1
|
Afecto Gonçalves MJ, González-Fernández C, Greses S. Assessing the effect of temperature drop on a stable anaerobic fermentation for volatile fatty acids production. Bioengineered 2025; 16:2458369. [PMID: 39895564 PMCID: PMC11792825 DOI: 10.1080/21655979.2025.2458369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Anaerobic fermentation (AF) processes are sensitive to temperature fluctuations, which can influence the microbial activity and overall metabolic performances. Anaerobic reactors can face unforeseen temperature control failures, leading to instabilities in the process. The present study investigated the effect of two short-term temperature perturbations (down to 20°C and 15°C) on AF of food wastes (FWs). While 20°C did not exhibit a negative impact on AF performance maintaining the bioconversion yields over 40%, the reactor subjected to 15°C presented an acidogenic limitation, which decreased the bioconversion yields (36.4 ± 1.8%). As a result, 2.2 ± 0.5 g/L of succinic acid was accumulated in the reactor, being identified as a temperature failure indicator. Once the conditions were reestablished (operation temperature of 25ºC), the metabolic redundancies identified in the reactors allowed the AFs recovery to initial fermentation yields. 20°C was further tested as operational temperature resulting in stable bioconversion yield similar to the Control Reactor (43.2 ± 0.3%). These results showed the feasibility of conducting AF under low temperatures, indicating the potential of this technology to increase the cost-effectiveness of AF at psychrophilic conditions.
Collapse
Affiliation(s)
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- CALAGUA – Unidad Mixta UV-UPV, Department of Chemical Engineering, Universitat de València, Spain
| |
Collapse
|
2
|
Jojoa-Unigarro GD, González-Martínez S, Cuetero-Martínez Y, de-Los-Cobos-Vasconcelos D. Fermentation of the organic fraction of municipal solid waste under different pH values and composition of microbial communities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:1044-1057. [PMID: 40372178 DOI: 10.2166/wst.2025.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
The organic fraction of municipal solid waste (OFMSW) must be stored for hours or days before being fed to the anaerobic digestion reactors. This storage leads to spontaneous lactic acid fermentation, and volatile fatty acids (VFAs) and ethanol are produced by naturally occurring microorganisms. This research deals with fermentation and hydrolysis by controlling the OFMSW storage (silage) conditions. Using only naturally occurring microorganisms as inoculum, OFMSW fermentation in a semi-continuous reactor at pH values of 4, 5, and 6 was performed. During 6 days, samples were collected and analyzed daily for VFAs, ethanol, and lactic acid. At pH 4, the main products were ethanol, lactic acid, and acetic acid; at pH 5, lactic acid predominated, decreasing after day 4; at pH 6, acetic acid formed rapidly and after day 1, the concentration remained constant. At pH 6, butyric acid reached the highest concentration of all VFAs. The microbial diversity increased with pH. Metataxonomic analysis supports the possibility that the fungus of the Pichia genus is responsible for ethanol production and that various bacteria are responsible for VFAs, lactic acid production, and acetogenesis. Acetogenesis was the main pathway for the decrease in lactic acid and ethanol over time.
Collapse
Affiliation(s)
- German Dimitriv Jojoa-Unigarro
- Environmental Engineering Department, Institute of Engineering, National University of Mexico (Universidad Nacional Autónoma de México), Mexico City, 04510, Mexico
| | - Simón González-Martínez
- Environmental Engineering Department, Institute of Engineering, National University of Mexico (Universidad Nacional Autónoma de México), Mexico City, 04510, Mexico E-mail:
| | - Yovany Cuetero-Martínez
- Environmental Engineering Department, Institute of Engineering, National University of Mexico (Universidad Nacional Autónoma de México), Mexico City, 04510, Mexico
| | - Daniel de-Los-Cobos-Vasconcelos
- Environmental Engineering Department, Institute of Engineering, National University of Mexico (Universidad Nacional Autónoma de México), Mexico City, 04510, Mexico
| |
Collapse
|
3
|
Zhang J, Zhu M, Zhu Y, Huhe T, Wang Q, Lei T, Zhou Z, Meng X. Anaerobic fermentation integrated with pyrolysis for carbon resource recovery from food waste and biogas sludge: Effects of inoculation ratio and pyrolysis temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124879. [PMID: 40058053 DOI: 10.1016/j.jenvman.2025.124879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
In view of the food waste (FW) as well as its digestate are both the organic sources of municipal solid waste, this study explored the anaerobic fermentation (AF) and following pyrolysis carbonization to co-disposal the two wastes for carbon resource recovery, including short chain organic acid (SCOAs), pyrolysis gas and biochar. Results indicated that both the rate and yield of SCOAs production both increase with the rising ratio of biogas sludge (BS) to FW, enhancing the soluble carbon recovery. The highest SCOAs production of 474.33 mg/g-VS was achieved at the ratio of 2:1 in 72 h. To further utilize the carbon source, the solids from the fermented residue (FR) was pyrolyzed at 400, 600 and 800 °C, respectively. Findings showed that the carbon content in biochar decreases with the increasing pyrolysis temperature, while the carbon in pyrolysis gas exhibits the opposite trend. Integrating the AF and pyrolysis contributed to a carbon recovery about 56.39% when the FW and BS were co-fermented at a 2:1 ratio, followed by its FR was pyrolyzed at 600 °C. Additionally, the biochar prepared under these conditions displayed a specific surface area (SSA) of 313.10 m2/g, along with abundant pore structures and functional groups, indicating its potential applications as pollutant adsorbents and soil amendments. This research offers a new perspective on efficiently recovering high-value carbon sources through the co-treatment of FW and its digestate via AF integrated with pyrolysis.
Collapse
Affiliation(s)
- Jiongjie Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Mengmeng Zhu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Yuchen Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Taoli Huhe
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China.
| | - Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Tingzhou Lei
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaoshan Meng
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Greses S, Llamas M, Kaoutar A, González-Fernández C. Vinasses valorization into short-chain fatty acids: microbiome robustness against process variations. BIORESOUR BIOPROCESS 2025; 12:26. [PMID: 40167882 PMCID: PMC11961857 DOI: 10.1186/s40643-025-00865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
The valorization of vinasses into short-chain fatty acids (SCFAs) via anaerobic fermentation (AF) is an emerging approach that remains under research. Given the diverse microbial metabolisms simultaneously occurring in AF, the control of operational parameters is essential to avoid process destabilization. To unravel their effect, the novelty of this investigation relied on the evaluation of the robustness of AF process against operational perturbation deliberately set (i.e. hydraulic retention time (HRT) and temperature increase). Regardless the applied perturbation, similar yields (0.5-0.6 g COD-SCFAs/g VSin) were attained. However, the selected perturbations exerted an effect on microbiome development. Whereas the temperature increase mediated a 49.70% microbiome dissimilarity, only a 21.91% dissimilarity was caused by the HRT increase. Microbial analysis revealed Clostridiales, Prevotella and Megasphaera as key bacteria in vinasses degradation. The similar bioconversion obtained despite the different microbiomes developed after each perturbation suggested a functional redundancy highlighting the AF robustness. These findings evidenced AF as a feasible biotechnology to further valorize vinasse into SCFAs, demonstrating the process stability against common perturbations that might be encountered at industrial scale.
Collapse
Affiliation(s)
- Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Madrid, 28935, Spain
| | - Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Madrid, 28935, Spain
| | - Aboudi Kaoutar
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Madrid, 28935, Spain
- Department of Chemical Engineering and Food Technology, Institute of vitivinicultural and Agri-food Research (IVAGRO), University of Cádiz 40, Puerto Real, Cádiz, 11510, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Madrid, 28935, Spain.
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid, 47011, Spain.
- Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid, 47011, Spain.
| |
Collapse
|
5
|
Zhang M, Zhang C, Wu Q, Wang M, Zhou Y, Wang D, Zhou L. Deciphering nitrogen removal performance concerning heterotrophic microorganism's succession by using three typical acid-rich fermentation liquids of food waste as carbon sources in high ammonium and high salt wastewater treatment. ENVIRONMENTAL RESEARCH 2025; 268:120763. [PMID: 39761780 DOI: 10.1016/j.envres.2025.120763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Understanding the performance and microbial succession in nitrogen removal using fermentation liquid as carbon source can provide a practical basis for treating low C/N ratio wastewater. In this study, three typical fermentation liquids of food waste (FW) enriched with lactic acid (LA), propionic acid (PA), and butyric acid (BA) were added to high ammonia and high salt (HAHS) wastewater treatment process. Results showed that effluent TN decreased from 50 mg/L to around 15 mg/L with the influent concentration around 1000 mg/L after adding fermentation liquid enriched with LA and PA. In contrast, adding BA-rich fermentation liquid gradually deteriorated the nitrogen removal due to the nitrification process being impaired. Genus Thauera predominated in HAHS wastewater system via heterotrophic simultaneous nitrification and denitrification (SND) process. Utilization of LA- and PA-rich fermentation liquids induced the acclimation of other heterotrophic SND microbes and partially replaced Thauera. Conversely, BA-rich carbon source promoted the proliferation of heterotrophic denitrifying and ordinary heterotrophic microorganisms, thereby inhibiting nitrification process and ultimately leading to the failure of nitrogen removal. Meanwhile, the relative abundance of denitrification genes, including napAB, nirKS, norBC, and NosZ, annotated in Thauera exhibited the lowest relative abundance in BA-rich phase. This study provides valuable insights into the mechanism of using FW fermentation liquid as an alternative carbon source to promote nitrogen removal in HAHS wastewater.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chencan Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiusheng Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Murong Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
6
|
Sun Y, Sun Y, Ren X, Xuan Y, Liu M, Bai G, Jiang F. Enhancement of volatile fatty acids to extremely high content in fermentation of food waste: Optimization of conditions, microbial functional genes, and mechanisms. BIORESOURCE TECHNOLOGY 2025; 416:131735. [PMID: 39489313 DOI: 10.1016/j.biortech.2024.131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The engineering application of volatile fatty acids (VFA) production from food waste (FW) can significantly enhance resource utilization. Enhancing VFA production is crucial for advancing this engineering application. This study presented a economically-feasible method to achieve high VFA production from FW: Conducting fermentation at pH 9 and 37 ℃ with addition of 20 % anaerobic sludge significantly increased the conversion of FW to VFAs (80.56 g COD/L, accounting for 87.37 % of the soluble chemical oxygen demand), while also increasing the content of NH4+-N (2658.15 mg/L). Macrotranscriptomic sequencing showed that Anaerosalibacter, Amphibacillus, Wansuia, Clostridiisalibacter, unclassified Tissierellia, Massilibacterium, unclassified Bacteroidales, and Tissierellia were the key active microorganisms for VFA production. The expression abundance of functional enzymes and genes related to VFA production pathways increased during the fermentation. This study significantly advanced the practical application of VFA production from FW, offering both theoretical insights and bacterial resources.
Collapse
Affiliation(s)
- Yujie Sun
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yujiao Sun
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Xueqian Ren
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yuanyan Xuan
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Meijun Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Guomin Bai
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Fan Jiang
- College of Water Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Wang X, Huang M, Chen S, Bi X, Wang L, Tang M, Liu Z, Huang Q, Gao S, Maletskyi Z. Alkalinity enhanced hydrolysis of primary sludge for carbon source recovery and its impact on denitrification in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123903. [PMID: 39733673 DOI: 10.1016/j.jenvman.2024.123903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Primary sludge can serve as an internal carbon source for denitrification in wastewater treatment plants (WWTPs). This study explores the use of alkaline treatment to produce a fermentation broth from primary sludge, which predominantly contains short-chain volatile fatty acids (VFAs), with acetic acid and propionic acid making up over 65% of the total VFAs. The performance of this fermentation broth as a sole carbon source for denitrification was compared with that of sodium acetate, acetic acid, methanol, and ethanol in both biofilm and activated sludge systems. The results revealed that the denitrification rate achieved using the fermentation broth was as high as 2.1661 mg NO3--N/(g MLSS·h), which was slightly lower than that of sodium acetate and acetic acid but higher than that of methanol and ethanol. The fermentation broth demonstrated a high heterotrophic yield (0.7183), an equivalent specific carbon requirement for denitrification as acetic acid and sodium acetate, and a rapid denitrification start-up. Moreover, variations in the VFAs/SCOD ratios in the fermentation broth did not significantly impact the denitrification rate or substrate biodegradation rate. However, the yield coefficient and specific carbon requirement for denitrification were found to vary significantly depending on the carbon source used. This study concludes that with appropriate treatment, fermented broth from primary sludge can be an effective carbon source comparable to commercial external carbon sources, significantly reducing carbon emissions.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Dong 777, Qingdao, 266520, China.
| | - Mei Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Dong 777, Qingdao, 266520, China
| | - Shanshan Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Dong 777, Qingdao, 266520, China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Dong 777, Qingdao, 266520, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Dong 777, Qingdao, 266520, China
| | - Mingyue Tang
- Qingdao Capital Ruihai Water Co. Ltd, Ruihai Bei 2, Qingdao, 266042, China
| | - Zhen Liu
- Qingdao Capital Ruihai Water Co. Ltd, Ruihai Bei 2, Qingdao, 266042, China
| | - Qing Huang
- Qingdao Water Environmental Co. Ltd, Tuandao 3, Qingdao, 266001, China
| | - Shuai Gao
- Qingdao Water Environmental Co. Ltd, Tuandao 3, Qingdao, 266001, China
| | - Zakhar Maletskyi
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, Aas, 1430, Norway
| |
Collapse
|
8
|
Joris P, Lombard E, Paillet A, Navarro G, Guillouet SE, Gorret N. Recycling potential of Cupriavidus necator for life support in space: Production of SCPs from volatile fatty acid and urea mixture. J Biotechnol 2024; 396:18-27. [PMID: 39396642 DOI: 10.1016/j.jbiotec.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
The International Space Station currently requires four annual replenishments for food supply, a practice that won't be feasible for deep space missions due to the greater distances. Based on the design of closed ecological life support systems, two waste streams were identified: urea from the crew urine, volatile fatty acids (VFAs) from a first stage of anaerobic digestion of waste. The objective of this study was to assess the ability of bacterium Cupriavidus necator to produce single cell protein on urea and VFAs. Thus, the effect of carbon sources (glucose vs VFAs) and the dilution rate on the biomass composition was determined in continuous cultures. Complete transformation of the carbon source into protein-rich biomass was achieved up to 78 % cell dry weight (CDW). For both carbon sources, the protein content increased from 55.0 %CDW to 78 %CDW with a decrease in the dilution rate. Conversely, the nucleic acid and polyhydroxyalkanoate contents decreased with the dilution rate from 8.8 %CDW to 4.8 %CDW and 9.8 %CDW to 0.6 %CDW respectively. Working at a low dilution rate seems to be a good way to maximize protein content while minimizing unwanted nucleic acids and polyhydroxyalkanoates.
Collapse
Affiliation(s)
- P Joris
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - E Lombard
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - A Paillet
- CNES-Exploration Vols Habités-Spaceship.Fr project, Toulouse, France
| | - G Navarro
- CNES-Exploration Vols Habités-Spaceship.Fr project, Toulouse, France
| | - S E Guillouet
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - N Gorret
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
9
|
Zheng Y, Wu Z, Wang P, Wei Y, Jia K, Zhang M, Shi X, Zhang L, Li J. Long-chain fatty acids facilitate acidogenic fermentation of food waste: Attention to the microbial response and the change of core metabolic pathway under saturated and unsaturated fatty acids loading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175565. [PMID: 39151620 DOI: 10.1016/j.scitotenv.2024.175565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Long-chain fatty acids (LCFAs) are recognized as a significant inhibitory factor in anaerobic digestion of food waste (FW), yet they are inevitably present in FW due to lipid hydrolysis. Given their distinct synthesis mechanism from traditional anaerobic digestion, little is known about the effect of LCFAs on FW acidogenic fermentation. This study reveals that total volatile fatty acids (VFAs) production increased by 9.98 % and 4.03 % under stearic acid and oleic acid loading, respectively. Acetic acid production increased by 20.66 % under stearic acid loading compared to the control group (CK). However, the LCFA stress restricted the degradation of solid organic matter, particularly under oleic acid stress. Analysis of microbial community structure and quorum sensing (QS) indicates that LCFA stress enhanced the relative abundance of Lactobacillus and Klebsiella. In QS system, the relative abundance of luxS declined from 0.157 % to 0.116 % and 0.125 % under oleic acid and stearic acid stress, respectively. LCFA stress limited the Autoinducer-2 (AI-2) biosynthesis, suggesting that microorganisms cannot use QS to resist the LCFA stress. Metagenomic sequencing showed that LCFA stress promoted acetic acid production via the conversion of pyruvate and acetyl-CoA to acetate. Direct conversion of pyruvate to acetic acid increased by 47.23 % compared to the CK group, accounting for the enhanced acetic acid production under stearic acid loading. The abundance of β-oxidation pathway under stearic acid loading was lower than under oleic acid loading. Overall, the stimulating direct conversion of pyruvate plays a pivotal role in enhancing acetic acid biosynthesis under stearic acid loading, providing insights into the effect of LCFA on mechanism of FW acidogenic fermentation.
Collapse
Affiliation(s)
- Yi Zheng
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhen Wu
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Kaixue Jia
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Mingzhu Zhang
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Longli Zhang
- Beijing VOTO Biotech Co., Ltd, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
10
|
Pradhan S, Yuzer B, Bicer Y, McKay G, Al-Ansari T. Hydrogen gas and biochar production from kitchen food waste through dark fermentation and pyrolysis. FRONTIERS IN CHEMICAL ENGINEERING 2024; 6. [DOI: 10.3389/fceng.2024.1450151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The transportation and consumption of kitchen food waste is a major contribution to greenhouse gas (GHG) emissions in global warming. To reduce this risk, it is important to recycle food waste into energy production and agricultural byproduct for nutrient management. Dark fermentation is one of the most suitable nutrient recovery techniques for generating hydrogen (H2) gas and serves as a clean energy carrier for a sustainable environment. Potatoes (Solanum tuberosum L.) and watermelon (Citrullus lanatus) are an important vegetable and fruit in demand in markets worldwide. Each year, almost 8,000 kilotons of potato peel is generated, with a GHG emission of 5 million tons of carbon dioxide (CO2) equivalent. More than 90% of watermelon rind is considered waste and is discarded. A small-scale preliminary study was conducted on these two waste products to produce H2 gas from potato peel, watermelon rind, and a mixture of peel and rind by the dark fermentation process. After volume analysis of the H2 gas produced, the remaining residue was used to produce biochar. The highest volume of 149 mL H2 gas was achieved from the peel, followed by 140 mL and 135 mL of H2 gas from the rind and the mixture of peel and rind, respectively, with a biomass pH of 4.7–5.6 and volatile solids (VS) of 77%–88%. The biochar produced from all the sample types was alkaline in nature with a pH of 7.88 ± 0.33, electrical conductivity of 0.38 ± 0.03 mS/cm, zeta potential of −25.12 ± 0.32 mV, and had a nutrient richness that could be beneficial for soil quality improvement and plant growth. However, the outcomes of this small-scale analysis cycle requires additional analytical outcomes with field application that targets the future scope of research on sustainable H2 production and agricultural application.
Collapse
|
11
|
Cheng M, Qu G, Xu R, Ren N. Research on the conversion of biowaste to MCCAs: A review of recent advances in the electrochemical synergistic anaerobic pathway. CHEMOSPHERE 2024; 366:143430. [PMID: 39353474 DOI: 10.1016/j.chemosphere.2024.143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Medium-chain carboxylic acids (MCCAs) show great promise as commercial chemicals due to their high energy density, significant product value, and wide range of applications. The production of MCCAs from waste biomass through coupling chain extension with anaerobic fermentation represents a new and innovative approach to biomass utilization. This review provides an overview of the principles of MCCAs production through coupled chain extension and anaerobic fermentation, as well as the extracellular electron transfer pathways and microbiological effects involved. Emphasis is placed on the mechanisms, limitations, and microbial interactions in MCCAs production, elucidating metabolic pathways, potential influencing factors, and the cooperative and competitive relationships among various microorganisms. Additionally, this paper delves into a novel technology for the bio-electrocatalytic generation of MCCAs, which promotes electron transfer through the use of different three-dimensional electrodes, various electrical stimulation methods, and hydrogen-assisted approaches. The insights and conclusions from previous studies, as well as the identification of existing challenges, will be valuable for the further development of high-product-selectivity strategies and environmentally friendly treatments.
Collapse
Affiliation(s)
- Minhua Cheng
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China.
| | - Rui Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
12
|
Mendoza MDL, Vaca L, Erazo P, Villa P. Perspectives on carboxylates generation from Ecuadorian agro-wastes. BIORESOURCE TECHNOLOGY 2024; 407:131080. [PMID: 38992479 DOI: 10.1016/j.biortech.2024.131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Carboxylates generation from banana (peel and pulp), coffee, and cacao fermentation agro-waste, upon uncontrolled and controlled pHs of 6.6 (heat-driven methanogens inactivation) and 5.2 (pH inactivation), was studied. Regarding volatile fatty acids (VFAs), acetic was the highest for cocoa (96.2 g kg-1TVS) at pH 4.5. However, butyric was relevant for banana pulp (90.7 g kg-1TVS), at controlled pH 6.6. The highest medium chain fatty acid (MCFAs) level was hexanoic (cocoa, 3.5 g kg-1TVS), while octanoic reached a maximum of 2.8 g kg-1TVS for coffee at pH 6.6. At pH 5.2 MCFAs yield was relatively low. Uncontrolled pH conditions, using banana resulted in superior VFAs production compared to controlled conditions. Thus, pH became a determining variable when deciding the time and kind of carboxylic acid to be recovered. The bacterial community at the end of the chain elongation process was dominated by phyla Firmicutes, and Clostridium as the most common genera.
Collapse
Affiliation(s)
- Maria de Lourdes Mendoza
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Luis Vaca
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Pablo Erazo
- Biosequence S.A.S Laboratory, Checoslovaquia and Eloy Alfaro E10-95, P.O. Box 170504 Quito, Ecuador
| | - Pablo Villa
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| |
Collapse
|
13
|
Giwa AS, Shafique E, Ali N, Vakili M. Recent Advances in Food Waste Transformations into Essential Bioplastic Materials. Molecules 2024; 29:3838. [PMID: 39202917 PMCID: PMC11357003 DOI: 10.3390/molecules29163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Civil and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330108, China;
| | - Ehtisham Shafique
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | - Nasir Ali
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | | |
Collapse
|
14
|
Zhao C, Yang L, Chen Z, Wu C, Deng Z, Li H. Material flow analysis of an upgraded anaerobic digestion treatment plant with separated utilization of carbon and nitrogen of food waste. BIORESOURCE TECHNOLOGY 2024; 406:131005. [PMID: 38889868 DOI: 10.1016/j.biortech.2024.131005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Anaerobic digestion of food waste can recover carbon in the form of biogas, while the high concentration of ammonia nitrogen in the digestion effluent becomes troublesome. Therefore, some new treatment plants use three-phase centrifugation to separate homogenized food waste into nitrogen-rich fine slag for insect cultivation and carbon-rich liquid for anaerobic digestion. To analyze the effects of the carbon-nitrogen separation, an upgraded plant's material and elementary flows were investigated. The three-phase separation process redistributed carbon and nitrogen, and the biogas slurry was the primary output. The principal endpoint for C was the crude oil, capturing 57.1 ± 13.1 % of the total input; the find slag collected 48.3 ± 6.9 % of the total N input, and the biogas slag accepted 52.9 ± 4.4 % of the P input. The carbon-nitrogen separation strategy can improve digestion efficiency and increase treatment benefits significantly, marking a promising direction for future developments in food waste utilization.
Collapse
Affiliation(s)
- Chuyun Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Luxin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ziqi Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chunxu Wu
- Shenzhen Qingzhi Environmental Protection Technology Co. Ltd., Shenzhen 518055, China.
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co. Ltd., Shenzhen 518055, China.
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
15
|
Vijande C, Bevilacqua R, Balboa S, Carballa M. Altering operational conditions during protein fermentation to volatile fatty acids modifies the associated bacterial community. Microb Biotechnol 2024; 17:e14505. [PMID: 38932670 PMCID: PMC11195571 DOI: 10.1111/1751-7915.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the production of volatile fatty acids (VFA) through mixed culture fermentation (MCF) has been gaining attention. Most authors have focused on the fermentation of carbohydrates, while other possible substrates, such as proteins, have not been considered. Moreover, there is little information about how operational parameters affect the microbial communities involved in these processes, even though they are strongly related to reactor performance and VFA selectivity. Hence, this study aims to evaluate how microbial composition changes according to three different parameters (pH, type of protein and micronutrient addition) during anaerobic fermentation of protein-rich side streams. For this, two continuous stirred tank reactors (CSTR) were fed with two different proteins (casein and gelatine) and operated at different conditions: three pH values (5.0, 7.0 and 9.0) with only macronutrients supplementation and two pH values (5.0 and 7.0) with micronutrients' supplementation as well. Firmicutes, Proteobacteria and Bacteroidetes were the dominant phyla in the two reactors at all operational conditions, but their relative abundance varied with the parameters studied. At pH 7.0 and 9.0, the microbial composition was mainly affected by protein type, while at acidic conditions the driving force was the pH. The influence of micronutrients was dependent on the pH and the protein type, with a special effect on Clostridiales and Bacteroidales populations. Overall, this study shows that the acidogenic microbial community is affected by the three parameters studied and the changes in the microbial community can partially explain the macroscopic results, especially the process selectivity.
Collapse
Affiliation(s)
- Carlota Vijande
- CRETUS, Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Riccardo Bevilacqua
- CRETUS, Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Sabela Balboa
- CRETUS, Department of Microbiology and ParasitologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Marta Carballa
- CRETUS, Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
16
|
Hamze A, Zakaria BS, Zaghloul MS, Dhar BR, Elbeshbishy E. Comprehensive hydrothermal pretreatment of municipal sewage sludge: A systematic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121194. [PMID: 38820794 DOI: 10.1016/j.jenvman.2024.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
This study provides a comprehensive analysis of the potential impact of hydrothermal pretreatment (HTP) on municipal thickened waste-activated sludge (TWAS) and its integration with anaerobic digestion (AD). The research demonstrates that HTP conditions (170 °C, 3 bars for 30 min) can increase the solubilization of macromolecular organic compounds by 41%, which enhances biodegradability in semicontinuous bioreactors. This treatment also results in a 50% reduction in chemical oxygen demand (COD) and a 63% increase in the destruction of volatile solids (VS). The combination of HTP with AD significantly boosts methane yields by 51%, reaching 176 ml/g COD, and improves the digestate dewaterability, doubling the solid content in the dewatered cake. However, a higher polymer dose is required compared to conventional AD. Microbial community analysis correlates the observed performance and alterations; it indicates that HTP enhances resilience to stress conditions such as ammonia toxicity. This comprehensive study provides valuable insights into the transition from wastewater treatment plants (WWTPs) to resource recovery facilities (RRF) in line with circular economy principles.
Collapse
Affiliation(s)
- Abir Hamze
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada
| | - Basem S Zakaria
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94608, United States; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, 94608, United States; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Mohamed Sherif Zaghloul
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada; Department of Civil and Environmental Engineering, United Arab Emirates University, Sheik Khalifa Bin Zayed St - 'Asharij, Abu Dhabi, United Arab Emirates
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Elsayed Elbeshbishy
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
17
|
Gonçalves MJ, González-Fernández C, Greses S. Long hydraulic retention time mediates stable volatile fatty acids production against slight pH oscillations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:140-148. [PMID: 38281345 DOI: 10.1016/j.wasman.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
The effect of operational conditions on the stability of acidogenic fermentation (AF) devoted to volatile fatty acids (VFAs) production still presents numerous gaps to achieve high yields and fully understand the responses of open microbiomes associated to this technology. To cope with that, this investigation was designed to assess the stability of VFAs production via AF of agro-food wastes at high hydraulic retention times (HRTs) (20 and 30 d) and pH oscillations (5.8-6.2). Similar bioconversion efficiencies (∼50 %) were reached regardless of the HRT, revealing that HRT of 20 d can be considered as a threshold from which, no further improvement was achieved. The combination of long HRTs, 25 °C and acid pHs promoted a robust microbiome that resulted in a stable outcome against pH variations, being Clostridiales order identified as key player of AF stability. These conditions mediated a high selectivity in the VFAs production profile, with acetic and butyric acids, prevailing in the VFAs pool (∼80 % of total VFAs) at HRT 20 d. The selection of appropriated conditions was shown to be critical to maximize the hydrolysis and acidogenesis of the substrate and attain a stable effluent against pH oscillations.
Collapse
Affiliation(s)
- M J Gonçalves
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - C González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid, 47011, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid, 47011, Spain.
| | - S Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| |
Collapse
|
18
|
Kotoka F, Gutierrez L, Verliefde A, Cornelissen E. Selective separation of nutrients and volatile fatty acids from food wastes using electrodialysis and membrane contactor for resource valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120290. [PMID: 38367499 DOI: 10.1016/j.jenvman.2024.120290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Transport and selectivity parameters describe the quantity and purity of nutrients and volatile fatty acids (VFAs) separated from fermentation media. However, the complexity of fermentation media and low nutrient concentrations hinder the optimal conditions of such parameters. Exploring technologies to overcome such limitations is crucial for selectively separating VFAs from nutrients in fermented media. The objectives of this study were to investigate the: (1) flux, (2) recovery, (3) concentration factor, and (4) specific energy consumption of nutrients (NH4+, K+, NO3-, and PO43-) and VFAs (acetic, propionic, and butyric acid) via electrodialysis (ED), and (5) selectively separate the VFAs from the nutrients in the ED concentrate using a hydrophobic membrane contactor (HMC). Synthetic feed and real industrial fermented food wastes were used for ED and HMC experiments. The ED consumed 0.395 kWh/kg, recovering 64-95% of the nutrients and VFAs, corresponding to 4.1-9.4 and 0.6-22.1 g/L nutrients and VFAs, respectively. The HMC selectively separated over 94% of VFAs after ED, with <2% nutrients contamination in the final VFA stream. The results suggest that applying HMC after ED can concentrate and selectively separate VFAs from nutrients in fermented food wastes, which can be valorized for bio-based fertilizers and chemical platforms.
Collapse
Affiliation(s)
- Francis Kotoka
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium.
| | - Leonardo Gutierrez
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Ecuador
| | - Arne Verliefde
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Emile Cornelissen
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; KWR Water Research Institute, the Netherlands
| |
Collapse
|
19
|
Gu S, Xing H, Zhang L, Wang R, Kuang R, Li Y. Effects of food wastes based on different components on digestibility and energy recovery in hydrogen and methane co-production. Heliyon 2024; 10:e25421. [PMID: 38322844 PMCID: PMC10844570 DOI: 10.1016/j.heliyon.2024.e25421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
This study was conducted for four organic fractions (carbohydrates, proteins, cellulose, lipids) at an inoculum concentration of 30 % and a total solid (TS) of 8 % to investigate the effect of the main components of food waste on the performance of the two-stage anaerobic digestion. The results showed that the gas phase products were closely related to the composition of the substrate, with the carbohydrate and lipid groups showing the best hydrogen (154.91 ± 2.39mL/gVS) and methane (381.83 ± 12.691mL/gVS) production performance, respectively. However, the increased protein content predisposes the system to inhibition of gas production, which is mutually supported by changes in the activity of dehydrogenase and coenzyme F420. Butyric acid (53.19 %) dominated the liquid phase products in both stages, indicating that all four organic fractions were butyric acid-based fermentation and that the final soluble chemical oxygen demand degradation reached 72.97 %-82.86 %. The carbohydrate and cellulose groups achieved the best energy recovery performance, with conversion rates exceeding 65 %. The above results can provide a useful reference for the resource utilization of food waste.
Collapse
Affiliation(s)
- Shiyan Gu
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huige Xing
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lei Zhang
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ruji Wang
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ruoyu Kuang
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Li
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
20
|
Hernández-Herreros N, Rivero-Buceta V, Pardo I, Prieto MA. Production of poly(3-hydroxybutyrate)/poly(lactic acid) from industrial wastewater by wild-type Cupriavidus necator H16. WATER RESEARCH 2024; 249:120892. [PMID: 38007895 DOI: 10.1016/j.watres.2023.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The massive production of urban and industrial wastes has created a clear need for alternative waste management processes. One of the more promising strategies is to use waste as raw material for the production of biopolymers such as polyhydroxyalkanoates (PHAs). In this work, a lactate-enriched stream obtained by anaerobic digestion (AD) of wastewater (WW) from a candy production plant was used as a feedstock for PHA production in wild-type Cupriavidus necator H16. Unexpectedly, we observed the accumulation of poly(3-hydroxybutyrate)/poly(lactic acid) (P(3HB)/PLA), suggesting that the non-engineered strain already possesses the metabolic potential to produce these polymers of interest. The systematic study of factors, such as incubation time, nitrogen and lactate concentration, influencing the synthesis of P(3HB)/PLA allowed the production of a panel of polymers in a resting cell system with tailored lactic acid (LA) content according to the GC-MS of the biomass. Further biomass extraction suggested the presence of methanol soluble low molecular weight molecules containing LA, while 1 % LA could be detected in the purified polymer fraction. These results suggested that the cells are producing a blend of polymers. A proteomic analysis of C. necator resting cells under P(3HB)/PLA production conditions provides new insights into the latent pathways involved in this process. This study is a proof of concept demonstrating that LA can polymerize in a non-modified organism and paves the way for new metabolic engineering approaches for lactic acid polymer production in the model bacterium C. necator H16.
Collapse
Affiliation(s)
- Natalia Hernández-Herreros
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Isabel Pardo
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
21
|
Manasa S, Tharak A, Venkata Mohan S. Biorefinery-centric ethanol and oleochemical production employing Yarrowia lipolytica and Pichia farinosa. BIORESOURCE TECHNOLOGY 2024; 394:130243. [PMID: 38142910 DOI: 10.1016/j.biortech.2023.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The research examined the capabilities of Yarrowia lipolytica (YL) and Pichia farinosa (PF) in converting sugars to ethanol and oleochemicals. Lipid, ethanol, protein yield and gene-expressions were analysed at different substrate concentrations (3 to 30 g/L) with glucose, food waste, and fermentation-effluent. Optimal results were obtained at 20 g/L using both synthetic carbon with 4.6 % of total lipid yield. Lauric and Caprylic acid dominance was noted in total lipid fractions. Protein accumulation (6 g/L) was observed in glucose system (20 g/L) indicating yeast strains potential as single-cell proteins (SCP). Fatty-acid desaturase (FAD12) and alcohol dehydrogenase (ADH) expressions were higher at optimum condition of YL (1.15 × 10-1, 3.8 × 10-2) and PF (5.8 × 10-2, 3.8 × 10-2) respectively. Maximum carbon reduction of 87 % depicted at best condition, aligning with metabolic yield. These findings highlights promising role of yeast as biorefinery biocatalyst.
Collapse
Affiliation(s)
- Sravya Manasa
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
23
|
Kacanski M, Stelzer F, Walsh M, Kenny S, O'Connor K, Neureiter M. Pilot-scale production of mcl-PHA by Pseudomonas citronellolis using acetic acid as the sole carbon source. N Biotechnol 2023; 78:68-75. [PMID: 37827242 DOI: 10.1016/j.nbt.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biobased materials with promising properties for environmentally friendly applications. Due to high production costs, which are related to the cost of the carbon sources combined with conversion insufficiencies, currently only small quantities are produced. This results in a lack of reliable data on properties and application potential for the variety of polymers from different types of production strains. This study investigated the potential for the production of mcl-PHA from volatile fatty acids (VFA) at a larger scale, given their potential as low-cost and sustainable raw material within a carboxylate-platform based biorefinery. Pseudomonas citronellolis (DSMZ 50332) was chosen as the production strain, and acetic acid was selected as the main carbon and energy source. Nitrogen was limited to trigger polymer production, and a fed-batch process using a pH-stat feeding regime with concentrated acid was established. We report successful production, extraction, and characterization of mcl PHA, obtaining a total of 1.76 kg from two 500-litre scale fermentations. The produced polymer was identified as a copolymer of 3-hydroxydecanoate (60.7%), 3-hydroxyoctanoate (37.3%), and 3-hydroxyhexanoate (2.0%) with a weight average molecular weight (Mw) of 536 kDa. NMR analysis indicates the presence of unsaturated side chains, which may offer additional possibilities for modification. The results confirm that there is a potential to produce significant amounts of mcl-PHA with interesting rubber-like properties from waste-derived VFA.
Collapse
Affiliation(s)
- Milos Kacanski
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria
| | - Franz Stelzer
- Graz University of Technology, Institute for Chemistry and Technology of Materials, Graz, Austria
| | | | | | | | - Markus Neureiter
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria.
| |
Collapse
|
24
|
Yang L, Chen L, Zhao C, Li H, Cai J, Deng Z, Liu M. Biogas slurry recirculation regulates food waste fermentation: Effects and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119101. [PMID: 37748298 DOI: 10.1016/j.jenvman.2023.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Regularly adding biogas slurry into fermentation reactors is an effective way to enhance hydrogen or methane production. However, how this method affects the production of valuable organic acids and alcohols is still being determined. This study investigated the effects of different addition ratios on semi-continuous fermentation reactors using food waste as a substrate. The results showed that an addition ratio of 0.2 increased lactic acid production by 30% with a yield of 0.38 ± 0.01 g/g VS, while a ratio of 0.4 resulted in mixed acid fermentation dominated by n-butyric acid (0.07 ± 0.01 g/g VS) and n-caproic acid (0.06 ± 0.00 g/g VS). The introduction of Bifidobacteriaceae by biogas slurry played a crucial role in increasing lactic acid production. In contrast, exclusive medium-chain fatty acid producers enhanced the synthesis of caproic acid and heptanoic acid via the reverse β-oxidation pathway. Mechanism analyses suggested that microbial community structure and activity, substrate hydrolysis, and cell membrane transport system and structure changed to varying degrees after adding biogas slurry.
Collapse
Affiliation(s)
- Luxin Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liang Chen
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chuyun Zhao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jiabai Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540, Kyoto, Japan
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co. Ltm., Shenzhen, 518055, China
| | - Mengqian Liu
- Shenzhen Originwater Ecological Investment Construction Co., LTD, China
| |
Collapse
|
25
|
Lago A, Greses S, Aboudi K, Moreno I, González-Fernández C. Effect of decoupling hydraulic and solid retention times on carbohydrate-rich residue valorization into carboxylic acids. Sci Rep 2023; 13:20590. [PMID: 37996698 PMCID: PMC10667524 DOI: 10.1038/s41598-023-48097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
This research assessed the effect of decoupling hydraulic retention time (HRT) and solid retention time (SRT) on the production of volatile fatty acids (VFAs) via anaerobic fermentation of beet molasses. The performance of a continuous stirred tank reactor (CSTR, STR = HTR = 30 days) and two anaerobic sequencing batch reactors (AnSBR) with decoupled STR (30 days) and HRT (20 and 10 days) was compared. Previously, a temperature study in batch reactors (25, 35, and 55 °C) revealed 25 °C as the optimal temperature to maximize the VFAs yield and the long-chain VFAs (> C4) production, being selected for the continuous reactors operation. An HRT of 20 days in AnSBR led to an enhancement in bioconversion efficiency into VFAs (55.5% chemical oxygen demand basis) compared to the CSTR (34.9%). In contrast, the CSTR allowed the production of valuable caproic acid (25.4% vs 4.1% w/w of total VFAs in AnSBR). Decreasing further the HRT to 10 days in AnSBR was detrimental in terms of bioconversion efficiency (21.7%) due to primary intermediates (lactate) accumulation. By decoupling HRT and SRT, VFAs were maximized, revealing HRT as an effective tool to drive specific conversion routes (butyrate- or lactate-fermentation).
Collapse
Affiliation(s)
- Adrián Lago
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Kaoutar Aboudi
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Food Technology, Faculty of Sciences (Wine and Agri-Food Research Institute-IVAGRO and International Campus of Excellence-ceiA3), University of Cádiz, Republic Saharawi Avenue, P.O. Box No. 40, 11510, Puerto Real, Cádiz, Spain
| | - Inés Moreno
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, S/N, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, Dr. Mergelina, S/N, 47011, Valladolid, Spain.
| |
Collapse
|
26
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
27
|
Tomás-Pejó E, González-Fernández C, Greses S, Kennes C, Otero-Logilde N, Veiga MC, Bolzonella D, Müller B, Passoth V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:96. [PMID: 37270640 DOI: 10.1186/s13068-023-02349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy.
Collapse
Affiliation(s)
- Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - Nuria Otero-Logilde
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden.
| |
Collapse
|
28
|
Kirubaharan CJ, Wang JW, Abbas SZ, Shah SB, Zhang Y, Wang JX, Yong YC. Self-assembly of cell-embedding reduced graphene oxide/ polypyrrole hydrogel as efficient anode for high-performance microbial fuel cell. CHEMOSPHERE 2023; 318:137937. [PMID: 36925003 DOI: 10.1016/j.chemosphere.2023.137937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 05/23/2023]
Abstract
A three-dimensional (3D) macroporous reduced graphene oxide/polypyrrole (rGO/Ppy) hydrogel assembled by bacterial cells was fabricated and applied for microbial fuel cells. By taking the advantage of electroactive cell-induced bioreduction of graphene oxide and in-situ polymerization of Ppy, a facile self-assembly by Shewanella oneidensis MR-1and in-situ polymerization approach for 3D rGO/Ppy hydrogel preparation was developed. This facile one-step self-assembly process enabled the embedding of living electroactive cells inside the hydrogel electrode, which showed an interconnected 3D macroporous structures with high conductivity and biocompatibility. Electrochemical analysis indicated that the self-assembly of cell-embedding rGO/Ppy hydrogel enhanced the electrochemical activity of the bioelectrode and reduced the electron charge transfer resistance between the cells and the electrode. Impressively, extremely high power output of 3366 ± 42 mW m-2 was achieved from the MFC with cell-embedding rGO/Ppy hydrogel rGO/Ppy, which was 8.6 times of that delivered from the MFC with bare electrode. Further analysis indicated that the increased cell loading by the hydrogel and improved electrochemical activity by the rGO/Ppy composite would be the underlying mechanism for this performance improvement. This study provided a facile approach to fabricate the biocompatible and electrochemical active 3D nanocomposites for MFC, which would also be promising for performance optimization of various bioelectrochemical systems.
Collapse
Affiliation(s)
- C Joseph Kirubaharan
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jian-Wei Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Syed Bilal Shah
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yafei Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jing-Xian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
29
|
Hwan Kang K, Yang M, Raza S, Son H, Park YK, Wang J, Kim YM. Mitigation of N 2O emissions via enhanced denitrification in a biological landfill leachate treatment using external carbon from fermented sludge. CHEMOSPHERE 2023; 335:139114. [PMID: 37270035 DOI: 10.1016/j.chemosphere.2023.139114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
The effects of an external carbon source (C-source) on the mitigation of N2O gas (N2O(g)) emissions from landfill leachate were investigated via enhanced denitrification using anaerobically fermented sewage sludge. Anaerobic fermentation of sewage sludge was conducted under thermophilic conditions with progressively increasing organic loading rates (OLR). Optimal conditions for fermentation were determined based on the efficiency of hydrolysis and the concentrations of sCOD and volatile fatty acids (VFAs) as follows: at an OLR of 40.48 ± 0.77 g COD/L·d with 1.5 days of solid retention time (SRT), 14.68 ± 0.59% of efficiency of hydrolysis, 14.42 ± 0.30 g sCOD/L and 7.85 ± 0.18 g COD/L of VFAs. Analysis of the microbial community in the anaerobic fermentation reactor revealed that degradation of sewage sludge might be potentially affected by proteolytic microorganisms producing VFAs from proteinaceous materials. Sludge-fermentate (SF) retrieved from the anaerobic fermentation reactor was used as the external C-source for denitrification testing. The specific nitrate removal rate (KNR) of the SF-added condition was 7.54 mg NO3-N/g VSS·hr, which was 5.42 and 2.43 times higher than that of raw landfill leachate (LL) and a methanol-added condition, respectively. In the N2O(g) emission test, the liquid phase N2O (N2O-N(l)) of 20.15 mg N/L was emitted as N2O(g) of 19.64 ppmv under only LL-added condition. On the other hand, SF led to the specific N2O(l) reduction rate (KN2O) of 6.70 mg N/g VSS hr, resulting in mitigation of 1.72 times the N2O(g) emission compared to under the only-LL-added condition. The present study revealed that N2O(g) emissions from biological landfill leachate treatment plants can be attenuated by simultaneous reduction of NO3-N and N2O(l) during enhanced denitrification via a stable supply of an external C-source retrieved from anaerobically fermented organic waste.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minseok Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heejong Son
- Busan Water Authority, Gimhae-si, Gyeongsangnam-do, 50804, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
30
|
Yang J, Tang S, Song B, Jiang Y, Zhu W, Zhou W, Yang G. Optimization of integrated anaerobic digestion and pyrolysis for biogas, biochar and bio-oil production from the perspective of energy flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162154. [PMID: 36804988 DOI: 10.1016/j.scitotenv.2023.162154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Valorization of lignocellulosic biomass via anaerobic digestion (AD) is limited by its reluctant structure, leading to a substantial energy remaining in the solid digestate. To mitigate this effect, the integration of AD and pyrolysis has attracted attention in recent years. However, the energy recovery efficiency of this cascading system is still unclear, especially the time node. Herein, a comprehensive evaluation of this integration, using varied AD periods, was conducted, to produce biogas, bio-oil and biochar, and to enhance the energy recovery, from the perspective of energy flow. The result indicated that the accumulative CH4 yields increased from 33.23 to 249.20 mL/g VS as the AD time increased from 3 to 15 days. Pyrolysis of the obtained solid digestate obtained biochar from 28.81 to 35.96 %, while the bio-oil and pyrolysis gas slowly decreased. The highest energy efficiency of 71.9 % with a net energy gain of 2.0 MJ/kg wet biomass was achieved by the coupled system optimization at an AD time of 12 days as suggested by the energy flow analysis. This study provides new insight for the maximal conversion of biomass waste into energy products and provides a new way of recycling it.
Collapse
Affiliation(s)
- Juntao Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Songbiao Tang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; School of civil engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Bing Song
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weihong Zhou
- School of civil engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
31
|
Biodegradation of Oil by a Newly Isolated Strain Acinetobacter junii WCO-9 and Its Comparative Pan-Genome Analysis. Microorganisms 2023; 11:microorganisms11020407. [PMID: 36838372 PMCID: PMC9967506 DOI: 10.3390/microorganisms11020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Waste oil pollution and the treatment of oily waste present a challenge, and the exploitation of microbial resources is a safe and efficient method to resolve these problems. Lipase-producing microorganisms can directly degrade waste oil and promote the degradation of oily waste and, therefore, have very significant research and application value. The isolation of efficient oil-degrading strains is of great practical significance in research into microbial remediation in oil-contaminated environments and for the enrichment of the microbial lipase resource library. In this study, Acinetobacter junii WCO-9, an efficient oil-degrading bacterium, was isolated from an oil-contaminated soil using olive oil as the sole carbon source, and its enzyme activity of ρ-nitrophenyl decanoate (ρ-NPD) decomposition was 3000 U/L. The WCO-9 strain could degrade a variety of edible oils, and its degradation capability was significantly better than that of the control strain, A junii ATCC 17908. Comparative pan-genome and lipid degradation pathway analyses indicated that A. junii isolated from the same environment shared a similar set of core genes and that the species accumulated more specific genes that facilitated resistance to environmental stresses under different environmental conditions. WCO-9 has accumulated a complete set of oil metabolism genes under a long-term oil-contamination environment, and the compact arrangement of abundant lipase and lipase chaperones has further strengthened the ability of the strain to survive in such environments. This is the main reason why WCO-9 is able to degrade oil significantly more effectively than ATCC 17908. In addition, WCO-9 possesses a specific lipase that is not found in homologous strains. In summary, A. junii WCO-9, with a complete triglyceride degradation pathway and the specific lipase gene, has great potential in environmental remediation and lipase for industry.
Collapse
|
32
|
Chavan S, Yadav B, Tyagi RD, Wong JWC, Drogui P. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2023; 369:128323. [PMID: 36400275 DOI: 10.1016/j.biortech.2022.128323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Kitchen waste (KW) is frequently available for free or with a negative cost due to its huge production. It contains a large proportion of organic substances, especially fermentable sugars, which can be used for bioplastic (polyhydroxyalkanoates or PHA) synthesis. Nevertheless, due to the difficulties in processing, various pre-treatments of KW are being investigated to enhance the concentration of simple sugars released during its hydrolysis. The effective use of KW will help in minimizing the issues of its inappropriate disposal. However, the review on KW to bioplastic synthesis is rarely reported in the literature. Hence, this particular review provides a comprehensive summary of the updated research developments in KW valorization and its potency as a feedstock for PHAs synthesis. Additionally, the impacts of KW, its availability, the necessary pre-treatments for the biopolymerization process, as well as the prospects and challenges for industrially generating sustainable PHAs, are critically discussed.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
33
|
Wang L, Liu T, Xu J, Wang Z, Lei Z, Shimizu K, Zhang Z, Yuan T. Enhanced economic benefit of recycling Fe 3O 4 for promotion of volatile fatty acids production in anaerobic fermentation of food waste. BIORESOURCE TECHNOLOGY 2023; 369:128428. [PMID: 36470492 DOI: 10.1016/j.biortech.2022.128428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Fe3O4 addition in anaerobic fermentation of food waste (FW) is promising for enhancing volatile fatty acids (VFAs) production. However, the large amount of Fe3O4 in the digestate fertilizer leads to the waste of resources and possible toxicity to organisms. Thus, this study investigated the feasibility of Fe3O4 recycling for VFAs enhancement in anaerobic fermentation of FW and performed the cost-benefit evaluation of this process. Results revealed that Fe3O4 could be successfully recycled twice with recovery rates of 71.5% and 65.5%, respectively. X-ray diffraction analysis revealed a slight change to the Fe2O3-like structure after 2-time recycling. The VFAs yields were enhanced by 17.2% and 17.0% in Cycles 1 and 2 owing to the enhanced activities of hydrolytic and acid-forming enzymes. The net income of the Fe3O4 recycling process was about 13-fold higher than that of the conventional treatment process, suggesting a promising and economically feasible strategy for enhancing VFAs production.
Collapse
Affiliation(s)
- Lanting Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tianxiao Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jing Xu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhiwei Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Oura-gun Itakura, Gunma 374-0193, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
34
|
Toward the Transition of Agricultural Anaerobic Digesters into Multiproduct Biorefineries. Processes (Basel) 2023. [DOI: 10.3390/pr11020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Anaerobic digestion allows for the proper management of agro-waste, including manure. Currently, more than 18,000 anaerobic digestion plants are under operation in EU, 80% of which are employed in the rural context. Tariff schemes for power generation from biogas produced during anaerobic digestion of agricultural feedstocks in Germany, Italy and Austria are coming to an end and new approaches are needed to exploit the existing infrastructures. Digesters in the rural context can be implemented and modified to be transformed into sustainable multi-feedstock and multi-purpose biorefineries for the production of energy, nutrients, proteins, bio-chemicals such as carboxylic acids, polyesters and proteins. This paper describes how the transition of agricultural anaerobic digesters into multi-products biorefineries can be achieved and what are the potential benefits originating from the application of a pilot scale platform able to treat cow manure and other crop residues while producing volatile fatty acids, polyhydroxyalkanoates, microbial protein material, hydrogen, methane and a concentrated liquid stream rich in nitrogen, potassium and phosphorus.
Collapse
|
35
|
Enhancing Biobased Volatile Fatty Acids Production from Olive Mill Solid Waste by Optimization of pH and Substrate to Inoculum Ratio. Processes (Basel) 2023. [DOI: 10.3390/pr11020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The pH and substrate-to-inoculum ratio (S/I) are important parameters in the anaerobic fermentation of agroindustrial residues, and therefore the optimization of these two parameters is needed for a stable, efficient, and sustainable reactor operation. In this work, the parameters pH (5–9) and S/I (0.5–3 gVS gVS−1) were optimized to produce biobased volatile fatty acids (VFAs) from hydrothermally pretreated olive mill solid waste (HPOMSW). The response variables evaluated in the Doehlert design were total VFAs concentration (tVFAs) (mg L−1) and amounts (%) of isobutyric, butyric, isovaleric, and valeric acids on the VFAs profile. The pH was the variable that most influenced the mixed culture fermentation of HPOMSW, proving to be a key parameter in the process. Microbial community analyses of conditions 1 (S/I = 3 gVS gVS−1 and pH = 7) and 4 (S/I = 1.13 gVS gVS−1 and pH = 5) showed that Proteobacteria and Firmicutes accounted for more than 87% of the total microorganisms identified for both conditions. In addition, the second-order model best fitted the experimental data for the VFAs production at the desirable condition (S/I = 3 gVS gVS−1 and pH = 8).
Collapse
|
36
|
Regueira A, Turunen R, Vuoristo KS, Carballa M, Lema JM, Uusitalo J, Mauricio-Iglesias M. Model-aided targeted volatile fatty acid production from food waste using a defined co-culture microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159521. [PMID: 36270363 DOI: 10.1016/j.scitotenv.2022.159521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The production of volatile fatty acids (VFA) is gaining momentum due to their central role in the emerging carboxylate platform. Particularly, the production of the longest VFA (from butyrate to caproate) is desired due to their increased economic value and easier downstream processing. While the use of undefined microbial cultures is usually preferred with organic waste streams, the use of defined microbial co-culture processes could tackle some of their drawbacks such as poor control over the process outcome, which often leads to low selectivity for the desired products. However, the extensive experimentation needed to design a co-culture system hinders the use of this technology. In this work, a workflow based on the combined use of mathematical models and wet experimentation is proposed to accelerate the design of novel bioprocesses. In particular, a co-culture consisting of Pediococcus pentosaceus and Megaphaera cerevisiae is used to target the production of high-value odd- and even‑carbon VFA. An unstructured kinetic model was developed, calibrated and used to design experiments with the goal of increasing the selectivity for the desired VFA, which were experimentally validated. In the case of even‑carbon VFA, the experimental validation showed an increase of 38 % in caproate yield and, in the case of enhanced odd‑carbon VFA experiments, the yield of butyrate and caproate diminished by 62 % and 94 %, respectively, while propionate became one of the main end products and valerate yield value increased from 0.007 to 0.085 gvalearte per gconsumed sugar. The workflow followed in this work proved to be a sound tool for bioprocess design due to its capacity to explore and design new experiments in silico in a fast way and ability to quickly adapt to new scenarios.
Collapse
Affiliation(s)
- A Regueira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Gent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Gent, Belgium.
| | - R Turunen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, 02044, VTT, Espoo, Finland
| | - K S Vuoristo
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, 02044, VTT, Espoo, Finland
| | - M Carballa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J M Lema
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J Uusitalo
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, 02044, VTT, Espoo, Finland
| | - M Mauricio-Iglesias
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
37
|
Lee J, Chen WH, Park YK. Recent achievements in platform chemical production from food waste. BIORESOURCE TECHNOLOGY 2022; 366:128204. [PMID: 36326551 DOI: 10.1016/j.biortech.2022.128204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Food waste conversion/valorization to produce bio-based chemicals plays a key role toward achieving carbon neutrality by 2050. Food waste valorization to renewable chemicals is thus an attractive and eco-friendly approach to handling food waste. The production of platform chemicals from food waste is crucial for making highly value-added renewable chemicals. However, earlier reviews dealing with food waste valorization to produce value-added chemicals have emphasized the enhancement of methane, hydrogen, and ethanol production. Along these lines, the existing methods of food waste to produce platform chemicals (e.g., volatile fatty acids, glucose, hydroxymethylfurfural, levulinic acid, lactic acid, and succinic acid) through physical, chemical, and enzymatic pretreatments, hydrolysis, fermentation, and hydrothermal conversion are extensively reviewed. Finally, the challenges faced under these methods are discussed, along with suggestions for future research on platform chemical production from food waste.
Collapse
Affiliation(s)
- Jechan Lee
- School of Civil, Architectural Engineering, and Landscape Architecture & Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504 Seoul, South Korea.
| |
Collapse
|
38
|
Le TS, Nguyen PD, Ngo HH, Bui XT, Dang BT, Diels L, Bui HH, Nguyen MT, Le Quang DT. Two-stage anaerobic membrane bioreactor for co-treatment of food waste and kitchen wastewater for biogas production and nutrients recovery. CHEMOSPHERE 2022; 309:136537. [PMID: 36150485 DOI: 10.1016/j.chemosphere.2022.136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasibility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m-3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 °C. Results showed that specific methane production of UASB was 249 ± 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m-3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side-stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 μm) in the ultrafiltration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.
Collapse
Affiliation(s)
- Thanh-Son Le
- Institute for Environment and Resources, 142 To Hien Thanh Street, District 10, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Phuoc-Dan Nguyen
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam; Centre Asiatique de Recherche sur L'Eau (CARE) & Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Xuan-Thanh Bui
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Ludo Diels
- University of Antwerp, Groenenborgerlaan 171 2020 Antwerpen, Belgium
| | - Hong-Ha Bui
- Institute for Tropical Technology and Environmental Protection (VITTEP), Ho Chi Minh City, Viet Nam
| | - Minh-Trung Nguyen
- Centre Asiatique de Recherche sur L'Eau (CARE) & Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Do-Thanh Le Quang
- Centre Asiatique de Recherche sur L'Eau (CARE) & Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| |
Collapse
|
39
|
Lucia C, Laudicina VA, Badalucco L, Galati A, Palazzolo E, Torregrossa M, Viviani G, Corsino SF. Challenges and opportunities for citrus wastewater management and valorisation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115924. [PMID: 36104880 DOI: 10.1016/j.jenvman.2022.115924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Citrus wastewaters (CWWs) are by-products of the citrus fruit transformation process. Currently, more than 700 million of m³ of CWWs per year are produced worldwide. Until nowadays, the management of CWWs is based on a take-make-use-dispose model. Indeed, after being produced within a citrus processing industry, CWWs are subjected to treatment and then discharged into the environment. Now, the European Union is pushing towards a take-make-use-reuse management model, which suggests to provide for the minimization of residual pollutants simultaneously with their exploitation through a biorefinery concept. Indeed, the recovery of energy nutrients and other value-added products held by CWWs may promote environmental sustainability and close the nutrient cycles in line with the circular bio-economy perspective. Unfortunately, knowledge about the benefits and disadvantages of available technologies for the management and valorisation of CWWs are very fragmentary, thus not providing to the scientific community and stakeholders an appropriate approach. Moreover, available studies focus on a specific treatment/valorisation pathway of CWWs and an overall vision is still missing. This review aims to provide an integrated approach for the sustainable management of CWWs to be proposed to company managers and other stakeholders within the legislative boundaries and in line with the circular bio-economy perspective. To this aim, firstly, a concise analysis of citrus wastewater characteristics and the main current regulations on CWWs are reported and discussed. Then, the main technologies with a general comparison of their pros and cons, and alternative pathways for CWWs utilization are presented and discussed. Finally, a focus was paid to the economic feasibility of the solutions proposed to date relating to the recovery of the CWWs for the production of both value-added compounds and agricultural reuse. Based on literature analysis an integrated approach for a sustainable CWWs management is proposed. Such an approach suggests that after chemicals recovery by biorefinery, wastewaters should be directly used for crop irrigation if allowed by regulations or addressed to treatment plant. The latter way should be preferred when CWWs cannot be directly applied to soil due to lack of concomitance between CWWs production and crop needs. In such a way, treated wastewater should be reused after tertiary treatments for crop irrigation, whereas produced sludges should be undergone to dewatering treatment before being reused as organic amendment to improve soil fertility. Finally, this review invite European institutions and each Member State to promote common and specific legislations to overcome the fragmentation of the regulatory framework regarding CWWs reuse.
Collapse
Affiliation(s)
- Caterina Lucia
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy.
| | - Luigi Badalucco
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Antonino Galati
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Eristanna Palazzolo
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| |
Collapse
|
40
|
Possente S, Bertasini D, Rizzioli F, Bolzonella D, Battista F. Volatile fatty acids production from waste rich in carbohydrates: optimization of dark fermentation of pasta by products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Asunis F, Cappai G, Carucci A, De Gioannis G, Dessì P, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D, Trois C. Dark fermentative volatile fatty acids production from food waste: A review of the potential central role in waste biorefineries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1571-1593. [PMID: 35796574 DOI: 10.1177/0734242x221103940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile fatty acids (VFAs) are high-value chemicals that are increasingly demanded worldwide. Biological production via food waste (FW) dark fermentation (DF) is a promising option to achieve the sustainability and environmental benefits typical of biobased chemicals and concurrently manage large amounts of residues. DF has a great potential to play a central role in waste biorefineries due to its ability to hydrolyze and convert complex organic substrates into VFAs that can be used as building blocks for bioproducts, chemicals and fuels. Several challenges must be faced for full-scale implementation, including process optimization to achieve high and stable yields, the development of efficient techniques for selective recovery and the cost-effectiveness of the whole process. This review aims to critically discuss and statistically analyze the existing relationships between process performance and the main variables of concern. Moreover, opportunities, current challenges and perspectives of a FW-based and fermentation-centred biorefinery layout are discussed.
Collapse
Affiliation(s)
- Fabiano Asunis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Giovanna Cappai
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Alessandra Carucci
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Paolo Dessì
- School of Chemistry and Energy Research Centre, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil, Building and Environmental Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Raffaella Pomi
- Department of Civil, Building and Environmental Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Andreina Rossi
- Department of Civil, Building and Environmental Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Daniela Spiga
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Cristina Trois
- Department of Civil Engineering, School of Engineering, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
42
|
Zheng Y, Wang P, Yang X, Zhao L, Ren L, Li J. Metagenomics insight into bioaugmentation mechanism of Propionibacterium acidipropionici during anaerobic acidification of kitchen waste. BIORESOURCE TECHNOLOGY 2022; 362:127843. [PMID: 36031136 DOI: 10.1016/j.biortech.2022.127843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the present study, a biochemical strategy for improving propionic acid production from kitchen waste acidification by bioaugmentation with Propionibacterium acidipropionici (P. acidipropionici) was investigated. When the inoculum of P. acidipropionici was 30% (w/w) of the seeding sludge, the propionic acid production increased by 79.57%. Further, bioaugmentation improved the relative abundance of Firmicute and Actinobacteria. The results of metagenomic analysis further reveal that the ATP-binding cassette (ABC) transporters and all related pathways of Propanoate metabolism (ko00640) were enriched when P. acidipropionici was added. For Propanoate metabolism, most functional genes involved in the conversion from Glycolysis / Gluconeogenesis (ko00010) to Propanoyl-CoA and conversion from Propanoyl-CoA to propionic acid were enhanced after bioaugmentation with P. acidipropionici, thereby promoting propionic acid production. As such, bioaugmentation with P. acidipropionici was effective in the anaerobic acidification of kitchen waste for propionic acid production.
Collapse
Affiliation(s)
- Yi Zheng
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinyu Yang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Liya Zhao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Gottardo M, Bolzonella D, Adele Tuci G, Valentino F, Majone M, Pavan P, Battista F. Producing volatile fatty acids and polyhydroxyalkanoates from foods by-products and waste: A review. BIORESOURCE TECHNOLOGY 2022; 361:127716. [PMID: 35926558 DOI: 10.1016/j.biortech.2022.127716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
Dairy products, extra virgin olive oil, red and white wines are excellent food products, appreciated all around the world. Their productions generate large amounts of by-products which urge for recycling and valorization. Moreover, another abundant waste stream produced in urban context is the Organic Fraction of Municipal Solid Wastes (OFMSW), whose global annual capita production is estimated at 85 kg. The recent environmental policies encourage their exploitation in a biorefinery loop to produce Volatile Fatty Acids (VFAs) and polyhydroxyalkanoates (PHAs). Typically, VFAs yields are high from cheese whey and OFMSW (0.55-0.90 gCOD_VFAs/gCOD), lower for Olive Mill and Winery Wastewaters. The VFAs conversion into PHAs can achieve values in the range 0.4-0.5 gPHA/gVSS for cheese whey and OFMSW, 0.6-0.7 gPHA/gVSS for winery wastewater, and 0.2-0.3 gPHA/gVSS for olive mill wastewaters. These conversion yields allowed to estimate a huge potential annual PHAs production of about 260 M tons.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| | - Giulia Adele Tuci
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Pavan
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
44
|
Hollas CE, Rodrigues HC, Oyadomari VMA, Bolsan AC, Venturin B, Bonassa G, Tápparo DC, Abilhôa HCZ, da Silva JFF, Michelon W, Cavaler JP, Antes FG, Steinmetz RLR, Treichel H, Kunz A. The potential of animal manure management pathways toward a circular economy: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73599-73621. [PMID: 36071358 DOI: 10.1007/s11356-022-22799-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Improper disposal of animal waste is responsible for several environmental problems, causing eutrophication of lakes and rivers, nutrient overload in the soil, and the spread of pathogenic organisms. Despite the potential to cause adverse ecological damage, animal waste can be a valuable source of resources if incorporated into a circular concept. In this sense, new approaches focused on recovery and reuse as substitutes for traditional processes based on removing contaminants in animal manure have gained attention from the scientific community. Based on this, the present work reviewed the literature on the subject, performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals between 1991 and 2021. Of the articles analyzed, the main issues addressed were nitrogen and phosphorus recovery, energy generation, high-value-added products, and water reuse. The energy use of livestock waste stands out since it is characterized as a consolidated solution, unlike other routes still being developed, presenting the economic barrier as the main limiting factor. Analyzing the trend of technological development through the S curve, it was possible to verify that the circular economy in the management of animal waste will enter the maturation phase as of 2036 and decline in 2056, which demonstrates opportunities for the sector's development, where animal waste can be an economic agent, promoting a cleaner and more viable product for a sustainable future.
Collapse
Affiliation(s)
- Camila Ester Hollas
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | - Bruno Venturin
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | - Gabriela Bonassa
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | | | - Jadiane Paola Cavaler
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, RS, 99700-970, Brazil
| | - Airton Kunz
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil.
- Embrapa Suínos E Aves, Concórdia, SC, 89715-899, Brazil.
| |
Collapse
|
45
|
Pomdaeng P, Chu CY, Sripraphaa K, Sintuya H. An accelerated approach of biogas production through a two-stage BioH 2/CH 4 continuous anaerobic digestion system from Napier grass. BIORESOURCE TECHNOLOGY 2022; 361:127709. [PMID: 35905883 DOI: 10.1016/j.biortech.2022.127709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Napier grass found to be greatest potential for gaseous bioenergy production. The biohydrogen and biomethane productions from untreated Napier grass in single and two-stage continuous bioreactors was evaluated using anaerobic digestion technology. The bioreactors were fed Napier grass with organic loading rate (OLR) of 0.5, 1.0 and 2.0 kg VS/m3-d, respectively. The hydrogen, methane, and energy yields were evaluated. The methane yield of single-stage system was 282.08 CH4/g vS with OLR of 0.5 kg VS/m3-d. For two-stage system, the biohydrogen and biomethane yields were 90.06 mL H2/g vS and 367.00 mL CH4/g vS with OLRs of 1.0 and 0.5 kg VS/m3-d, respectively. The energy yields of single and two-stage systems were 13.14 and 10.10 kJ/g vS respectively. The peak OLR of Napier grass was 0.5 kg VS/m3-d for the two-stage system whereas the total energy recovery was 30 % higher than the single-stage system.
Collapse
Affiliation(s)
- Prakaidao Pomdaeng
- Asian Development College for Community Economy and Technology (adiCET), Chiang Mai Rajabhat University, Thailand; Master's Program of Green Energy Science and Technology, Feng Chia University, Taiwan
| | - Chen-Yeon Chu
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taiwan; Institute of Green Products, Feng Chia University, Taiwan.
| | - Kobsak Sripraphaa
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Hathaithip Sintuya
- Asian Development College for Community Economy and Technology (adiCET), Chiang Mai Rajabhat University, Thailand
| |
Collapse
|
46
|
Raj T, Chandrasekhar K, Morya R, Kumar Pandey A, Jung JH, Kumar D, Singhania RR, Kim SH. Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 360:127512. [PMID: 35760245 DOI: 10.1016/j.biortech.2022.127512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Organic waste has increased as the global population and economy have grown exponentially. Food waste (FW) is posing a severe environmental issue because of mismanaged disposal techniques, which frequently result in the squandering of carbohydrate-rich feedstocks. In an advanced valorization strategy, organic material in FW can be used as a viable carbon source for microbial digestion and hence for the generation of value-added compounds. In comparison to traditional feedstocks, a modest pretreatment of the FW stream utilizing chemical, biochemical, or thermochemical techniques can extract bulk of sugars for microbial digestion. Pretreatment produces a large number of toxins and inhibitors that affect bacterial fuel and chemical conversion processes. Thus, the current review scrutinizes the FW structure, pretreatment methods (e.g., physical, chemical, physicochemical, and biological), and various strategies for detoxification before microbial fermentation into renewable chemical production. Technological and commercial challenges and future perspectives for FW integrated biorefineries have also been outlined.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India
| | - Raj Morya
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ju-Hyeong Jung
- Eco Lab Center, SK ecoplant Co. Ltd., Seoul 03143, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
47
|
Steinbrenner J, Oskina A, Müller J, Oechsner H. pH-depended flushing in an automatized batch leach bed reactor system for volatile fatty acid production. BIORESOURCE TECHNOLOGY 2022; 360:127611. [PMID: 35840025 DOI: 10.1016/j.biortech.2022.127611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In a two-stage CSTR system, the anaerobic digestion effluent from the second stage (methane reactor) can be used for pH-control in the acidification reactor. But using batch leach bed reactors, controlling the pH-value is key affecting factor due to dynamic process conditions. The aim of this work was to study, an automatized technical-scale leach bed reactor system for VFA-production with pH-dependent flushing. It was developed and tested at mesophilic and thermophilic operating conditions and compared to a time-controlled flushing mode. The reactors were fed with grass silage and the experiments were run for 35 days. Total cumulative VFA yields up to 270 g kg-1VS were achieved and extracted from the reactor. The methane formation in the leach bed reactors was successfully suppressed with a pH-controlled flushing mode. As a result of the extraction of the VFA from the leach bed reactors, the methane potential decreased by up to 50 %.
Collapse
Affiliation(s)
- Jörg Steinbrenner
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany.
| | - Anastasia Oskina
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany
| | - Joachim Müller
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group (440e), Garbenstraße 9, 70599 Stuttgart, Germany
| | - Hans Oechsner
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany
| |
Collapse
|
48
|
Zhang M, Zhang D, Wei Y, Zhou B, Yan C, Wang D, Liang J, Zhou L. Fungal mash enzymatic pretreatment combined with pH adjusting approach facilitates volatile fatty acids yield via a short-term anaerobic fermentation of food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:1-9. [PMID: 35914374 DOI: 10.1016/j.wasman.2022.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As an alternative for commercial enzyme, crude enzyme of fungal mash could promote food waste (FW) hydrolysis, but its specific effects coupled pH adjusting on the production of volatile fatty acids (VFAs) remains unknown. The crude enzyme produced from an Aspergillus awamori, named complex-amylase (CA), was added to short-term anaerobic system of FW fermentation. Results showed that adding CA significantly improved the solubility and degradability of biodegradable and non-biodegradable organics in FW, where the SCOD concentration with adding CA increased by 116.9% relative to the control but a marginal enhancement on VFAs yield. In contrast, adding CA combined with adjusting pH 8 markedly increased the VFAs production to 32.0 g COD/L, almost 10 times as much as the control. Besides, pH adjusting altered the metabolic pathway from lactate-type to butyrate-type. Adding CA coupled pH adjusting significant increase the component of butyrate compared with pH adjusting alone. Moreover, microbial community analysis indicated that adding CA reinforced proportion of the butyrate-producing bacteria (e.g., Dialister) under basic conditions, thus enhancing the butyrate metabolic pathways. This study demonstrated that fungal mash pretreatment coupled pH conditioning could be an economical way to enhance VFAs yield for FW valorization during anaerobic fermentation.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yidan Wei
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Naning 210095, China.
| |
Collapse
|
49
|
Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition. ENERGIES 2022. [DOI: 10.3390/en15155515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The aim of this work is to optimize biogas production from thermophilic dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by comparing various operational strategies to reduce ammonia inhibition. A pilot-scale plug flow reactor (PFR) operated semi-continuously for 170 days. Three scenarios with different feedstock, namely solely OFMSW, OFMSW supplemented with structural material, and OFMSW altered to have an optimal carbon-to-nitrogen (C/N) ratio, were tested. Specific biogas production (SGP), specific methane production (SMP), the biogas production rate (GPR), and bioenergy recovery were evaluated to assess the process performance. In addition, process stability was monitored to highlight process problems, and digestate was characterized for utilization as fertilizer. The OFMSW and the structural material revealed an unbalanced content of C and N. The ammonia concentration decreased when the optimal C/N ratio was tested and was reduced by 72% if compared with feeding solely OFMSW. In such conditions, optimal biogas production was obtained, operating with an organic loading rate (OLR) equal to 12.7 gVS/(L d). In particular, the SGP result was 361.27 ± 30.52 NLbiogas/kgVS, the GPR was 5.11 NLbiogas/(Lr d), and the potential energy recovery was 8.21 ± 0.9 MJ/kgVS. Nevertheless, the digestate showed an accumulation of heavy metals and low aerobic stability.
Collapse
|
50
|
Awasthi MK, Lukitawesa L, Duan Y, Taherzadeh MJ, Zhang Z. Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors. FUEL 2022; 319:123812. [DOI: 10.1016/j.fuel.2022.123812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|