1
|
Kaur H, Chadha P. Assessment of untreated and vermifiltration treated pharmaceutical industrial effluent in fish Channa punctata using biochemical, histopathological, ultrastructural and ATR-FTIR analysis. Sci Rep 2025; 15:14256. [PMID: 40274893 PMCID: PMC12022160 DOI: 10.1038/s41598-025-98068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The unfettered discharge of untreated pharmaceutical effluent into water bodies poses severe menace to aquatic ecosystem. The conventional approaches found to be ineffectual in treating pharmaceutical effluent due to certain issues such as lack of eco-friendliness, cost extensive, also sludge is formed which further increases the expenditure for processing. In context of developing nations, the cost effectiveness and environmental sustainability of vermifiltration technology make it an ideal alternative to conventional wastewater treatment techniques. The current exploration was devised to appraise the effect of untreated and vermifiltration treated effluent in fish Channa punctata through biochemical, histopathological, ultrastructural and ATR-FTIR analysis. Considerably augmented alterations in biochemical parameters (MDA, SOD, CAT and GST) in liver, gill and kidney tissues were scrutinized in untreated group. After 45 days of exposure, 4.35, 4.19 and 3.89 folds hike in MDA content were noticed in liver, gill and kidney tissues of untreated group respectively in contrast to control group. Histopathological examination in fish unveiled to untreated effluent exhibited numerous distortions in liver (necrosis, vacuolization, hepatocyte degeneration), gill (disintegration of primary lamellae, upliftment of gill epithelial layer, fusion of secondary lamellae) and kidney (necrosis, degenerated and constricted glomerulus) tissues. Scanning electron microscopy examination further reiterated the anomalies perceived in histopathological investigation. Further, ATR-FTIR analysis presented more biomolecular alterations in exposed tissues. On contrary, fewer biochemical, histopathological, ultrastructural and biomolecular alterations were noticed in treated effluent exposed fish implies its less toxic nature. The outcomes of the study concluded that vermifiltration technology is trustworthy, economic and sustainable technology for treating different industrial effluents.
Collapse
Affiliation(s)
- Harpal Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pooja Chadha
- Cytogenetics Laboratory, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
2
|
Alterkaoui A, Eskikaya O, Keskinler B, Dizge N, Balakrishnan D, Hiremath P, Naik N. Caustic recovery from caustic-containing polyethylene terephthalate (PET) washing wastewater generated during the recycling of plastic bottles. Sci Rep 2025; 15:2916. [PMID: 39849034 PMCID: PMC11757750 DOI: 10.1038/s41598-025-85365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
To prevent water scarcity, wastewater must be discharged to the surface or groundwater after being treated. Another method is to reuse wastewater in some areas after treatment and evaluate it as much as possible. In this study, it is aimed to recover and reuse the caustic (sodium hydroxide, NaOH) used in the recycling of plastic bottles from polyethylene terephthalate (PET) washing wastewater. Chemical substances used in the industry will be significantly reduced with chemical recovery from wastewater. Ultrafiltration (UP150) and nanofiltration (NP010 and NP030) membranes were used for this purpose in our study. Before using nanofiltration membranes, pre-treatment was performed with coagulation-flocculation process to reduce the pollutant accumulation on the membranes. Different coagulants and flocculants were used to find suitable coagulants and flocculants in pre-treatment. The pre-treated wastewater using aluminum oxide, which supplied the highest chemical oxygen demand (COD) removal (76.0%), was used in a dead-end filtration system to be filtered through NP010 and NP030 membranes at different pressures (10-30 bar). In the same filtration system, raw wastewater was filtered through a UP150 membrane. Among these treatment scenarios, the best method that could remove pollutants and provide NaOH recovery was selected. After each treatment, pH, conductivity, COD, and NaOH analyses were performed. The maximum NaOH recovery (98.6%) was obtained with the UP150 membrane at 5 bar.
Collapse
Affiliation(s)
- Aya Alterkaoui
- Department of Environmental Engineering, Mersin University, 33343, Mersin, Turkey
| | - Ozan Eskikaya
- Department of Energy Systems Engineering, Tarsus University, 33400, Tarsus, Turkey
| | - Bulent Keskinler
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343, Mersin, Turkey
| | - Deepanraj Balakrishnan
- Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, 31952, Al-Khobar, Saudi Arabia.
| | - Pavan Hiremath
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Miito GJ, Alege F, Harrison J, Ndegwa P. Influence of earthworm population density on the performance of vermifiltration for treating liquid dairy manure. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:1176-1187. [PMID: 39256969 DOI: 10.1002/jeq2.20626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
The dairy industry has seen notable changes in the last couple of decades, including increased size of farms and regional concentrations of dairies. This has resulted in substantial manure production in small geographical areas, raising environmental concerns. Vermifiltration, an emerging low cost and eco-friendly technology for treating wastewater, was evaluated to assess the influence of earthworm population density on the performance of a laboratory-scale vermifilter treating liquid dairy manure. We monitored the reduction efficiencies of various components, including total nitrogen (TN), ammonium-nitrogen (NH4 +-N), nitrate-nitrogen (NO3 --N), total phosphorus (TP), orthophosphate (ortho-P), chemical oxygen demand (COD), total solids (TS), and total suspended solids (TSS), in treated dairy wastewater. This evaluation was conducted at 0; 5000; 10,000; and 15,000 earthworm densities per cubic meter (m-3) of bedding. Reduction efficiencies of 41%-89% (TN), 46%-86% (NH4 +-N), 34%-74% (NO3 --N), 3%-17% (TP), 18%-38% (ortho-P), 35%-66% (COD), 24%-54% (TS), and 50%-87% (TSS) were observed with higher earthworm densities exhibiting greater reduction efficiencies. Notably, the densities of Eisenia fetida at 10,000 and 15,000 earthworms m-3 showed no significant difference in vermifilter performance. This suggests that increasing the Eisenia fetida density beyond 10,000 earthworms m-3 may not further improve the vermifilter's performance in treating dairy wastewater. This study's findings indicate that using vermifiltration with an earthworm population density of 10,000 earthworms m-3 could effectively mitigate the negative environmental impact of liquid dairy wastewater at a low cost and sustainably.
Collapse
Affiliation(s)
- Gilbert J Miito
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| | - Femi Alege
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| | - Joe Harrison
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Pius Ndegwa
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Cucina M, Castro L, Font-Pomarol J, Escalante H, Muñoz-Muñoz A, Ferrer I, Garfí M. Vermifiltration as a green solution to promote digestate reuse in agriculture in small-scale farms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122164. [PMID: 39142104 DOI: 10.1016/j.jenvman.2024.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Digestates from low-tech digesters need to be post-treated to ensure their safe agricultural reuse. This study evaluated, for the first time, vermifiltration as a post-treatment for the digestate from a low-tech digester implemented in a small-scale farm, treating cattle manure and cheese whey under psychrophilic conditions. Vermifiltration performance was monitored in terms of solids, organic matter, nutrients, and pathogens removal efficiency. In addition, the growth of earthworms (Eisenia foetida) and their role in the process was evaluated. Finally, the vermicompost and the effluent of the vermifilter were characterized in order to assess their potential reuse in agriculture. Vermifilters showed high removal efficiency of chemical oxygen demand (55-90%), total solids (60-80%), ammonium nitrogen (83-97%), and phosphate-P (28-49%). Earthworms effectively grew and reproduced on digestate (i.e. earthworms number increased by 183%), enhancing the vermifiltration performance, while reducing clogging and odour-related issues. Both the vermicompost and effluent produced complied with legislation limits established for soil improvers and wastewater for fertigation, respectively. Indeed, there was an absence of pathogens and non-detectable heavy metals concentrations. Vermifiltration may be thus considered a suitable post-treatment option for the digestate from low-tech digesters, allowing for its safe agricultural reuse and boosting the circular bioeconomy in small-scale farms.
Collapse
Affiliation(s)
- Mirko Cucina
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean, Via della Madonna Alta 128, 06123, Perugia, Italy
| | - Liliana Castro
- Centro de Estudios e Investigaciones Ambientales (CEIAM), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga, Colombia
| | - Jana Font-Pomarol
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya · BarcelonaTech, c/ Jordi Girona, 1-3, Building D, E-08034, Barcelona, Spain
| | - Humberto Escalante
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander. Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Alexander Muñoz-Muñoz
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander. Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya · BarcelonaTech, c/ Jordi Girona, 1-3, Building D, E-08034, Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya · BarcelonaTech, c/ Jordi Girona, 1-3, Building D, E-08034, Barcelona, Spain.
| |
Collapse
|
5
|
Singh R, Gulliver JS. Understanding the role of biofilms and estimation of life-span of a tire derived aggregates-based underground stormwater treatment system. WATER RESEARCH 2024; 257:121716. [PMID: 38759611 DOI: 10.1016/j.watres.2024.121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The importance of biofilm in tire derived aggregates (TDA) based underground systems has been investigated in this paper, to assess the utilization of tire waste as a cost-effective and sustainable resource for stormwater treatment. The primary objective of this study is to look into the role of biofilms in preventing metal leaching from a TDA based stormwater treatment system and to estimate the life span of a TDA based stormwater treatment system. TDA subjected to different influents to promote or limit the growth of biofilms were analyzed for their leaching and adsorption potential for fifteen different metals through 72 flushes, which is representative of roughly 9 years of TDA exposure to storm events in the upper Midwest USA. Biofilm growth on a manufacturing byproduct (wire exposed-TDA) was higher than on the traditional TDA. The presence of biofilm on TDA had a minor impact on orthophosphate adsorption as observed in a previous study conducted by the authors. However, metals such as iron, zinc and copper, which were previously a concern, had substantially lower leaching into the stored runoff. In addition, the orthophosphate removal from runoff by TDA with a biofilm through 72 flushes indicates that TDA based underground systems can have orthophosphate removal life span beyond 8-9 years. Thus, TDA with biofilms in an underground storage/infiltration chamber has the potential to establish itself as a sustainable, cost-effective, and long life-span alternative for stormwater remediation of orthophosphate pollution without leaching of metals.
Collapse
Affiliation(s)
- Rajneesh Singh
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA; Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, India.
| | - John S Gulliver
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA; Department of Civil, Environmental and Geo- Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Dey Chowdhury S, Bhunia P, Surampalli RY, Zhang TC. Effects of bed depths and the ratio of aerobic to anaerobic zone on the performance of horizontal subsurface flow macrophyte-assisted high-rate vermifilters treating synthetic brewery wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10993. [PMID: 38348629 DOI: 10.1002/wer.10993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Effects of total vermibed depth, as well as the ratio of aerobic (the unsubmerged) to anaerobic (the submerged) zone on the performance of the horizontal subsurface flow macrophyte-assisted vermifilters (HSSF-MAVFs) treating synthetic brewery wastewater at a higher hydraulic loading rate (HLR), were investigated for the first time. Results showed that the HSSF-MAVF with a 50 cm total and 18 cm submerged vermibed depth yielded the optimum removal of the pollutants, ensuring a (91.2 ± 1.7)%, (81.8 ± 1.9)%, (67.4 ± 3.9)%, and (63.1 ± 2.3)% removal of chemical oxygen demand (COD), ammonium N (NH4 + -N), total N (TN), and organic N, respectively, whereas there was an increase of (142 ± 6.3)% in the effluent nitrate-N (NO3 - -N) than that in the influent. At the optimum condition, the effluent concentrations of all the pollutants including COD, NH4 + -N, NO3 - -N, TN, and organic N were well below the surface water discharge standards specified by the Central Pollution Control Board (CPCB), and thus, the effluent of the HSSF-MAVF could be safely discharged into the surface water bodies. PRACTITIONER POINTS: Total vermibed depth of HSSF-MAVFs was optimized for organic and nitrogen removal. HSSF-MAVFs were subjected to the higher HLR of synthetic brewery wastewater. Removal of COD and NH4 + -N was decreased with the increase in submerged bed depth. Removal of organic N and TN was increased with the increase in submerged bed depth. Total/unsubmerged bed depth had a positive impact on the organic and N removal.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Puspendu Bhunia
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Rao Y Surampalli
- Global Institute for Energy, Environment, and Sustainability, Lenexa, Kansas, USA
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, Scott Campus (Omaha), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
7
|
Xing M, Zhao R, Yang G, Li Z, Sun Y, Xue Z. Elimination of antibiotic-resistant bacteria and resistance genes by earthworms during vermifiltration treatment of excess sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7853-7871. [PMID: 38170354 DOI: 10.1007/s11356-023-31287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Vermifiltration (VF) and a conventional biofilter (BF, no earthworm) were investigated by metagenomics to evaluate the removal rates of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and class 1 integron-integrase (intI1), as well as the impact mechanism in combination with the microbial community. According to the findings of qPCR and metagenomics, the VF facilitated greater removal rates of ARGs (78.83% ± 17.37%) and ARB (48.23% ± 2.69%) than the BF (56.33% ± 14.93%, 20.21% ± 6.27%). Compared to the control, the higher biological activity of the VF induced an increase of over 60% in the inhibitory effect of earthworm coelomic fluid on ARB. The removal rates of ARGs by earthworm guts also reached over 22%. In addition, earthworms enhanced the decomposition of refractory organics, toxic, and harmful organics, which led to a lower selective pressure on ARGs and ARB. It provides a strategy for reducing resistant pollution in sewage treatment plants and recognizing the harmless stability of sludge.
Collapse
Affiliation(s)
- Meiyan Xing
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China.
| | - Ran Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Gege Yang
- Tongji Architectural Design (Group) Co., Ltd, Shanghai, 200092, China
| | - Zhan Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Yuzhu Sun
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Zitao Xue
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| |
Collapse
|
8
|
Nsiah-Gyambibi R, Acheampong E, Von-Kiti E, Larbi Ayisi C. Performance evaluation of developed macrophyte-assisted vermifiltration system designed with varied macrophytes and earthworm species for domestic wastewater treatment. PLoS One 2023; 18:e0281953. [PMID: 36857364 PMCID: PMC9977024 DOI: 10.1371/journal.pone.0281953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/04/2023] [Indexed: 03/02/2023] Open
Abstract
Development of sustainable technology to treat domestic wastewater with added advantages of cost reduction and improved handling efficiency is crucial in developing countries. This is because, domestic wastewater from households are stored in septic tanks and are poorly treated prior discharge. This study developed a macrophyte-assisted vermifiltration (MAV) system to treat domestic wastewater. The MAV system is an integrated approach of macrophytes and earthworms in a vermifiltration and complex physicochemical mechanism processes. The use of different macrophyte and earthworm species was hypothesized by the study to affect and vary the treatment performance of the developed MAV. The study therefore aimed to evaluate the treatment performance of the developed MAV when three varied macrophyte species (Eichhornia crassopes, Pistia stratiotes and Spirodela sp.) and two varied earthworm species (Eisenia fetida and Eudrilus eugeniae) were used to design the treatment system. Treated effluents were collected every 48hours within two weeks for physico-chemical, pathogen and helminth analysis. The contaminants (Ntot, NH3, NO3-N and Ptot) in the wastewater were high (>50 mgL-1, >5 mgL-1, >1 mgL-1 and >20 mgL-1 respectively). Results revealed that the developed MAV systems were effective in the removal of solids (>60%), nutrients (>60%) and pathogens (>90%). In most cases, there were no significant differences between the selected varied macrophytes and earthworms in the treatment performances. Results therefore demonstrated that the selected macrophytes combined with the earthworm species were suitable when used in the development of the MAV system. Developing the MAV with the selected varied macrophyte and earthworm species did not only contribute to the treatment of the wastewater, but also improved the vermiculture. Eudrilus eugeniae however demonstrated higher biomass gain (5-10% more) compared to Eisenia fetida.
Collapse
Affiliation(s)
- Rapheal Nsiah-Gyambibi
- Department of Civil Engineering, Regional Water and Environmental Sanitation Centre, UPO, College of Engineering Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Institute of Industrial Research, Council for Scientific and Industrial Research, Accra, Ghana
- * E-mail: ,
| | - Emmanuel Acheampong
- Institute of Industrial Research, Council for Scientific and Industrial Research, Accra, Ghana
| | - Elizabeth Von-Kiti
- Institute of Industrial Research, Council for Scientific and Industrial Research, Accra, Ghana
| | - Christian Larbi Ayisi
- Department of Water Resource and Sustainable Development, School of Sustainable Development, PMB, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
9
|
Das P, Paul K. A review on integrated vermifiltration as a sustainable treatment method for wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116974. [PMID: 36516714 DOI: 10.1016/j.jenvman.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
To overcome the scarcity of fresh water, concerned authorities worldwide are bound to think about remediation and reuse of domestic and industrial effluents. The present review study on integrated vermifiltrationwith hydroponic system explains mechanism followed in system and presently the reutilization and remediation of domestic and industrial effluents. It explains the result of integrated vermifiltration and recognizes factors such as clogging, hydraulic loading rate or rain on bed, salinity, and sunlight affect the efficiency of system. The study also focuses on limitations associated with vermifiltration and also suggestions have been made for enhancing the sustainability and performance of existing practices. After literature review, integrated vermifiltration with hydroponic system considered as a natural and eco-friendly method for treating polluted water. Active zone of vermifilter remove organics, nitrate from nitrogen, total and dissolved phosphorus from wastewater. The vermifiltration and integrated vermifiltration with macrophyte able remove chemical oxygen demand (COD) in the range (53.7%-64.4%) and (75.5%-82.8%) respectively. The integrated system reduces land consumption and wastewater can be reutilized in cultivation.
Collapse
Affiliation(s)
- Pragyan Das
- Department of Civil Engineering, National Institute of Technology, Rourkela, 769008, India.
| | - KakoliKarar Paul
- Department of Civil Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
10
|
Namaldi O, Azgin ST. Evaluation of the treatment performance and reuse potential in agriculture of organized industrial zone (OIZ) wastewater through an innovative vermifiltration approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116865. [PMID: 36450165 DOI: 10.1016/j.jenvman.2022.116865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Vermifiltration (VF) is a natural and sustainable biofilter that has many advantages, including being energy-free, cost-effective, and allowing ease of application and maintenance. In this study, the effectiveness of a lab-scale VF system was assessed by the removal efficiency of total suspended solids, electrical conductivity, chemical oxygen demand, total nitrogen, total phosphorus, fecal coliform, and heavy metals in organized industrial zones (OIZ) and domestic wastewater (DW) for the first time. Additionally, the reuse suitability of the treated wastewater was determined by comparing different countries' and global irrigational criteria. The lab systems were built with four layers: one worm-bed and three varying filtering materials, and operated at an optimum hydraulic loading rate of 1.8-2 m3/m2/day for 45 days with Eisenia fetida as the earthworm species. The results demonstrated that removal efficiencies of total suspended solids and chemical oxygen demand were found to be 95% and 80% in OIZ wastewater and 90% and 88% in DW, respectively. Total nitrogen and total phosphorus were removed at rates of 69% and 67% in OIZ wastewater, respectively, and 84% and 74% in DW. Besides, the VF system has shown satisfactory removal performance for heavy metals ranging from 51% to 77% in OIZ wastewater that has met Turkish national wastewater discharge limits. Although the final characterization of treated wastewater was suitable, heavy metal and fecal coliform levels have not met many countries' irrigation water quality criteria. To meet global irrigation standards and to enhance the VF performance, further experimental studies should be carried out, including parameters such as bed material type in the reactor, worm type, and different operating conditions.
Collapse
Affiliation(s)
- Onur Namaldi
- Department of Environment Engineering, Erciyes University, 38039, Kayseri, Turkey.
| | - Sukru Taner Azgin
- Department of Environment Engineering, Erciyes University, 38039, Kayseri, Turkey; Energy Conversions Research and Application Center, Erciyes University, 38039, Kayseri, Turkey.
| |
Collapse
|
11
|
Suhaib KH, Bhunia P. Clogging index: A tool to quantify filter bed clogging in horizontal subsurface flow macrophyte-assisted vermifilter. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10821. [PMID: 36601801 DOI: 10.1002/wer.10821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to develop a mathematical index for quantifying filter bed clogging in horizontal subsurface flow macrophyte-assisted vermifilter (HSSF-MAVF). The developed clogging index (CI) simulates the porosity reduction in the HSSF-MAVF bed due to the combined actions of deposition of suspended solids, biofilm generation, and plant growth. A series of experiments based on HSSF-MAVF were conducted to examine the key parameters related to clogging of the vermifilter such as hydraulic loading rates (HLR), organic strength (COD), and total suspended solid (TSS) at different operating conditions for the treatment of synthetic dairy wastewaters. The index was then validated using the data collected from the experiments. The predicted CI was observed to be highly capable of replicating the clogging phenomenon, as observed in this experimental study within the error range of 2-8%. Based on the visual observation and value of CI, filter beds can be grouped as unclogged (CI < 25), partially clogged (25 < CI < 40), and clogged (40 < CI). Clogged filter beds with higher CI resulted in a 5-15% reduction in the COD removal performance of HSSF-MAVFs. Moreover, the CI also envisages one to understand the individual contributions of biofilm growth, suspended solid deposition, and plant roots growth on the filter bed clogging during the operation of vermifilter and thus helps in deciding the proper setting of operational conditions to prolong the time of HSSF-MAVF operations within the acceptable range of bed materials clogging. PRACTITIONER POINTS: A mathematical index was developed to quantify clogging of the HSSF-MAVF. Flow is the most sensitive parameter based upon the sensitivity analysis. Dairy wastewater was used for the validation of CI.
Collapse
Affiliation(s)
- K Hasim Suhaib
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Puspendu Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Dey Chowdhury S, Bhunia P, Surampalli RY. Vermifiltration: Strategies and techniques to enhance the organic and nutrient removal performance from wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10826. [PMID: 36518049 DOI: 10.1002/wer.10826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The vermifiltration (VF) technology has gained significant attention as a green alternative for remediating domestic and industrial wastewater over the last few decades. Of late, the implementation of various modifications to the orthodox VF technology, including tweaks in the design and operation of the vermifilters, has been portrayed in the available literature. However, owing to the scatteredness of the available information, the knowledge regarding the execution of the modified vermifilters is still inadequate. Hence, an effort has been made to comprehensively overview the innovative strategies and techniques adopted to improve the organic and nutrient removal potential of the VFs from wastewater. In addition, future perspectives have been recognized to design more efficient and sustainable VFs. This review explores more of such novel tactics to improve the performance of the VF technology regarding organic and nutrient removal from wastewater. PRACTITIONER POINTS: Innovative strategies and techniques implemented to VF technology were comprehensively overviewed. Design modification and advantages of each innovation were highlighted. The pollutant removal performance of every modification was emphasized. Modified vermifilters were better than the conventional vermifilters in terms of organic and nutrient removal from the wastewater.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Puspendu Bhunia
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Rao Y Surampalli
- Global Institute for Energy, Environment, and Sustainability, Lenexa, Kansas, USA
| |
Collapse
|
13
|
Miito GJ, Ndegwa PM, Alege FP, Coulibaly SS, Harrison J. Efficacy of a vermifilter at mitigating greenhouse gases and ammonia emissions from dairy wastewater. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:644-655. [PMID: 35507691 DOI: 10.1002/jeq2.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Dairy effluent is a potential source of gaseous pollutants associated with global warming and soil acidification. Mitigating such emissions during handling and storage requires substantial financial and labor input. This study evaluated a low-cost technology for mitigating gaseous emissions from dairy wastewater. For 9 mo, a pilot-scale vermifilter system installed on a commercial dairy farm was studied. Bimonthly samples of the dairy wastewater influent and effluent from the vermifilter system were collected. These samples' potential gas emissions (ammonia [NH3 ], methane [CH4 ], carbon dioxide [CO2 ], and nitrous oxide [N2 O]) were measured using a closed-loop dynamic flux chamber method. Results indicated the following reductions in emissions of these gases by the vermifilter system: 84-100% for NH3 , 58-82% for CO2 , and 95-100% for CH4 . Nitrous oxide emissions were mainly below our instrument detection limits and were thus not reported. The vermifilter showed the potential of reducing the global warming potential from the dairy wastewater by up to 100%. This study further indicated that higher ambient temperatures led to higher emissions of CH4 (R2 = .56) and NH3 (R2 = .53) from untreated dairy wastewater. Overall, the vermifilter system has potential to mitigate gaseous emissions from dairy wastewater.
Collapse
Affiliation(s)
- Gilbert J Miito
- Dep. of Biological Systems Engineering, Washington State Univ., Pullman, WA, 99164, USA
| | - Pius M Ndegwa
- Dep. of Biological Systems Engineering, Washington State Univ., Pullman, WA, 99164, USA
| | | | - Sifolo S Coulibaly
- Dep. of Biological Sciences, Univ. Peleforo Gon Coulibaly, Korhogo, BP, 1328, Côte d'Ivoire
| | - Joe Harrison
- Dep. of Animal Sciences, Washington State Univ., Pullman, WA, 99164, USA
| |
Collapse
|
14
|
Tahar A, Feighan J, Hannon L, Clifford E. Optimization of operational conditions and performances of pilot scale lumbrifiltration for real raw municipal wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32717-32731. [PMID: 35015226 DOI: 10.1007/s11356-021-18259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Lumbrifiltration (LF) has been promoted as a low-cost, low maintenance and efficient solution for domestic and municipal wastewater treatment especially. However, there have been limited studies investigating the optimal operating conditions and long-term performances of LF systems (especially in temperate climates). The key objectives of this study were to (i) to present an outcome of the operating conditions and associated performance of LF the systems studied in the literature regarding removal efficiencies for nutrients and organic matter (OM) in municipal and domestic wastewater (WW) treatment contexts, (ii) to generate long term and reliable results on the potential performances of LF systems for the treatment of real municipal WW (for both OM and nutrients), (iii) to optimize operational conditions such as active layer height, earthworms density, HLR and earthworms type, conditions for which it is still unclear from the current literature which are optimal, and (iv) to assess the performances of the LF in a "temperate climate" context. Overall, LF systems showed high removal efficiencies for organic matter and nutrients for all the operating conditions tested. The study also confirmed the positive impact of earthworms in achieving high level of nitrification of ammonium after a short start-up period. The system operation and performances were maintained without maintenance for the whole duration of the study (over 250 days), showing the potential for keeping high level of performances for long-term periods. Recommendations are given in relation to LF system design such as optimal active layer height and hydraulic loading rate. The study also demonstrated the applicability and potential of Dendrobaena veneta as an alternative to Eisenia fetida (the latter generally being used in previous studies but are less available in some areas of Europe) for application in municipal wastewater treatment by LF.
Collapse
Affiliation(s)
- Alexandre Tahar
- Department of Civil Engineering, School of Engineering, NUI Galway, Alice Perry Engineering Building, National University of Ireland, Galway, Ireland.
| | - James Feighan
- Department of Civil Engineering, School of Engineering, NUI Galway, Alice Perry Engineering Building, National University of Ireland, Galway, Ireland
| | - Louise Hannon
- Department of Civil Engineering, School of Engineering, NUI Galway, Alice Perry Engineering Building, National University of Ireland, Galway, Ireland
| | - Eoghan Clifford
- Department of Civil Engineering, School of Engineering, NUI Galway, Alice Perry Engineering Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Characterization of Ziziphus lotus’ Activated Carbon and Evaluation of Its Adsorption Potential. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:8502211. [PMID: 35509891 PMCID: PMC9061054 DOI: 10.1155/2022/8502211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
Abstract
This study aims to prepare activated carbon from an interesting biomaterial, corresponding to the cores of Ziziphus lotus, for the first time to the best of our knowledge, according to a manufacturing process based on its chemical and thermal activation. These cores were chemically activated by sulfuric acid for 24 h and then carbonized at 500°C for 2 hours. The obtained activated carbon was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. The adsorption of methylene blue (MB) on the activated carbon was evaluated, by Langmuir and Freundlich models examination, in order to explain the adsorption efficiency in a systematic and scientific way. Moreover, pseudo-first-order and pseudo-second-order kinetic models were used to identify the mechanisms of this adsorption process. The characterization results showed an important porosity (pore sizes ranging from 10 to 45 µm), a surface structure having acid groups and carboxylic functions, and a specific surface of 749.6 m2/g. Results of the MB adsorption showed that this process is very fast as more than 80% of MB is adsorbed during the first 20 minutes. In addition, increasing the contact time and temperature improves the MB removal process efficiency. Moreover, this adsorption's kinetic modeling follows the pseudo-second-order model. Furthermore, data on the adsorption isotherm showed a maximum adsorption capacity of 14.493 mg/g and fit better with the Langmuir model. The thermodynamic parameters (∆G0, ∆S0, and ∆H0) indicate that the adsorption process is endothermic and spontaneous. Therefore, Ziziphus lotus can be used as a low-cost available material to prepare a high-quality activated carbon having a promising potential in the wastewater treatment.
Collapse
|
16
|
Karla MR, Alejandra VAC, Lenys F, Patricio EM. Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151115. [PMID: 34756908 DOI: 10.1016/j.scitotenv.2021.151115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Biofilters coupled to microbial fuel cells (MFCs) are the most integral treatment technology that generate water-energy nexus for rural zones sanitation. Moreover, biofilters coupled to MFCs, using organic residues as bed filter have not been studied. Therefore, the aim of this study was comparatively to evaluate biofilters based on corncobs/sawdust coupled to MFCs treating domestic wastewater. Biofilters based on corncobs/sawdust (50%, v/v) as bed filter incorporating microorganisms (BM), earthworms/microorganisms (BEM, Eisenia foetida Savigny), plants/microorganisms (BPM, Canna indica L.), and all organisms (HB) were evaluated. These biofilters were coupled to 2 electrochemical systems based on graphite cathodes with graphite (G)/stainless-steel mesh (M) anodes. Three nominal hydraulic loading rates (0.3, 0.5, and 1 m3 m-2 d-1) evaluating removal of organic matter, nutrients and pathogens were monitored. Voltage within electrochemical systems also were registered. Results demonstrated that biofilters based on corncob/wood chips coupled to MFCs reach mean organic matter removal efficiencies over 80% (COD: 86%, BOD5: 91%). Nevertheless, HBG was the most efficient (up to 6%) biofiltration technology monitored. The biofiltration typologies studied reported removal efficiencies of nutrients (NH3-N, PO43-) and pathogens (fecal coliforms) up to 99%. Specifically, BMG and HBG were the biofiltration typologies that registered the highest energy recovery (up to 104 mV, 29 mW m-2). Within all the biofiltration typologies studied, the hybrid biofiltration coupled to MFCs using graphite (HBG) is the one that offers the best water-energy nexus conditions, thanks to its biological complexity.
Collapse
Affiliation(s)
- Montenegro-Rosero Karla
- Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Ecuador 3659, 9170124, Estación Central, Santiago, Chile; Departamento de Ingeniería Civil y Ambiental, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 17-01-2759, Quito, Ecuador
| | - Villamar-Ayala Cristina Alejandra
- Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Ecuador 3659, 9170124, Estación Central, Santiago, Chile.
| | - Fernández Lenys
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador
| | - Espinoza-Montero Patricio
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador
| |
Collapse
|
17
|
Liew CS, Yunus NM, Chidi BS, Lam MK, Goh PS, Mohamad M, Sin JC, Lam SM, Lim JW, Lam SS. A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126995. [PMID: 34482076 DOI: 10.1016/j.jhazmat.2021.126995] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The high investment cost required by modern treatment technologies of hazardous sewage sludge such as incineration and anaerobic digestion have discouraged their application by many developing countries. Hence, this review elucidates the status, performances and limitations of two low-cost methods for biological treatment of hazardous sewage sludge, employing vermicomposting and black soldier fly larvae (BSFL). Their performances in terms of carbon recovery, nitrogen recovery, mass reduction, pathogen destruction and heavy metal stabilization were assessed alongside with the mature anaerobic digestion method. It was revealed that vermicomposting and BSFL were on par with anaerobic digestion for carbon recovery, nitrogen recovery and mass reduction. Thermophilic anaerobic digestion was found superior in pathogen destruction because of its high operational temperature. Anaerobic digestion also had proven its ability to stabilize heavy metals, but no conclusive finding could confirm similar application from vermicomposting or BSFL treatment. However, the addition of co-substrates or biochar during vermicomposting or BSFL treatment may show synergistic effects in stabilizing heavy metals as demonstrated by anaerobic digestion. Moreover, vermicomposting and BSFL valorization had manifested their potentialities as the low-cost alternatives for treating hazardous sewage sludge, whilst producing value-added feedstock for biochemical industries.
Collapse
Affiliation(s)
- Chin Seng Liew
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Normawati M Yunus
- Centre of Research in Ionic Liquids (CORIL), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Boredi Silas Chidi
- Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa
| | - Man Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Jin Chung Sin
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Sze Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900 Perak, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
18
|
Soylu MÇ, Azgin ST. Sensitive Multi‐Detection of
Escherichia coli
by Quartz Crystal Microbalance with a Novel Surface Controllable Sensing Method in Liquid Organic Fertilizer Produced by Sewage Sludge. ChemistrySelect 2021. [DOI: 10.1002/slct.202102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mehmet Çağrı Soylu
- Biological and Medical Diagnostic Sensors Laboratory (BioMeD Sensors Lab) Department of Biomedical Engineering Erciyes University Kayseri 38039 Turkey
| | - Sukru Taner Azgin
- Department of Environmental Engineering Erciyes University Kayseri 38039 Turkey
| |
Collapse
|
19
|
Almeida-Naranjo CE, Frutos M, Tejedor J, Cuestas J, Valenzuela F, Rivadeneira MI, Villamar CA, Guerrero VH. Caffeine adsorptive performance and compatibility characteristics (Eisenia foetida Savigny) of agro-industrial residues potentially suitable for vermifilter beds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149666. [PMID: 34428664 DOI: 10.1016/j.scitotenv.2021.149666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The caffeine adsorptive performance and compatibility characteristics (Eisenia foetida Savigny) of rice husk, peanut shell, corn cob and coconut fiber were studied, aiming to assess the suitability of these residues for vermifilter beds. For this purpose, the agro-industrial residues were characterized and the E. foetida Savigny compatibility was determined by acute and chronic toxicity tests. Batch adsorption tests were performed using caffeine solutions. Optimal adsorption conditions, kinetic models, isotherm type and the influence of three particle sizes (120-150, 300-600, 800-2000 μm) in the caffeine removal were determined. Coconut fiber (120-150 μm) proved to be the most efficient residue for the caffeine removal (94.2%), requiring 4 g/L for 30 min. However, coconut fiber was the less compatible for earthworms (14d-LC50 = 82%). The results obtained allow to define adequate strategies, such as mixing highly adsorptive residues with the more compatible ones, to choose the most effective materials for vermifiltration technologies.
Collapse
Affiliation(s)
- Cristina E Almeida-Naranjo
- Departament of Mechanical Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
| | - Mayra Frutos
- Departament of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
| | - Jennifer Tejedor
- Departament of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
| | - Jeniffer Cuestas
- Departament of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
| | - Fabricio Valenzuela
- Departament of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
| | - María Inés Rivadeneira
- Departament of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
| | - Cristina Alejandra Villamar
- Universidad de Santiago de Chile (USACH), Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Av. Ecuador 3659, Estación Central, Santiago, Chile.
| | - Victor H Guerrero
- Department of Materials, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador.
| |
Collapse
|
20
|
Lourenço N, Nunes LM. Life-cycle assessment of decentralized solutions for wastewater treatment in small communities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1954-1968. [PMID: 34695023 DOI: 10.2166/wst.2021.379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study benchmarks vermifiltration (VF) as secondary wastewater treatment in three nature-based decentralized treatment plants using life-cycle assessment. The comparison is justified by the comparatively easier and cheaper operation of VF when compared to more traditional technologies, including small rate infiltration (SRI), constructed wetlands (CW), and activated sludge (AS). Standard life cycle assessment was used and applied to three case studies located in southern Europe. Material intensity during construction was highest for VF, but impacts during operation were lower, compensating those of the other phases. Impacts during the construction phase far outweigh those of operation and dismantling for facilities using constructed wetlands and activated sludge, when the number of served inhabitants is small, and due to lack of economies of scale. VF used as secondary treatment was shown to contribute to reducing the environmental impacts, mainly in constructed wetlands and activated sludge. The replacement of CW by VF seems to bring important environmental benefits in most impact categories, in particular in the construction phase. The replacement by VF in facilities with SRI seems to result in the improvement of some of the impact categories, in particular in the operation phase. As for dismantling, no conclusive results were obtained.
Collapse
Affiliation(s)
- N Lourenço
- FUTURAMB® and Faculty of Sciences and Technology, University of Algarve, Faro, Portugal E-mail:
| | - L M Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| |
Collapse
|
21
|
Mungruaiklang N, Iwai CB. Using vermiwash to enhance performance of small-scale vermifiltration for swine farm wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3323-3341. [PMID: 33512603 DOI: 10.1007/s10653-021-00816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Pollution caused by swine wastewater is a growing concern in many countries. In the developing countries, swine wastewater is not properly collected and treated, the wastewater from swine farm pollutes the ecosystem. Especially for small swine farms, they could not afford to have wastewater treatment system. Therefore, farmers need cheap, sustainable technology for future mixed farming. Vermifiltration by earthworm has been introduced to be an answer for enhancing wastewater treatment. Vermiwash is the liquid gathered from vermicomposting that has high microbial activities and nutrients. This study was carried out on a small pilot scale to investigate swine wastewater treatment efficiency of vermifiltration system with and without vermiwash and compared with the geofiltration system. Vermiwash was incubated in vermifiltration and geofiltration systems for 1 week before the treatment. The result showed improved efficiency of vermifiltration incubated with vermiwash in swine wastewater treatment for biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) removal, which was highest followed by vermifiltration without incubated vermiwash, geofilter incubated with vermiwash and geofilter, respectively. Good performance of vermifiltration incubated with vermiwash compared with the geofilter treatment was demonstrated for removal of BOD (91.29 ± 9.89%, n = 10), COD (91.42 ± 6.34%, n = 10) and TSS (86.02 ± 10.45%, n = 10). Furthermore, the burrowing activity of the test earthworm (Eisenia fetida) promoted the aeration condition in vermifilter which led to more dissolved oxygen (DO) in effluent (61.28 ± 20.05%, n = 10). Moreover, the amount of copper (Cu) in effluent was decreased compared with influent by up to 88% in all treatment. After 10 weeks of the experiment, the vermicompost that was incubated with vermiwash and produced from earthworm on the top layer was analyzed and showed that nutrients (nitrogen, phosphorus) and soil organic carbon were increased with vermifilter treatment (47.65, 81.61 and 31.79%, respectively) compared with geofilter treatment. In addition, bioavailability of Cu in soil in form of exchangeable Cu was decreased by increasing the bound to organic matter fraction. Transformation of Cu during vermifiltration happened and alleviated the mobility and availability of Cu. Copper in exchangeable form can change into non-toxic form. Therefore, vermifiltration process incubated with vermiwash could reduce the dispersion of copper in swine waste. In conclusion, vermiwash could enhance performance of vermifiltration for swine farm wastewater treatment. The available fraction of copper in vermicompost produced from vermifiltration decreased. Therefore, the farmer could produce vermicompost as the biofertilizer for agricultural production. Using vermifiltration for wastewater treatment in small swine farm could be the eco-solution for nutrient recovery, water resource recycles and minimize pollution.
Collapse
Affiliation(s)
- Natthawut Mungruaiklang
- Department of Soil Sciences and Environment, Faculty of Agriculture, Khon Kaen University, 123 Moo 16, Mittraphap Road, Khon Kaen, 40002, Thailand
| | - Chuleemas Boonthai Iwai
- Department of Soil Sciences and Environment, Faculty of Agriculture, Khon Kaen University, 123 Moo 16, Mittraphap Road, Khon Kaen, 40002, Thailand.
- Integrated Land and Water Resource Management Research and Development Center in Northeast Thailand, Khon Kaen University, 123 Moo 16, Khon Kaen, 40002, Thailand.
| |
Collapse
|
22
|
Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125912. [PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 05/25/2023]
Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Collapse
Affiliation(s)
- S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Samiha Nuzhat
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh; Water and Life Bangladesh, Dhaka, Bangladesh
| | | | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Md Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
23
|
Arora S, Saraswat S, Rajpal A, Shringi H, Mishra R, Sethi J, Rajvanshi J, Nag A, Saxena S, Kazmi AA. Effect of earthworms in reduction and fate of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) during clinical laboratory wastewater treatment by vermifiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145152. [PMID: 33940720 DOI: 10.1016/j.scitotenv.2021.145152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
In the recent decades, the role of wastewater treatment plants has been entrenched for the dissemination of antibiotic resistant bacteria into the environment. The present study explores the dynamics of earthworms-microorganisms interactions involved in the high treatment efficacy of vermifiltration technology along with reduction of antibiotic resistant bacteria (ARB). This study is the first of its kind to investigate the performance efficacy of vermifilter (VF) for clinical laboratory wastewater treatment. The results of the study showed that earthworms and VF associated microbial community had a significant effect on Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) reduction (78-85%), coliforms and pathogen removal (>99.9%) and caused a significant shift in the prevalence pattern of ARB. Molecular profiling of resistance causing genes such as ESBL (blaSHV, blaTEM and blaCTX-M), MRSA (mec-A) and Colistin (mcr-1) confirmed the probable mechanisms behind the resistance pattern. The microbial community diversity in the influent, earthworm's coelomic fluid and gut and filter media layers associated with the VF assists in the formation of biofilm, which helps in the removal of pathogens from the wastewater. This biofilm formation further results in a paradigm shift in the resistance profile of ARB and ARG, specifically most effective against drugs, targeting cell wall and protein synthesis inhibition such as Ampicillin, Ticarcillin, Gentamicin and Chloramphenicol. These findings further validate vermifiltration technology as a sustainable and natural treatment technology for clinical laboratory wastewater, specifically for the removal of pathogens and antibiotic resistance.
Collapse
Affiliation(s)
- Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India.
| | - Sakshi Saraswat
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taiwan
| | - Ankur Rajpal
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, India
| | - Harshita Shringi
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - Rinki Mishra
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - Jasmine Sethi
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - Jayana Rajvanshi
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - Aditi Nag
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - Sonika Saxena
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - A A Kazmi
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, India
| |
Collapse
|
24
|
Dey Chowdhury S, Bhunia P. Simultaneous Carbon and Nitrogen Removal from Domestic Wastewater using High Rate Vermifilter. Indian J Microbiol 2021; 61:218-228. [PMID: 33927463 PMCID: PMC8039078 DOI: 10.1007/s12088-021-00936-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Being a cost-effective and environmentally benign technology, vermifiltration has significantly replaced the available conventional wastewater remediation methods in many cases over the last few decades. The present work emphasizes on the investigation of the nitrogen transformation dynamics, in addition to the organic carbon abatement in the designed high rate hybrid vermifilter. Moreover, the economical sustainability of the vermifiltration technology has also been enlightened by creating a bridge with the concept of circular bio-economy. The designed high rate macrophyte-assisted vermifilter (MAVF) ascertained significant high nitrogen and organic carbon removal efficiencies from the real domestic sewage, considering the chemical oxygen demand (COD) of the influent and hydraulic loading rate (HLR) as the input variables. The designed MAVF facilitated the maximum ammonium nitrogen (NH4 +-N), organic nitrogen, and total kjeldahl nitrogen removal efficiencies up to 98.2 ± 0.70%, 100%, and 99 ± 0.47%, respectively when COD of the influent and HLR were 200 ± 25 mg/L and 3 ± 0.1 m3/m2-d, respectively. On the other hand, substantial enhancement in the nitrate nitrogen (NO3 --N) in the effluent (73 ± 10.55 times its influent concentration) was observed with influent COD of 200 ± 25 mg/L and HLR of 7 ± 0.2 m3/m2-d. When the influent COD and HLR were maintained at 700 ± 45 mg/L and 3 ± 0.1 m3/m2-d, respectively, the highest total nitrogen removal of 87 ± 2.25% was obtained. Alternatively, the influent COD of 200 ± 25 mg/L and HLR of 3 ± 0.1 m3/m2-d yielded the highest COD removal efficiency of 77 ± 1.59%. Hence, the outcome of the present research work strengthens the suitability of the vermifiltration technology as an economically and ecologically sound natural wastewater bio-remediation technology for the treatment of domestic wastewater.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752 050 India
| | - Puspendu Bhunia
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752 050 India
| |
Collapse
|
25
|
Singh R, D'Alessio M, Meneses Y, Bartelt-Hunt S, Ray C. Nitrogen removal in vermifiltration: Mechanisms, influencing factors, and future research needs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111868. [PMID: 33387734 DOI: 10.1016/j.jenvman.2020.111868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
To meet global health and sanitation goals, there is a continued need for sustainable wastewater treatment alternatives that require minimal energy and investment. Vermifiltration, a technology gaining relevance in Africa and Asia, may be an alternative to traditional wastewater treatment systems due to its cost-effectiveness, ease of application and maintenance, and sustainability. However, nitrogen removal in vermifiltration is not well understood since most of the prior research focuses on organics removal. Thus, a state of the art review is necessary to separately focus on the mechanisms associated with nitrogen removal in vermifiltration, along with the factors affecting nitrogen removal. For the first time, this review attempts to present the types of vermifilter based on their flow pattern. The review further discusses the current status of the application of vermifiltration, along with the benefits and limitations associated with the adoption of this technology. It also explores possible strategies that could be adopted to maximize the nitrogen removal potential of vermifilters as optimizing nitrogen removal is critical for improving the performance of vermifiltration based treatment systems.
Collapse
Affiliation(s)
- Rajneesh Singh
- Nebraska Water Center, University of Nebraska-Lincoln, NE, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, MS, USA
| | - Yulie Meneses
- Daugherty Water for Food Global Institute, University of Nebraska-Lincoln, NE, USA
| | - Shannon Bartelt-Hunt
- Daugherty Water for Food Global Institute, University of Nebraska-Lincoln, NE, USA; Dept. of Civil and Environmental Engineering, University of Nebraska-Lincoln, NE, USA
| | - Chittaranjan Ray
- Nebraska Water Center, University of Nebraska-Lincoln, NE, USA; Daugherty Water for Food Global Institute, University of Nebraska-Lincoln, NE, USA; Dept. of Civil and Environmental Engineering, University of Nebraska-Lincoln, NE, USA.
| |
Collapse
|
26
|
Pous N, Barcelona A, Sbardella L, Hidalgo M, Colomer J, Serra T, Salvadó V. Zooplankton-based reactors for tertiary wastewater treatment: A pilot-scale case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111538. [PMID: 33113392 DOI: 10.1016/j.jenvman.2020.111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Nature-based wastewater treatments are an economic and sustainable alternative to intensive technologies in rural areas, although their efficiency needs to be improved. This study explores technological co-operation between zooplankton (e.g., Daphnia magna) and bacterial and algal biofilms in a 1.5 m3 zooplankton-based reactor for the on-site treatment of secondary urban wastewater. The efficiency of the reactor was evaluated over a 14-month period without any maintenance. The results suggest a low seasonality effect on nutrient polishing (organic matter and nitrogen) and the removal of solids (TSS and turbidity). The best performance, involving a decrease in organic carbon, nitrogen, E. coli loads, and solid content was achieved in winter when operating the reactor at 750 L d-1. Under these conditions, the quality of the effluent water was suitable for its reuse for six different purposes in conformance with Spanish legislation. These results demonstrate that the zooplankton-based reactor presented here can be used as an eco-sustainable tertiary treatment to provide water suitable for reuse. On-site research revealed that the robustness of the reactor against temperature and oxygen fluctuations needs to be improved to ensure good performance throughout the year.
Collapse
Affiliation(s)
- Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain.
| | - Aina Barcelona
- Department of Physics, University of Girona. E-17003, Girona, Spain
| | - Luca Sbardella
- Department of Chemistry, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Manuela Hidalgo
- Department of Chemistry, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Jordi Colomer
- Department of Physics, University of Girona. E-17003, Girona, Spain
| | - Teresa Serra
- Department of Physics, University of Girona. E-17003, Girona, Spain
| | - Victòria Salvadó
- Department of Chemistry, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| |
Collapse
|
27
|
Arora S, Saraswat S, Mishra R, Rajvanshi J, Sethi J, Verma A, Nag A, Saxena S. Design, performance evaluation and investigation of the dynamic mechanisms of earthworm-microorganisms interactions for wastewater treatment through vermifiltration technology. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|