMID: 34129611 PMCID: PMC8205120 DOI: 10.1371/journal.pone.0253224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
As the effects of climate change become increasingly evident, the need for effective CO2 management is clear. Microalgae are well-suited for CO2 sequestration, given their ability to rapidly uptake and fix CO2. They also readily assimilate inorganic nutrients and produce a biomass with inherent commercial value, leading to a paradigm in which CO2-sequestration, enhanced wastewater treatment, and biomass generation could be effectively combined. Natural non-axenic phototrophic cultures comprising both autotrophic and heterotrophic fractions are particularly attractive in this endeavour, given their increased robustness and innate O2-CO2 exchange. In this study, the interplay between CO2-consuming autotrophy and CO2-producing heterotrophy in a non-axenic phototrophic biofilm was examined. When the biofilm was cultivated under autotrophic conditions (i.e. no organic carbon), it grew autotrophically and exhibited CO2 uptake. After amending its growth medium with organic carbon (0.25 g/L glucose and 0.28 g/L sodium acetate), the biofilm rapidly toggled from net-autotrophic to net-heterotrophic growth, reaching a CO2 production rate of 60 μmol/h after 31 hours. When the organic carbon sources were provided at a lower concentration (0.125 g/L glucose and 0.14 g/L sodium acetate), the biofilm exhibited distinct, longitudinally discrete regions of heterotrophic and autotrophic metabolism in the proximal and distal halves of the biofilm respectively, within 4 hours of carbon amendment. Interestingly, this upstream and downstream partitioning of heterotrophic and autotrophic metabolism appeared to be reversible, as the position of these regions began to flip once the direction of medium flow (and hence nutrient availability) was reversed. The insight generated here can inform new and important research questions and contribute to efforts aimed at scaling and industrializing algal growth systems, where the ability to understand, predict, and optimize biofilm growth and activity is critical.
Collapse
Affiliation(s)
- Patrick Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Steven N. Liss
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
21
|
Scognamiglio V, Giardi MT, Zappi D, Touloupakis E, Antonacci A. Photoautotrophs-Bacteria Co-Cultures: Advances, Challenges and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3027. [PMID: 34199583 PMCID: PMC8199690 DOI: 10.3390/ma14113027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/18/2023]
Abstract
Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
Collapse
Affiliation(s)
- Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Maria Teresa Giardi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
- Biosensor S.r.l., Via Olmetti 44, 00060 Formello, Italy
| | - Daniele Zappi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| |
Collapse
|
22
|
Ji B, Wang S, Silva MRU, Zhang M, Liu Y. Microalgal-bacterial granular sludge for municipal wastewater treatment under simulated natural diel cycles: Performances-metabolic pathways-microbial community nexus. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Zhuang LL, Li M, Hao Ngo H. Non-suspended microalgae cultivation for wastewater refinery and biomass production. BIORESOURCE TECHNOLOGY 2020; 308:123320. [PMID: 32284252 DOI: 10.1016/j.biortech.2020.123320] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 05/05/2023]
Abstract
Non-suspended microalgae cultivation technology coupled with wastewater purification has received more scientific attention in recent decades. Since the non-suspended microalgae cultivation is quite different from the suspended ones, the following issues are compared in this study such as advantages and disadvantages, pollutant removal mechanisms and regulations, influential factors, and microalgae biomass accumulation. The analysis aims to support the further application of this technology. The median removal rates of COD, TN, TP, NH4+-N and NO3--N were 91.6%, 78.2%, 87.5%, 93.2% and 81.7%, respectively, by non-suspended microalgae under the TN & TP load rates up to 150 mg·L-1·d-1. The main pathway for TN & TP removal is microalgae cell absorbance. Light intensity, pollutant composition and microalgae metabolic types are the major factors that influence pollutant removal and the lipid content of microalgae. Meanwhile the mechanism concerning how macro-outer conditions influence the micro-environment and further growth of non-suspended microalgae requires more investigation.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Mengting Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huu Hao Ngo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
24
|
Petrini S, Foladori P, Beghini F, Armanini F, Segata N, Andreottola G. How inoculation affects the development and the performances of microalgal-bacterial consortia treating real municipal wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110427. [PMID: 32174516 DOI: 10.1016/j.jenvman.2020.110427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
To date, little is known about the start-up of photobioreactors and the progressive development of stable microalgal-bacterial consortia with a view to the full-scale treatment of real wastewater. Two photo-sequencing bioreactors, one inoculated with Chlorella vulgaris (RC) and one with the absence of inoculum (RW), were fed with real municipal wastewater and run in parallel for 101 days. The influence of the inoculation was evaluated in terms of pollutant removal efficiency, excess sludge production, solids settleability and microbial community characteristics. No significant differences were observed in the removal of COD (89 ± 4%; 88 ± 3%) and ammonium (99 ± 1%; 99 ± 1%), mainly associated with bacteria activity. During the first weeks of acclimation, Chlorella vulgaris in RC promoted better P removal and very high variations of DO and pH. Conversely, under steady-state conditions, no significant differences were observed between the performances of RC and RW, showing good settleability and low effluent solids, 7 ± 8 and 13 ± 10 mg TSS/L respectively. Microbiome analysis via 16S rRNA gene sequencing showed that, despite a different evolution, the microbial community was quite similar in both reactors under steady state conditions. Overall, the results suggested that the inoculation of microalgae is not essential to engender a photobioreactor aimed at treating real municipal wastewater.
Collapse
Affiliation(s)
- Serena Petrini
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy.
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| | - Francesco Beghini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123, Trento, Italy
| | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123, Trento, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123, Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| |
Collapse
|
25
|
Cui H, Ma H, Chen S, Yu J, Xu W, Zhu X, Gujar A, Ji C, Xue J, Zhang C, Li R. Mitigating excessive ammonia nitrogen in chicken farm flushing wastewater by mixing strategy for nutrient removal and lipid accumulation in the green alga Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2020; 303:122940. [PMID: 32044649 DOI: 10.1016/j.biortech.2020.122940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/21/2023]
Abstract
This study aimed to evaluate algal growth, lipid production, and nutrient removal in chicken farm flushing wastewater (CFFW). The excessive ammonia nitrogen (EAN) content in the CFFW wastewater represented a major factor limiting the algal growth. A strategy of mixing CFFW with municipal wastewater (MW) that contained less ammonia nitrogen was adopted. The results showed that the mixed wastewaters reduced ammonia nitrogen content, balanced nutrient profile, and promoted biomass production. The residual nutrients in mixed wastewaters were significantly reduced due to the algal absorption. Furthermore, alga grown on mixed wastewaters accumulated a higher level of total lipids and monounsaturated fatty acids that can be used for biodiesel production. The key issue of low biomass yield of algal grown on CFFW due to the inhibition of EAN was efficiently resolved by mitigating limiting factor to algal growth basing on mixing strategy, and accordingly the nutrients in the wastewater were significantly removed.
Collapse
Affiliation(s)
- Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Haotian Ma
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Shuaihang Chen
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Jie Yu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Wen Xu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoli Zhu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Asadullah Gujar
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Chunhui Zhang
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
26
|
Wang M, Zhang SC, Tang Q, Shi LD, Tao XM, Tian GM. Organic degrading bacteria and nitrifying bacteria stimulate the nutrient removal and biomass accumulation in microalgae-based system from piggery digestate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:134442. [PMID: 31865075 DOI: 10.1016/j.scitotenv.2019.134442] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The microalgae-based system has been applied in anaerobic digestate treatment for nutrient removal and biomass production. To optimize its performance in treating piggery digestate, here, commercial bacterial agents, including organic degrading bacteria (Cb) and nitrifying bacteria (Nb), were inoculated into the microalgae-based system dominated by Desmodesmus sp. CHX1 (D). Reactor DN (inoculated with D and Nb) and DCN (inoculated with D, and Cb to Nb at a ratio of 1:2) have better performance on NH4+-N removal, with a final efficiency at 40.26% and 39.87%, respectively, and no NO3--N or NO2--N accumulations. The final total chlorophyll concentration, an indicator of microalgal growth, reached 4.74 and 5.47 mg/L in DN and DCN, respectively, three times more than that in D. These results suggested that high NH4+-N removal was achieved by the assimilation into high microalgal biomass after the inoculation with functional bacteria. High-throughput sequencing showed that the richness of microbial community decreased but the evenness increased by inoculating functional microorganisms. Microalgae aggregating bacteria were Cellvibrio, Sphingobacterium, Flavobacterium, Comamonas, Microbacterium, Dyadobacter, and Paenibacillus. This study revealed that the inoculation with functional bacteria reconstructed the microbial community which benefited for the microalgal growth and nutrient removal, providing a promising strategy for treating highly-concentrated digestate.
Collapse
Affiliation(s)
- Min Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Chi Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xing-Ming Tao
- Hangzhou Wanxiang Polytechnic, Hangzhou 310023, China
| | - Guang-Ming Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Foladori P, Petrini S, Andreottola G. How suspended solids concentration affects nitrification rate in microalgal-bacterial photobioreactors without external aeration. Heliyon 2020; 6:e03088. [PMID: 31909261 PMCID: PMC6939075 DOI: 10.1016/j.heliyon.2019.e03088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022] Open
Abstract
The use of microalgae for the treatment of municipal wastewater makes possible to supply oxygen and save energy, but must be coupled with bacterial nitrification to obtain nitrogen removal efficiency above 90%. This paper explores how the concentration of Total Suspended Solids (TSS, from 0.2 to 3.9 g TSS/L) affects the nitrification kinetic in three microalgal-bacterial consortia treating real municipal wastewater. Two different behaviors were observed: (1) solid-limited kinetic at low TSS concentrations, (2) light-limited kinetic at higher concentrations. For each consortium, an optimal TSS concentration that produced the maximum volumetric ammonium removal rate (around 1.8–2.0 mg N L−1 h−1), was found. The relationship between ammonium removal rate and TSS concentration was then modelled considering bacteria growth, microalgae growth and limitation by dissolved oxygen and light intensity. Assessment of the optimal TSS concentrations makes possible to concentrate the microbial biomass in a photobioreactor while ensuring high kinetics and a low footprint.
Collapse
Affiliation(s)
- Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| | - Serena Petrini
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| |
Collapse
|
28
|
Zhao P, Lin Z, Wang Y, Chai H, Li Y, He L, Zhou J. Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewage treatment and its mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133650. [PMID: 31377356 DOI: 10.1016/j.scitotenv.2019.133650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Advanced sewage treatment by microalgae is regarded as a promising method for addressing eutrophication. To improve sewage treatment, three kinds of plant hormones including auxin (indole-3-acetic acid, IAA), cytokinin (Zeatin), and brassinosteroid, were chosen to measure the influence of plant hormones on nitrogen and phosphorus removal by Tetraselmis cordiformis and to analyze their mechanisms, including photosynthesis, nutrient metabolism, and gene transcription. The results indicated that the maximal removal efficiencies of total nitrogen and phosphate by T. cordiformis were elevated by the plant hormones by 184.3% and 53.2%, respectively. The chlorophyll a content was increased by 1.1 times by the plant hormones in comparison with the control. Moreover, after being stimulated by plant hormones, the activities of nitrate reductase (NR) and glutamine synthetase (GS) increased by 90.4% and 82.1%, respectively, in comparison with the control. Supplementation with plant hormones also significantly elevated the mRNA expression level of GS-related gene by 30.9%. This study demonstrated that plant hormones could significantly promote the nutrient removal of microalgae for sewage treatment in artificial laboratory conditions and provided theoretical support for its further practical full-scale application under variable conditions.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yancheng Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
29
|
Wastewater Biofilm Photosynthesis in Photobioreactors. Microorganisms 2019; 7:microorganisms7080252. [PMID: 31405172 PMCID: PMC6723877 DOI: 10.3390/microorganisms7080252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023] Open
Abstract
Photosynthetic performance of algal-bacterial biofilms from an Italian wastewater treatment plant was studied in a flow-lane photobioreactor at different irradiances, temperatures, and flow regime to evaluate the effects of these environmental parameters on biofilms’ functioning, in view of application of these communities in wastewater biological treatment. Pulse amplitude modulated fluorescence was used to estimate the effective quantum yield of PSII (ΔF/Fm’) of the light-acclimated biofilms and to perform rapid light curves (RLCs) for the determination of the photosynthetic parameters (rel.ETRmax, α, Ik). Chl a, ash free dry weight (AFDW), and dry weight (DW) were measured to assess phototrophic and whole biofilm biomass development over time. From the analysis of photosynthetic parameter variation with light intensity, temperature and flow rate, it was possible to identify the set of experimental values favoring biofilm photosynthetic activity. Biomass increased over time, especially at the highest irradiances, where substrata were fastly colonized and mature biofilms developed at all temperatures and flow conditions tested.
Collapse
|
30
|
Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol 2019; 46:1343-1358. [PMID: 31278525 DOI: 10.1007/s10295-019-02211-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Functional differentiation and metabolite exchange enable microbial consortia to perform complex metabolic tasks and efficiently cycle the nutrients. Inspired by the cooperative relationships in environmental microbial consortia, synthetic microbial consortia have great promise for studying the microbial interactions in nature and more importantly for various engineering applications. However, challenges coexist with promises, and the potential of consortium-based technologies is far from being fully harnessed. Thorough understanding of the underlying molecular mechanisms of microbial interactions is greatly needed for the rational design and optimization of defined consortia. These knowledge gaps could be potentially filled with the assistance of the ongoing revolution in systems biology and synthetic biology tools. As current fundamental and technical obstacles down the road being removed, we would expect new avenues with synthetic microbial consortia playing important roles in biological and environmental engineering processes such as bioproduction of desired chemicals and fuels, as well as biodegradation of persistent contaminants.
Collapse
|
31
|
Li C, Ju LK. Reclamation of wastewater organics via two-stage growth of bacteria-then-oleaginous phagotrophic algae. Bioprocess Biosyst Eng 2018; 41:1757-1766. [PMID: 30099623 DOI: 10.1007/s00449-018-1998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/03/2018] [Indexed: 11/25/2022]
Abstract
A substantial amount of organic matter is wasted in current wastewater treatment processes. To reclaim the value of organic matter, a two-stage continuous-flow open process has been developed by utilizing the capability of phagotrophic algae in ingesting bacterial cells. In this process, wastewater is first pumped into a bacteria tank to grow bacterial cells, and then the effluent containing grown bacteria cells is fed to an algae tank to grow phagotrophic algae. The operation conditions such as dilution rate, pH, and dissolved oxygen level were comprehensively investigated and optimized with long-term tests. Results show that phagotrophic algae can be stably cultivated with wastewater organics through this open process without costly chemical/physical sterilization. The produced phagotrophic algae had high lipid content and can be potentially used as biofuel feedstock.
Collapse
Affiliation(s)
- Cong Li
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, USA.
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, USA.
| |
Collapse
|
32
|
Wilson J, Gering S, Pinard J, Lucas R, Briggs BR. Bio-production of gaseous alkenes: ethylene, isoprene, isobutene. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:234. [PMID: 30181774 PMCID: PMC6114056 DOI: 10.1186/s13068-018-1230-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
To reduce emissions from petrochemical refinement, bio-production has been heralded as a way to create economically valuable compounds with fewer harmful effects. For example, gaseous alkenes are precursor molecules that can be polymerized into a variety of industrially significant compounds and have biological production pathways. Production levels, however, remain low, thus enhancing bio-production of gaseous petrochemicals for chemical precursors is critical. This review covers the metabolic pathways and production levels of the gaseous alkenes ethylene, isoprene, and isobutene. Techniques needed to drive production to higher levels are also discussed.
Collapse
Affiliation(s)
- James Wilson
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Sarah Gering
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Jessica Pinard
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Ryan Lucas
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| |
Collapse
|