1
|
Islam MN, Mahdy IH, Chen L, Wu S, He B. Enhanced phosphorus bioavailability and reduced water leachability in dairy manure through hydrothermal carbonization: effect of processing temperature and CaO additive. ENVIRONMENTAL TECHNOLOGY 2025; 46:2394-2404. [PMID: 39581568 DOI: 10.1080/09593330.2024.2430802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Dairy manure, a significant source of phosphorus (P), can potentially cause environmental risk due to P runoff when dairy manure is directly applied to cropland. Thus, there is an increasing interest in mitigating P loss from manure prior to land applications. This study aimed to investigate the potential of hydrochar produced by hydrothermal carbonization (HTC) for P recycling from dairy manure with and without the addition of CaO, focusing on the plant bioavailability, stabilization, and transformation of P in the resultant hydrochar. Hydrochar was prepared under different temperatures (180-240°C). The effect of CaO addition (0-10% of raw manure on dry wt. basis) was also evaluated at 220°C. Results showed that water-soluble P (WSP), a key indicator of P runoff loss, was significantly reduced in hydrochar, particularly with CaO addition. In addition, the plant available P in hydrochar increased with HTC temperature increase till 220°C, which accounted for ∼90% of total P content, then decreased with temperatures higher than 220°C. The addition of CaO slightly reduced plant bioavailability when compared to hydrochar produced at 220°C without additive. The P fractionation and speciation analyses indicated the transformation of P into Ca-associated apatite P. Hydrochar produced at 220°C with 10% CaO addition resulted in a high P recovery (∼85%) and a reduced runoff risk by 97%. The results demonstrate the efficacy of P recycling through hydrochar produced from dairy manure through HTC, which offers a sustainable approach to managing dairy waste while mitigating the potential environmental risks of P runoff.
Collapse
Affiliation(s)
- Mohammad Nazrul Islam
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, USA
- Department of Farm Structure and Environmental Engineering, Khulna Agricultural University, Khulna, Bangladesh
| | - Imran Hussian Mahdy
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Lide Chen
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, Twin Falls, Idaho, USA
| | - Sarah Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Brian He
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
2
|
González-Fernández LA, Medellín-Castillo NA, Navarro-Frómeta AE, Castillo-Ramos V, Sánchez-Polo M, Carrasco-Marín F. Optimization of hydrochar synthesis conditions for enhanced Cd(II) and Pb(II) adsorption in mono and multimetallic systems. ENVIRONMENTAL RESEARCH 2024; 261:119651. [PMID: 39094897 DOI: 10.1016/j.envres.2024.119651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
The characterisation of hydrochars derived from Sargassum biomass collected along the Mexican Caribbean coast reveals their favourable morphology and chemical composition for incorporating metal ions, including Cd(II) and Pb(II). Among the synthesized materials, HCS-3, produced at 180 °C with a 2 h residence time, exhibited superior yield, specific area, carbon content, and capacity for removing Cd(II) and Pb(II). Adsorption equilibrium studies demonstrate the presence of adsorption processes during Cd(II) and Pb(II) retention on HCS-3, with adsorption capacities slightly exceeding 140 and 340 mg g⁻1, respectively. Notably, HCS-3 shows a greater affinity for Pb(II) over Cd(II) when both elements are present concurrently. The physicochemical analysis through FTIR spectroscopy, functional group analysis, point of zero charge determination, SEM/EDS, and other techniques evidenced that HCS-3 possesses favourable characteristics to serve as a heavy metal adsorbent. These findings underscore the efficacy of hydrochars from Sargassum biomass in removing heavy metals, suggesting their potential as superior adsorbents compared to traditional or novel materials, and advising its possible versatility for other pollutants. Utilizing these hydrochars could mitigate the economic and environmental impact of Sargassum biomass by repurposing it for valuable applications.
Collapse
Affiliation(s)
- Lázaro Adrián González-Fernández
- Multidisciplinary Postgraduate Program in Environmental Sciences, Av. Manuel Nava 201, 2nd. Floor, University Zone, San Luis Potosí, 78000, Mexico; Faculty of Science, University of Granada, 18071, Granada, Spain.
| | - Nahum Andrés Medellín-Castillo
- Multidisciplinary Postgraduate Program in Environmental Sciences, Av. Manuel Nava 201, 2nd. Floor, University Zone, San Luis Potosí, 78000, Mexico; Center for Research and Postgraduate Studies, Faculty of Engineering, Universidad Autonoma de San Luis Potosi, Dr. Manuel Nava No. 8, West University Zone, San Luis Potosí, 78290, Mexico.
| | - Amado Enrique Navarro-Frómeta
- Food and Environmental Technology Department, Technological University of Izucar de Matamoros, De Reforma 168, Campestre La Paz, Izúcar de Matamoros, 74420, Mexico
| | | | | | | |
Collapse
|
3
|
Jaffari ZH, Hong J, Park KY. A systematic review of innovations in tannery solid waste treatment: A viable solution for the circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174848. [PMID: 39029754 DOI: 10.1016/j.scitotenv.2024.174848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Amidst growing global demand for leather goods, the efficient conversion of rawhide and skins into durable leather is crucial, yet approximately 80 % of these materials become solid and liquid waste during tannery operations. Improper management of tannery solid waste poses significant environmental risks, contaminating soil, groundwater, and surface water. This review explores thermochemical, biological, and phytoremediation methods for treating tannery solid waste, emphasizing their role in resource recovery and environmental sustainability. Thermochemical techniques like pyrolysis and gasification convert tannery solid waste into biochar, bio-oil, and syngas, which serve as soil amendments, renewable energy sources, or industrial feedstocks. Biological methods such as composting and anaerobic digestion decompose organic tannery solid waste components into nutrient-rich compost and biogas. Phytoremediation uses plants to remediate contaminants, including heavy metals, from tannery solid waste. These methods mitigate environmental pollution and support the leather industry's transition to sustainable practices, crucial for compliance with global regulations. Moreover, the review offers insights into current efforts and perspectives aimed at achieving a zero-waste policy, emphasizing the importance of a circular economy to alleviate the environmental burden associated with tannery operations and ensure their continued sustainability. Finally, a detailed discussion on the current challenges in terms of technology accessibility and economic feasibility was also discussed.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeongseop Hong
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Jalilian M, Bissessur R, Ahmed M, Hsiao A, He QS, Hu Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169823. [PMID: 38199358 DOI: 10.1016/j.scitotenv.2023.169823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.
Collapse
Affiliation(s)
- Milad Jalilian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Amy Hsiao
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
5
|
Dong Y, Wang F, Ye Z, He F, Qin L, Lv G. Acid gas emission and ash fusion characteristics of multi-component leather solid waste incineration in bubbling fluidized bed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122249. [PMID: 37487872 DOI: 10.1016/j.envpol.2023.122249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The tanning sludge (TS) and other tanning solid wastes are produced in significant quantities by the leather industry. To evaluate the combustion properties, acid gaseous pollutant conversion, and ash management, co-firing of TS with various wastes was investigated in a bubbling fluidized bed. TG-FTIR test indicated that tanning solid wastes had superior combustion properties and include more gaseous pollutants than TS. The leather mixed solid waste (LMSW) formed by mixing had better fuel characteristics than TS. The conversion rates of SO2 and HCl of LMSW incineration were 67% and 40%, respectively. The co-combustion of TS and solid wastes reduces the conversion rate of acid gas. Increasing the proportion of high-inorganic chlorine raw material could further reduce the conversion rate and increase the ash fusion temperature appropriately. Because ash and slag were primarily composed of Ca and Fe elements, the addition of calcium carbonate (CaCO3) can increase ash melting point while reducing acid gas emissions. When CaCO3 was added at a calcium to sulfur (Ca/S) ratio of 2, the acid gas emission was reduced by more than 80% and the softening temperature was raised by 90 °C. When Ca/S is greater than 2, the economics of adding CaCO3 decreased.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Fei Wang
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Zhirong Ye
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Fengyu He
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Lishan Qin
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Guojun Lv
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
6
|
Debina B, Baçaoui A, Tamafo Fouégué AD, Kouotou D, Rahman AN, Yaacoubi A, Benoît LB. Hydrothermal carbonization of vegetable-tanned leather shavings (HTC-VTS) for environmental remediation: optimization of process conditions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230302. [PMID: 37859840 PMCID: PMC10582601 DOI: 10.1098/rsos.230302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Herein, the response surface methodology (RSM) has been used to study simultaneously the effects of carbonization temperature, residence time and moisture content on the activated hydrochar preparation-based vegetable-tanned leather shavings (VTS) using hydrothermal carbonization method (HTC). Owing to the desirability chosen, three responses were analysed, namely: the hydrochar yield, iodine and methylene blue numbers. The analysis of experimental results revealed that the hydrochar yield was decreased with increase in carbonization temperature which led to micropores formation inside the hydrochar network. The optimal preparation conditions retained were: 83.10%, 390.44 mg g-1 and 259.63 mg g-1 for the hydrochar yield, iodine and methylene blue number respectively. The hydrochar micrograph showed the presence of external pores, whereas the FTIR analysis recorded the presence of acidic functional groups found on hydrochar surface. The findings revealed that the VTS is a good precursor for the hydrochar preparation useful in the removal of organic and inorganic pollutants in aqueous media.
Collapse
Affiliation(s)
- Baissassou Debina
- Department of Chemistry, Faculty of Science, The University of Maroua, PO Box 814, Maroua, Cameroon
| | - Abdelaziz Baçaoui
- Department of Chemistry, Faculty of Science Semlalia, University of Cady Ayyad, Marrakech, Morocco
| | - Aymard Didier Tamafo Fouégué
- Department of Chemistry, Higher Teacher Training College Bertoua, The University of Bertoua, PO Box 652, Bertoua, Cameroon
| | - Daouda Kouotou
- Physical and Theoretical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Abdoul Ntieche Rahman
- Department of Chemistry, Higher Teacher Training College Bertoua, The University of Bertoua, PO Box 652, Bertoua, Cameroon
| | - Abdelrani Yaacoubi
- Department of Chemistry, Faculty of Science Semlalia, University of Cady Ayyad, Marrakech, Morocco
| | - Loura Benguellah Benoît
- Department of Chemistry, Faculty of Science, The University of Maroua, PO Box 814, Maroua, Cameroon
| |
Collapse
|
7
|
Saira GC, Shanthakumar S. Zero waste discharge in tannery industries - An achievable reality? A recent review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117508. [PMID: 36812686 DOI: 10.1016/j.jenvman.2023.117508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In the recent times, more attention is on industrial waste management due to the unaffordable space for dump yards and landfills and the increased charges for waste dumping. Even though the vegan revolution and plant-based meat products are booming, the traditional slaughterhouses and the wastes produced by them continue to be a concern. Waste valorisation is an established procedure striving to create a closed chain process in industries where there is no refuse. Although a highly polluting industry, slaughterhouse industry wastes have been recycled to economically viable leather since ancient times. However, the tannery industry is causing pollution in par with or even more than the slaughterhouses. Effective management of the liquid and solid wastes from the tannery is of utmost concern because of its toxicity. The hazardous wastes generated enter the food chain, causing long term impacts in the ecosystem. Several leather waste transformation processes are widely used in the industries, and they are yielding good products of economic value. However careful exploration into the processes and products of waste valorisation are often ignored as long as the transformed waste product is of higher value than the waste. The most efficient and environmentally friendly waste management technique should convert the refuse into a value-added utilization without any toxic leftovers. Zero waste concept is an extension of the zero liquid discharge concept, where the solid waste is also treated and reused to such an extent that there is no residue to be sent to the landfill. This review initially presents the existing methods for the de-toxification of tannery wastes and examines the possibility of solid waste management within the tannery industry to attain zero waste discharge.
Collapse
Affiliation(s)
- G C Saira
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Centre for Clean Environment, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
8
|
Luo X, Du H, Zhang X, Tang B, Zhang M, Kang H, Ma Y. Enhanced adsorption and co-adsorption of heavy metals using highly hydrophilicity amine-functionalized magnetic hydrochar supported MIL-53(Fe)-NH 2: performance, kinetics, and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27740-5. [PMID: 37233931 DOI: 10.1007/s11356-023-27740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
It is a "kill two birds with one stone" method to convert invasive plants into hydrochar via hydrothermal carbonization as well as coinciding with 3R rules (reduction, recycling, and reuse). In this work, a series of hydrochars (pristine, modified, and composite) derived from invasive plants Alternanthera philoxeroides (AP) were prepared and applied to the adsorption and co-adsorption of heavy metals (HMs) such as Pb(II), Cr(VI), Cu(II), Cd(II), Zn(II), and Ni(II). The results show that MIL-53(Fe)-NH2- magnetic hydrochar composite (M-HBAP) displayed a strong affinity for HMs, which the maximum adsorption capacities for HMs were 153.80 (Pb(II)), 144.77 (Cr(VI)), 80.58 (Cd(II)), 78.62 (Cu(II)), 50.39 (Zn(II)), and 52.83(Ni(II)) mg/g (c0 = 200 mg/L, t = 24 h, T = 25 ℃, pH = 5,2,6,4,6,5). This may be because the doping of MIL-53(Fe)-NH2 enhanced the surface hydrophilicity of hydrochar, which allows hydrochar to disperse in the water within 0.12 s and possessed excellent dispersibility compared with pristine hydrochar (BAP) and amine-functionalized magnetic modified hydrochar (HBAP). Furthermore, the BET surface area of BAP was improved from 5.63 to 64.10 m2/g after doing MIL-53(Fe)-NH2. M-HBAP shows a strong adsorption effect on the single HMs system (52-153 mg/g), while it decreased significantly (17-62 mg/g) in the mixed HMs system due to the competitive adsorption. Cr(VI) can produce strong electrostatic interaction with M-HBAP, Pb(II) can react with CaC2O4 on the surface of M-HBAP for chemical precipitation, and other HMs can react with functional groups on the surface of M-HBAP for complexation and ion exchange. In addition, five adsorption-desorption cycle experiments and vibrating sample magnetometry (VSM) curves also proved the feasibility of the M-HBAP application.
Collapse
Affiliation(s)
- Xin Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Haiying Du
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
- Chengdu Yike Science and Technology Company Limited, Chengdu, Sichuan, China.
- Sichuan Keshengxin Environmental Technology Company, Chengdu, Sichuan, China.
| | - Xiaochao Zhang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Bo Tang
- Chengdu Yike Science and Technology Company Limited, Chengdu, Sichuan, China
| | - Meichen Zhang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Heng Kang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yanqi Ma
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| |
Collapse
|
9
|
Liu Z. A review on the emerging conversion technology of cellulose, starch, lignin, protein and other organics from vegetable-fruit-based waste. Int J Biol Macromol 2023; 242:124804. [PMID: 37182636 DOI: 10.1016/j.ijbiomac.2023.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
A large amount of vegetable-fruit-based waste (VFBW) belonging to agricultural waste is produced around the world every year, imposing a huge burden on the environment and sustainable development. VFBW contains a lot of water and useful organic compounds (e.g., cellulose, minerals, starch, proteins, organic acids, lipids, and soluble sugars). Taking into account the composition characteristics and circular economy of VFBW, many new emerging conversion technologies for the treatment of VFBW (such as hydrothermal gasification, ultrasound-assisted extraction, and synthesis of bioplastics) have been developed. This review summarizes the current literature discussing the technical parameters, process, mechanism, and characteristics of various emerging conversion methods, as well as analyzing the application, environmental impact, and bio-economy of by-products from the conversion process, to facilitate solutions to the key problems of engineering cases using these methods. The shortcomings of the current study and the direction of future research are also highlighted in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China.
| |
Collapse
|
10
|
Zhou Y, Remón J, Pang X, Jiang Z, Liu H, Ding W. Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163920. [PMID: 37156381 DOI: 10.1016/j.scitotenv.2023.163920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Biomass is a renewable and carbon-neutral resource with good features for producing biofuels, biochemicals, and biomaterials. Among the different technologies developed to date to convert biomass into such commodities, hydrothermal conversion (HC) is a very appealing and sustainable option, affording marketable gaseous (primarily containing H2, CO, CH4, and CO2), liquid (biofuels, aqueous phase carbohydrates, and inorganics), and solid products (energy-dense biofuels (up to 30 MJ/kg) with excellent functionality and strength). Given these prospects, this publication first-time puts together essential information on the HC of lignocellulosic and algal biomasses covering all the steps involved. Particularly, this work reports and comments on the most important properties (e.g., physiochemical and fuel properties) of all these products from a holistic and practical perspective. It also gathers vital information addressing selecting and using different downstream/upgrading processes to convert HC reaction products into marketable biofuels (HHV up to 46 MJ/kg), biochemicals (yield >90 %), and biomaterials (great functionality and surface area up to 3600 m2/g). As a result of this practical vision, this work not only comments on and summarizes the most important properties of these products but also analyzes and discusses present and future applications, establishing an invaluable link between product properties and market needs to push HC technologies transition from the laboratory to the industry. Such a practical and pioneering approach paves the way for the future development, commercialization and industrialization of HC technologies to develop holistic and zero-waste biorefinery processes.
Collapse
Affiliation(s)
- Yingdong Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China; China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain.
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haiteng Liu
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China.
| |
Collapse
|
11
|
Khalaf T, Thangaraj M, Moiduddin K, Swaminathan V, Mian SH, Ahmed F, Aboudaif MK. Performance Evaluation of Input Power of Diode Laser on Machined Leather Specimen in Laser Beam Cutting Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2416. [PMID: 36984299 PMCID: PMC10053591 DOI: 10.3390/ma16062416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Numerous industries, including footwear, handicrafts, and the automobile industry, utilize leather materials. The main goal of this study was to investigate the effect of input power of the diode laser in laser cutting on vegetable chrome tanned buffalo leather to enhance the cutting process. In the present investigation, carbonization, kerf width, and material removal rate (MRR) were taken as performance measures. The diode-based laser beam machining was designed and fabricated with 2.5 W, 5.5 W, and 20 W diode laser to cut vegetable chrome tanned leather. The high-intensity 20 W diode laser produced lower carbonization, lower kerf width, and higher material removal rate compared with the 2.5 W and 5.5 W diodes. This improved performance was due to the adjustable features associated with this diode laser actuation in the form of circular shape with adjustable diameter. A high power with a lower spot size under pulsed mode can produce higher power density. Since a higher power density can establish less interaction time, it produces lower carbonization. Due to the ability of the 20 W diode laser driver to control the beam shape and size, it could produce a lower kerf width and higher MRR. The optimal parameters for cutting chrome vegetable tanned cow leather were a standoff distance of 18 mm, feed rate of 200 mm/min, and duty cycle of 70%.
Collapse
Affiliation(s)
- Tamer Khalaf
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Muthuramalingam Thangaraj
- Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, India
| | - Khaja Moiduddin
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Vasanth Swaminathan
- Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, India
| | - Syed Hammad Mian
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Faraz Ahmed
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | | |
Collapse
|
12
|
Carbonized Leather Waste: A Review and Conductivity Outlook. Polymers (Basel) 2023; 15:polym15041028. [PMID: 36850311 PMCID: PMC9967325 DOI: 10.3390/polym15041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally. In this report, attention has been newly paid to the determination of conductivity and its dependence on carbonization temperature. The resulting powders cannot be compressed into pellets for routine conductivity determination. A new method has been used to follow the resistivity of powders as a function of pressure up to 10 MPa. The conductivity at this pressure increased from 9.4 × 10-8 S cm-1 for carbonization at 500 °C to 5.3 S cm-1 at 1000 °C. The conductivity of the last sample was comparable with conducting polymers such as polypyrrole. The carbonized leather thus has the potential to be used in applications requiring electrical conduction.
Collapse
|
13
|
Swaminathan V, Thangaraj M, George Joseph E, Sulfikar Khadar S, Philip Saji J, Karmiris-Obratański P. Analysis of Carbon Formation on Machined Leather Specimen Using FTIR Technique in Laser Diode Assisted Cutting Process. MATERIALS (BASEL, SWITZERLAND) 2022; 16:148. [PMID: 36614487 PMCID: PMC9821841 DOI: 10.3390/ma16010148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The leather materials are used in a multitude of sectors, including footwear, apparel, handicrafts, and the automotive industry. Due to the radiant heat generated by a laser beam, the laser cutting of leather results in a carbonized cut edge. There is currently no technology available for measuring the carbonization along the contour edges of leather. The purpose of this experimental investigation was to determine the impact of power diode-based laser cutting on the carbonization of machined buffalo leather with the help of a digital microscope to improve the machining process. The ATR-FTIR spectrum was used to analyze the carbon-related functional group in the mid-IR spectrum of carbonized leather samples. It was found that the proposed method can measure the amount of carbon deposition in the cutting zone. The lower amplitude duty cycle with higher feed rate can reduce carbon formation owing to the lower thermal energy distribution. The amplitude (4.5 V), duty cycle (70%) and feed rate (90 mm/s) can produce optimal performance measures.
Collapse
Affiliation(s)
- Vasanth Swaminathan
- Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
| | - Muthuramalingam Thangaraj
- Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
| | - Edwin George Joseph
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA
| | - Suhaib Sulfikar Khadar
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA
| | - Joel Philip Saji
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Panagiotis Karmiris-Obratański
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Cracow, Poland
| |
Collapse
|
14
|
Foong SY, Liew RK, Lee CL, Tan WP, Peng W, Sonne C, Tsang YF, Lam SS. Strategic hazard mitigation of waste furniture boards via pyrolysis: Pyrolysis behavior, mechanisms, and value-added products. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126774. [PMID: 34364214 DOI: 10.1016/j.jhazmat.2021.126774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Waste furniture boards (WFBs) contain hazardous formaldehyde and volatile organic compounds when left unmanaged or improperly disposed through landfilling and open burning. In this study, pyrolysis was examined as a disposal and recovery approach to convert three types of WFBs (i.e., particleboard, plywood, and fiberboard) into value-added chemicals using thermogravimetric analysis coupled with Fourier-transform infrared spectrometry (TG-FTIR) and pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS). TG-FTIR analysis shows that pyrolysis performed at an optimum temperature of 250-550 °C produced volatile products mainly consisting of carbon dioxide, carbon monoxide, and light hydrocarbons, such as methane. Py-GC/MS shows that pyrolysis at different final temperatures and heating rates recovered mainly phenols (25.9-54.7%) for potential use as additives in gasoline, colorants, and food. The calorific value of WFBs ranged from 16 to 18 MJ/kg but the WFBs showed high H/C (1.7-1.8) and O/C (0.8-1.0) ratios that provide low chemical energy during combustion. This result indicates that WFBs are not recommended to be burned directly as fuel, however, they can be pyrolyzed and converted into solid pyrolytic products such as biochar with improved properties for fuel application. Hazardous components, such as cyclopropylmethanol, were removed and converted into value-added compounds, such as 1,4:3,6-dianhydro-d-glucopyranose, for use in pharmaceuticals. These results show that the pyrolysis of WFBs at high temperature and low heating rate is a promising feature to produce value-added chemicals and reduce the formation of harmful chemical species. Thus, the release of hazardous formaldehyde and greenhouse gases into the environment is redirected.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Second floor, Jalan Macalister, Georgetown, Pulau Pinang 10400, Malaysia; Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Chern Leing Lee
- School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Wei Peng Tan
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, Roskilde, DK-4000 Denmark
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong.
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
15
|
Ahmad S, Zhu X, Wei X, Zhang S. Influence of process parameters on hydrothermal modification of soybean residue: Insight into the nutrient, solid biofuel, and thermal properties of hydrochars. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111981. [PMID: 33516098 DOI: 10.1016/j.jenvman.2021.111981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Soybean (SB) solid residue after oil extraction was investigated in a hydrothermal modification process to provide an eco-friendly solution to SB solid waste disposal for an actual environmental management effort. SB hydrochars (HCs) were derived either by conventional heating hydrothermal treatment (HTT) under intense conditions (200, 250, and 300 °C for 2 h) or by microwave-assisted hydrothermal treatment (MHTT) under mild conditions (160, 190, and 220 °C for 1 h). Physicochemical properties of SB HCs and the transformation of nitrogen (N) and phosphorus (P) functionalities during HTT and MHTT were characterized using several tools. Ultimate and XPS analyses elucidated N transformation, e.g., 5.51 wt % N of raw SB residue decreased to 3.48 and 3.51 wt % after HTT and MHTT, respectively. The P bioavailability of raw SB (3.46 mg/g) was improved after HTT (26.7 mg/g) and MHTT (10.9 mg/g), depicting the practical application of HCs for soil amendment. Atomic H/C and O/C ratios of SB HCs decreased as treatment temperature increased. HCs showed credible higher heating value (HHV; 22.3-25.5 MJ/kg for HTT and 20.5-22.1 MJ/kg for MHTT), higher than various low-rank coals. Besides, energy densification and fuel ratio improved in intense conditions. The thermogravimetric analysis showed HCs possessed better thermal stability. The improved performance of SB HCs indicated that HTT and MHTT provided a green environmental route of SB waste management, valorization, and utilization.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xinchao Wei
- School of Engineering, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
16
|
Xu Z, Qi R, Xiong M, Zhang D, Gu H, Chen W. Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors. BIORESOURCE TECHNOLOGY 2021; 321:124450. [PMID: 33264746 DOI: 10.1016/j.biortech.2020.124450] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The cotton textile was an abundant energy resource while was otherwise treated as waste. In this work, surfactants were used as catalysts in the hydrothermal carbonization (HTC) to transform cotton textile waste (CTW) into clean solid fuel. Furthermore, the conversion mechanisms of hydrothermal products during surfactant-assisted HTC were preliminarily proposed. The results showed that Span 80 and sodium dodecylbenzenesulfonate facilitated the transformation of CTW into bio-oil, while Tween 80 was more conducive to the development of pseudo-lignin, which endowed hydrochars higher energy density and updated the fuel quality and combustion behavior. Therefore, the research presented an effective method to convert CTW to clean solid fuel through the HTC treatment combining with surfactants.
Collapse
Affiliation(s)
- Zhihua Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China.
| | - Renzhi Qi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Mengmeng Xiong
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - He Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Weifang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| |
Collapse
|
17
|
Fernández-Sanromán Á, Lama G, Pazos M, Rosales E, Sanromán MÁ. Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. BIORESOURCE TECHNOLOGY 2021; 320:124399. [PMID: 33220547 DOI: 10.1016/j.biortech.2020.124399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization (HTC) is a facile, low-cost and eco-friendly thermal conversion process that has recently gained attention with a growing number of publications (lower 50 in 2000 to over 1500 in 2020). Despite being a promising technology, problems such as operational barriers, complex reaction mechanisms and scaling have to be solved to make it a commercial technology. To bridge this current gap, this review elaborates on the chemistry of the conversion of lignocellulosic biomass. Besides, a comprehensive overview of the influence of the HTC operational conditions (pH, temperature, water:biomass ratio, residence time and water recirculation) are discussed to better understand how hydrochar with desired properties can be efficiently produced. Large-scale examples of the application of HTC are also presented. Current applications of hydrochar in the fields of energy, biocatalysis and environment are reviewed. Finally, economic cost and future prospects are analyzed.
Collapse
Affiliation(s)
- Ángel Fernández-Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Gabriela Lama
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Maria Ángeles Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|
18
|
Bento LR, Melo CA, Ferreira OP, Moreira AB, Mounier S, Piccolo A, Spaccini R, Bisinoti MC. Humic extracts of hydrochar and Amazonian Dark Earth: Molecular characteristics and effects on maize seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135000. [PMID: 31791776 DOI: 10.1016/j.scitotenv.2019.135000] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 05/27/2023]
Abstract
Inspired by the presence of anthropogenic organic matter in highly fertile Amazonian Dark Earth (ADE), which is attributed to the transformation of organic matter over thousands of years, we explored hydrothermal carbonization as an alternative for humic-like substances (HLS) production. Hydrothermal carbonization of sugarcane industry byproducts (bagasse and vinasse) in the presence and absence of H3PO4 afforded HLS, which were isolated and compared with humic substances (HS) isolated from ADE in terms of molecular composition and maize seed germination activity. HLS isolated from sugarcane bagasse hydrochar produced in the presence or absence of H3PO4 comprised both hydrophobic and hydrophilic moieties, differing from other HLS mainly in terms of phenolic content, while HLS isolated from vinasse hydrochar featured hydrophobic structures mainly comprising aliphatic moieties. Compared to that of HLS, the structure of soil-derived HS reflected an increased contribution of fresh organic matter input and, hence, featured a higher content of O-alkyl moieties. HLS derived from lignocellulosic biomass were rich in phenolics and promoted maize seed germination more effectively than HLS comprising alkyl moieties. Thus, HLS isolated from bagasse hydrochar had the highest bioactivity, as the presence of amphiphilic moieties therein seemed to facilitate the release of bioactive molecules from supramolecular structures and stimulate seed germination. Based on the above results, the hydrothermal carbonization of lignocellulosic biomass was concluded to be a viable method of producing amphiphilic HLS for use as plant growth promoters.
Collapse
Affiliation(s)
- Lucas Raimundo Bento
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil; Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055 Portici, Italy
| | - Camila Almeida Melo
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil
| | - Odair Pastor Ferreira
- Laboratório de Materiais Funcionais Avançados (LaMFA), Departamento de Física, Universidade Federal do Ceará, P.O. Box 3151, 60455-900 Fortaleza, Ceará, Brazil
| | - Altair Benedito Moreira
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil
| | - Stéphane Mounier
- Laboratoire MIO, CNRS-IRD-Université de Toulon-AMU - CS 60584, 83041 Toulon, Cedex 9, France
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055 Portici, Italy
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055 Portici, Italy
| | - Márcia Cristina Bisinoti
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil.
| |
Collapse
|