1
|
Xie J, Hu S, Wei M, Xie S. Degradation Efficiency and Mechanism Exploration of an Fe 78Si 9B 13 Metallic Glass Cathode in the Electro-Fenton Degradation of p-NP. MATERIALS (BASEL, SWITZERLAND) 2025; 18:930. [PMID: 40077153 PMCID: PMC11901298 DOI: 10.3390/ma18050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Fe-based metallic glass (MG) exhibits excellent performance as a heterogeneous catalyst in degradation but is rarely used as a working electrode in electro-Fenton (EF) systems. We used Fe78Si9B13 MG as the working electrode to investigate the effect of the EF process on the degradation efficiency of p-nitrophenol (p-NP). The EF system had the highest catalytic efficiency (the reaction rate was 3.4 times that of chemical degradation) at a voltage of -1 V (vs. SCE) and showed 95.6% degradation of p-NP within 30 min. The electrode voltage accelerated the generation of hydroxyl radicals (·OH) in the system, thus promoting pollutant degradation. In addition, the Fe78Si9B13 MG cathode demonstrated good structural stability and reusability after 10 cycles. Fe78Si9B13 MG ribbons can serve as a suitable cathode material and provide potential optimization solutions for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Jiatao Xie
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Shengkang Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Engineering Laboratory for Advanced Technology of Ceramic, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Mengyuan Wei
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Engineering Laboratory for Advanced Technology of Ceramic, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Shenghui Xie
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Engineering Laboratory for Advanced Technology of Ceramic, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
2
|
Huang H, Chen L, Tang W, Yang Y. In situ grown petal-like La-doped FeCo-layered double hydroxide on carbon felt for enhanced moxifloxacin hydrochloride removal via heterogeneous electro-Fenton process. CHEMOSPHERE 2024; 369:143845. [PMID: 39612996 DOI: 10.1016/j.chemosphere.2024.143845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In this study, a petal-like ternary metal-layered double hydroxide (FeCoLa-LDH) was synthesized through a facile one-step hydrothermal method and in situ grown on carbon felt (CF). The FeCoLa-LDH/CF composite electrode was applied in a heterogeneous electro-Fenton (HEF) system for the degradation of moxifloxacin hydrochloride (MOX). Characterization revealed that La-doped FeCo-LDH/CF exhibited petal-like layered structure rather than particle's structure, with higher surface defect degree and an increased electroactive surface area (ESA) compared to FeCo-LDH/CF. The composite electrode effectively degraded MOX across a pH range of 3-9. Under optimal conditions, it achieved a degradation efficiency of 92.2% within 45 min and 96.8% within 120 min. After 120 min, 82.4% of the chemical oxygen demand (COD) was removed. The superior degradation performance was primarily attributed to La doping, which enhanced electron transfer between Co2+/Co3+ and Fe2+/Fe3+, promoting in situ H2O2 generation and causing rapid conversion of H2O2 to hydroxyl radical(•OH) on the electrode surface. Radical quenching experiments confirmed that •OH was the primary reactive species. The possible MOX degradation pathways were elucidated through liquid chromatography-mass spectrometry (LC-MS) analysis and density functional theory (DFT) calculations, and a catalytic mechanism of HEF process was proposed. Moreover, the electrode maintained 82.8% efficiency after five cycles, with lower ion leaching and broader pollutant applicability. Moreover, good degradation efficiencies of MOX were still observed in actual water bodies. Toxicity tests confirmed that MOX degradation intermediate products had low plant toxicity. This study provides a promising high-performance cathode for antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Haolan Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Li Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Wenjing Tang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| |
Collapse
|
3
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
4
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
5
|
He D, Li J, Yu W, Zhang Y, Wang B, Wang T, Yang H, Zhang Y, Chen W, Li Y, Feng F, Hou LA. Deciphering the removal of antibiotics and the antibiotic resistome from typical hospital wastewater treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171806. [PMID: 38508266 DOI: 10.1016/j.scitotenv.2024.171806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Hospital wastewater treatment systems (HWTSs) are a significant source and reservoir of antibiotic resistance genes (ARGs) and a crucial hub for transmitting ARGs from clinical to natural environments. However, there is a lack of research on the antibiotic resistome of clinical wastewater in HWTSs. In this study, we used metagenomics to analyze the prevalence and abundance of ARGs in five typical HWTSs. A total of 17 antibiotics from six categories were detected in the five HWTSs; β-lactam antibiotics were found at the highest concentrations, with up to 4074.08 ng·L-1. We further found a total of 21 ARG types and 1106 subtypes of ARGs with the highest percentage of multi-drug resistance genes (evgS, msbA, arlS, and baeS). The most abundant last-resort ARGs were mcr, which were detected in 100 % of the samples. HWTSs effluent is a major pathway for the transmission of last-resort ARGs into urban wastewater networks. The removal of antibiotics, antibiotic-resistant bacteria, and ARGs from HWTSs was mainly achieved by tertiary treatment, i.e., chlorine disinfection, but antibiotics and ARGs were still present in the HWTSs effluent or even increased after treatment. Moreover, antibiotics and heavy metals (especially mercury) in hospital effluents can exert selective pressure for antibiotic resistance, even at low concentrations. Qualitative analyses based on metagenome-assembled genome analysis revealed that the putative hosts of the identified ARGs are widely distributed among Pseudomonas, Acidovorax, Flavobacterium, Polaromonas, and Arcobacter. Moreover, we further assessed the clinical availability of ARGs and found that multidrug ARGs had the highest clinical relevance values. This study provides new impulses for monitoring and removing antibiotics and ARGs in the hospital sewage treatment process.
Collapse
Affiliation(s)
- Dahai He
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Weihai Yu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yingyuan Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuntao Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weijie Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Faming Feng
- Chutian Liangjiang Environment Co., LTD, Guiyang 550000, China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Khataee S, Dehghan G, Shaghaghi Z, Khataee A. An enzyme-free sensor based on La-doped CoFe-layered double hydroxide decorated on reduced graphene oxide for sensitive electrochemical detection of urea. Mikrochim Acta 2024; 191:152. [PMID: 38388755 DOI: 10.1007/s00604-024-06221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The successful synthesis of La-doped CoFe LDH@rGO nanocomposite is reported combining the advantages of LDH and rGO and shows promising performances in electrochemical sensors. The structure of the obtained nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), and field emission scanning electron microscope images (FE-SEM). Then, it was directly utilized to construct a carbon paste electrode (CPE) for urea detection. The electrochemical performance of the sensor was evaluated by various electrochemical methods. The La-CoFe LDH@rGO electrode exhibited excellent electrocatalytic properties, including a wide linear working range of 0.001-23.5 mM, very high sensitivity of 1.07 ± 0.023 µA µM-1 cm-2, a low detection limit of 0.33 ± 0.11 µM, and rapid response time of 5 s towards urea detection at the working potential of 0.4 V. Furthermore, the sensor displayed a high selectivity in different matrices, appropriate reproducibility, and long shelf life without activity loss during 3 months of storage under ambient conditions. Further tests were performed on serum and milk samples to confirm the capability of the proposed sensor for practical applications, demonstrating a reasonable recovery of 94.8 to 102% with an RSD value below 3%. Consequently, the synergistic effect of each component led to the good electrocatalytic activity of the modified electrode towards urea.
Collapse
Affiliation(s)
- Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Gholamrez Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
7
|
Yue J, Yang H, Wang S, Liu C, Wang L. Photocarrier transfer induced by N δ- → W δ+ in tungsten trioxide/carbon nitride for dual-path production of hydrogen peroxide towards ciprofloxacin degradation. J Colloid Interface Sci 2024; 653:981-991. [PMID: 37778153 DOI: 10.1016/j.jcis.2023.09.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Photo self-Fenton catalyst is a promising candidate for solar energy conversion and environmental remediation. Here we reported a Tungsten trioxide/carbon nitride (WO3/CN) in which the surficial amino groups on CN are inserted into the WO3 matrix, forming coordinate covalently Nδ- → Wδ+ in construction of an intimate S-scheme heterojunction. The intimantance promotes the transfer of photocarriers under light irradiation. The nanohybrids produced hydrogen peroxide (H2O2) in a rate about 20 times of pristine CN. A dual-path architecture in which H2O2 are produced via hole-water oxidation and electron-oxygen reduction was poposed. It is founded that ciprofloxacin also involved in production of H2O2 by their deprotonation to superoxide anions, and holes and hydroxyl radicals effectively attack the weak sites in skeleton of ciprofloxacin. This work suggests a great significance of strategy in self-producing of H2O2 in utilizing solar energy and molecular oxygen for water, particularly the surface water decontamination.
Collapse
Affiliation(s)
- Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Shi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lina Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
8
|
Cui H, Zhu H, Shutes B, Rousseau AN, Feng WD, Hou SN, Ou Y, Yan BX. Soil aggregate-driven changes in nutrient redistribution and microbial communities after 10-year organic fertilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119306. [PMID: 37839204 DOI: 10.1016/j.jenvman.2023.119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Research studies on nutrient content and microbial communities after the application of organic manure have been reported, while available information about multi-interaction mechanisms of nutrient stoichiometry and microbial succession in soil aggregates remains limited. This work conducted a 10-year field experiment amended with cow manure (1.5 t/ha), during which the application of organic manure stimulated the fragmentation of soil macro-aggregates (>5 mm) and the agglomeration of soil micro-aggregates (<0.25 mm). Hence, the proportion of medium-size aggregates (0.25-5 mm) was increased in bulk soil, and there was an insignificant difference in the stability of soil aggregates. Meanwhile, the application of organic manure increased soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP) in all soil aggregate fractions. SOC, TN and TP were higher in micro-aggregates (<0.25 mm) after the application of organic manure, thus the dominating phylum of bacteria and fungi was more abundance in micro-aggregates due to the increase in nutrient level. During the organic fertilization process, fungal communities significantly changed because the variation of carbon-to-nitrogen ratio (C:N) in soil aggregates. Cultivated farmland in Northeast China showed a considerable capacity to sequestrate SOC during the organic fertilization process, but nitrogen may be a primary macro-element limiting soil productivity. Theoretically, organic manure amended with nitrogen fertilizer could be an effective measure to maintain microbial diversity and crop productivity in agro-ecosystems in Northeast China.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Alain N Rousseau
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS-ETE), 490 de la Couronne, Qu'ebec, Qc, G1K 9A9, Canada
| | - Wei-Dong Feng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Nan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Bai-Xing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
9
|
Xue C, Ma J, Chen X, Liu D, Huang W. Efficient degradation of 2,4-dichlorophenol by heterogeneous electro-Fenton using bulk carbon aerogels modified in situ with FeCo-LDH as cathodes: Operational parameters and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119114. [PMID: 37783084 DOI: 10.1016/j.jenvman.2023.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
In this study, an in situ grown FeCo-Layered double hydroxide anchored to the surface of a bulk carbon aerogel (FeCo-LDH/CA) for contaminant degradation during the heterogeneous electro-Fenton (EF) process. The results exhibited that the FeCo-LDH/CA cathode achieved 100% of 2,4-dichlorophenol (2,4-DCP = 20 mg/L) degradation within 120 min at pH = 3, application current 20 mA, and Na2SO4 concentration 0.05 M. Moreover, the degradation efficiency was impressive in the range of pH = 2-9. The coexistence of the Fe (III)/Fe (II) and Co (III)/Co (II) as active sites on the cathode surface promoted the in-situ decomposition of H2O2 to form reactive oxygen species (ROS). •OH and O2- were confirmed to be the major degradation pollutants of ROS. Furthermore, density functional theory (DFT) was used to predict the reaction sites of 2,4-DCP, and its possible degradation pathways were proposed. The toxicity of intermediate products was evaluated and decreased after degradation. In addition, the eight cycle experiments and the degradation of other typical contaminants demonstrated the satisfactory stability and applicability of the synthetic cathode. This study presents the preparation of an efficient and stable EF cathode, further promoting the application of iron-based composites in wastewater treatment.
Collapse
Affiliation(s)
- Cheng Xue
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianrui Ma
- China Academy of Information and Communications Technology, Beijing, 100191, China
| | - Xi Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
10
|
Ramírez-Valencia LD, Bailón-García E, Moral-Rodríguez AI, Carrasco-Marín F, Pérez-Cadenas AF. Carbon Gels-Green Graphene Composites as Metal-Free Bifunctional Electro-Fenton Catalysts. Gels 2023; 9:665. [PMID: 37623120 PMCID: PMC10454076 DOI: 10.3390/gels9080665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The Electro-Fenton (EF) process has emerged as a promising technology for pollutant removal. However, the EF process requires the use of two catalysts: one acting as an electrocatalyst for the reduction of oxygen to H2O2 and another Fenton-type catalyst for the generation of ·OH radicals from H2O2. Thus, the search for materials with bifunctionality for both processes is required for a practical and real application of the EF process. Thus, in this work, bifunctional electrocatalysts were obtained via doping carbon microspheres with Eco-graphene, a form of graphene produced using eco-friendly methods. The incorporation of Eco-graphene offers numerous advantages to the catalysts, including enhanced conductivity, leading to more efficient electron transfer during the Electro-Fenton process. Additionally, the synthesis induced structural defects that serve as active sites, promoting the direct production of hydroxyl radicals via a 3-electron pathway. Furthermore, the spherical morphology of carbon xerogels enhances the accessibility of the reagents to the active sites. This combination of factors results in the effective degradation of Tetracycline (TTC) using metal-free catalysts in the Electro-Fenton process, achieving up to an impressive 83% degradation without requiring any other external or additional catalyst.
Collapse
Affiliation(s)
- Lilian D. Ramírez-Valencia
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica-Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente-Universidad de Granada (UEQ-UGR), ES18071 Granada, Spain; (E.B.-G.); (A.I.M.-R.); (F.C.-M.)
| | | | | | | | - Agustín F. Pérez-Cadenas
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica-Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente-Universidad de Granada (UEQ-UGR), ES18071 Granada, Spain; (E.B.-G.); (A.I.M.-R.); (F.C.-M.)
| |
Collapse
|
11
|
Barranco-López A, Moral-Rodríguez AI, Fajardo-Puerto E, Elmouwahidi A, Bailón-García E. Highly graphitic Fe-doped carbon xerogels as dual-functional electro-Fenton catalysts for the degradation of tetracycline in wastewater. ENVIRONMENTAL RESEARCH 2023; 228:115757. [PMID: 36967002 DOI: 10.1016/j.envres.2023.115757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Fe-doped carbon xerogels with a highly developed graphitic structure were synthesized by a one-step sol-gel polymerization. These highly graphitic Fe-doped carbons are presented as promising dual-functional electro-Fenton catalysts to perform both the electro-reduction of O2 to H2O2 and H2O2 catalytic decomposition (Fenton) for wastewater decontamination. The amount of Fe is key to the development of this electrode material, since affects the textural properties; catalyzes the development of graphitic clusters improving the electrode conductivity; and influences the O2-catalyst interaction controlling the H2O2 selectivity but, at the same time is the catalyst for the decomposition of the electrogenerated H2O2 to OH• radicals for the organic pollutants oxidation. All materials achieve the development of ORR via the 2-electron route. The presence of Fe considerably improves the electro-catalytic activity. However, a mechanism change seems to occur at around -0.5 V in highly Fe-doped samples. At potential lower than -0.5 eV, the present of Feδ+ species or even Fe-O-C active sites favour the selectivity to 2e-pathway, however at higher potentials, Feδ+ species are reduced favoring a O-O strong interaction enhancing the 4e-pathway. The Electro-Fenton degradation of tetracycline was analyzed. The TTC degradation is almost complete (95.13%) after 7 h of reaction without using any external Fenton-catalysts.
Collapse
Affiliation(s)
- A Barranco-López
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - A I Moral-Rodríguez
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - E Fajardo-Puerto
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - A Elmouwahidi
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - E Bailón-García
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
12
|
Bose I, Roy S, Pandey VK, Singh R. A Comprehensive Review on Significance and Advancements of Antimicrobial Agents in Biodegradable Food Packaging. Antibiotics (Basel) 2023; 12:968. [PMID: 37370286 DOI: 10.3390/antibiotics12060968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Food waste is key global problem and more than 90% of the leftover waste produced by food packaging factories is dumped in landfills. Foods packaged using eco-friendly materials have a longer shelf life as a result of the increased need for high-quality and secure packaging materials. For packaging purposes, natural foundation materials are required, as well as active substances that can prolong the freshness of the food items. Antimicrobial packaging is one such advancement in the area of active packaging. Biodegradable packaging is a basic form of packaging that will naturally degrade and disintegrate in due course of time. A developing trend in the active and smart food packaging sector is the use of natural antioxidant chemicals and inorganic nanoparticles (NPs). The potential for active food packaging applications has been highlighted by the incorporation of these materials, such as polysaccharides and proteins, in biobased and degradable matrices, because of their stronger antibacterial and antioxidant properties, UV-light obstruction, water vapor permeability, oxygen scavenging, and low environmental impact. The present review highlights the use of antimicrobial agents and nanoparticles in food packaging, which helps to prevent undesirable changes in the food, such as off flavors, colour changes, or the occurrence of any foodborne outcomes. This review attempts to cover the most recent advancements in antimicrobial packaging, whether edible or not, employing both conventional and novel polymers as support, with a focus on natural and biodegradable ingredients.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow 226026, India
| |
Collapse
|
13
|
Keyikoğlu R, Khataee A, Orooji Y. Degradation of emerging pollutants on bifunctional ZnFeV LDH@graphite felt cathode through prominent catalytic activity in heterogeneous electrocatalytic processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118090. [PMID: 37182481 DOI: 10.1016/j.jenvman.2023.118090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
The heterogeneous Electro-Fenton (EF) process is a promising wastewater treatment technology that can generate onsite H2O2, and operate in a wide pH range without generating a metal sludge. However, the heterogeneous EF process needs bifunctional cathode electrodes that can have high activity in 2e- oxygen reduction reaction and H2O2 decomposition. Herein, ZnFeV layered double hydroxide (LDH), as a heterogeneous catalyst, was coated on the graphite felt (ZnFeV LDH@GF) cathode using the electrophoretic deposition method. ZnFeV LDH@GF cathode was able to generate 59.8 ± 5.9 mg L-1 H2O2 in 90 min under a constant supply of O2. EF process with ZnFeV LDH@GF cathode exhibited 89.8 ± 6.8% removal efficiency for pharmaceutical (ciprofloxacin) at neutral pH. Remarkably, the apparent reaction rate constant (kapp) of the ZnFeV LDH@GF-EF was 2.14 times that of the EF process with pristine GF. ZnFeV LDH coating increased the hydroxyl radical (•OH) production of the EF process from 1.74 mM to 3.65 mM. The pathway of •OH production is thought to be a single electron transfer from redox couples of Fe2+/Fe3+ and [Formula: see text] to H2O2. After 10 reuse cycles, the ZnFeV LDH@GF cathode retained 90.2% of its efficiency. Eight intermediate compounds were identified by GC-MS including cyclic compounds and aliphatic compounds.
Collapse
Affiliation(s)
- Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318, Leipzig, Germany
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
14
|
Binazadeh M, Rasouli J, Sabbaghi S, Mousavi SM, Hashemi SA, Lai CW. An Overview of Photocatalytic Membrane Degradation Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093526. [PMID: 37176408 PMCID: PMC10180107 DOI: 10.3390/ma16093526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.
Collapse
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Jamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz 71557-13876, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
15
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
16
|
Stoll JA, Lachowicz D, Kmita A, Gajewska M, Sikora M, Berent K, Przybylski M, Russek SE, Celinski ZJ, Hankiewicz JH. Synthesis of Manganese Zinc Ferrite Nanoparticles in Medical-Grade Silicone for MRI Applications. Int J Mol Sci 2023; 24:ijms24065685. [PMID: 36982758 PMCID: PMC10059734 DOI: 10.3390/ijms24065685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this project is to fabricate hydrogen-rich silicone doped with magnetic nanoparticles for use as a temperature change indicator in magnetic resonance imaging-guided (MRIg) thermal ablations. To avoid clustering, the particles of mixed MnZn ferrite were synthesized directly in a medical-grade silicone polymer solution. The particles were characterized by transmission electron microscopy, powder X-ray diffraction, soft X-ray absorption spectroscopy, vibrating sample magnetometry, temperature-dependent nuclear magnetic resonance relaxometry (20 °C to 60 °C, at 3.0 T), and magnetic resonance imaging (at 3.0 T). Synthesized nanoparticles were the size of 4.4 nm ± 2.1 nm and exhibited superparamagnetic behavior. Bulk silicone material showed a good shape stability within the study’s temperature range. Embedded nanoparticles did not influence spin–lattice relaxation, but they shorten the longer component of spin–spin nuclear relaxation times of silicone’s protons. However, these protons exhibited an extremely high r2* relaxivity (above 1200 L s−1 mmol−1) due to the presence of particles, with a moderate decrease in the magnetization with temperature. With an increased temperature decrease of r2*, this ferro–silicone can be potentially used as a temperature indicator in high-temperature MRIg ablations (40 °C to 60 °C).
Collapse
Affiliation(s)
- Joshua A. Stoll
- Colorado Springs Center for the BioFrontiers Institute, University of Colorado, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
- Correspondence:
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Marcin Sikora
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Katarzyna Berent
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Stephen E. Russek
- National Institute of Standards and Technology, 325 Broadway St., Boulder, CO 80305, USA
| | - Zbigniew J. Celinski
- Colorado Springs Center for the BioFrontiers Institute, University of Colorado, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA
| | - Janusz H. Hankiewicz
- Colorado Springs Center for the BioFrontiers Institute, University of Colorado, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA
| |
Collapse
|
17
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Xue C, Cao Z, Tong X, Yang P, Li S, Chen X, Liu D, Huang W. Investigation of CuCoFe-LDH as an efficient and stable catalyst for the degradation of acetaminophen in heterogeneous electro-Fenton system: Key operating parameters, mechanisms and pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116787. [PMID: 36442449 DOI: 10.1016/j.jenvman.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals, as anthropogenic pollutants in a wide range of water sources, generally require specific treatment methods for degradation. A trimetallic layered double hydroxide (CuCoFe-LDH) was successfully fabricated by coprecipitation and applied as a novel heterogeneous electro-Fenton (EF) catalyst for the degradation of acetaminophen (ACT) from aqueous environments. The EF experiments showed that the CuCoFe-LDH/EF process achieved 100% of ACT degradation efficiency within 60 min at pH = 5, catalyst dosage of 0.50 g/L, current density of 10 mA/cm2 and initial ACT concentration of 20 mg/L. An impressive (>80%) mineralization of ACT was obtained over a wide pH range (pH 3-9) after 180 min. Meanwhile, the role of ·OH and O2.- were certified by radical quenching experiments and electron paramagnetic resonance (EPR) analysis. Through mechanism exploration, the coexistence of Cu and Co on Fe-based LDHs can accelerate the interfacial electron transfer and promote the formation of the reactive oxygen species (ROS), thus facilitating the EF process. Furthermore, the degradation by-products and possible degradation pathways of ACT in the CuCoFe-LDH/EF process were proposed. The reusability test and the treatment of various typical organic pollutants experiments indicated that the CuCoFe-LDH/EF process has excellent stability and broad application prospects. This work provides a valuable reference for the treatment of pharmaceuticals by the heterogeneous EF process in a wide range of pH.
Collapse
Affiliation(s)
- Cheng Xue
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenhua Cao
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoqin Tong
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peizhen Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Songrong Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xi Chen
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Görmez Ö, Saçlı B, Çağlayan U, Kalderis D, Gözmen B. Hydrothermal Synthesis of Siderite and Application as Catalyst in the Electro-Fenton Oxidation of p-Benzoquinone. Molecules 2022; 27:8056. [PMID: 36432157 PMCID: PMC9695892 DOI: 10.3390/molecules27228056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A weak aspect of the electro-Fenton (EF) oxidation of contaminants is the dependence of the Fenton reaction on acidic pH values. Therefore, the rationale of this work was to develop a novel catalyst capable of promoting the EF oxidation process at near-neutral and basic pH values. In this framework, rhombohedral FeCO3 was synthesized hydrothermally and used as a catalyst in the EF oxidation of p-benzoquinone (BQ). The catalyst was characterized using various surface and spectroscopic methods. Moreover, the effects of applied current (100-500 mA), time (1-9 h), catalyst dosage (0.25-1.00 g L-1), and initial concentration of BQ (0.50-1.00 mM) on the total organic carbon removal efficiency were determined. The results indicated that a 400 mA current was sufficient for a 95% total organic carbon removal and that the increase in catalyst dosage had a positive effect on the mineralization of BQ. It was determined that at pH 3, FeCO3 behaved like a homogeneous catalyst by releasing Fe3+ ions; whereas, at the pH range of 5-7, it shifted to a homogeneous/heterogeneous catalyst. At pH 9, it worked solely as a heterogeneous catalyst due to the decrease of Fe ions passing into the solution. Finally, the spent catalyst did not undergo structural deformations after the EF treatment at higher pH values and could be regenerated and used several times.
Collapse
Affiliation(s)
- Özkan Görmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343 Mersin, Turkey
| | - Barış Saçlı
- Central Research Laboratory of Çukurova University (CUMERLAB), Çukurova University, 01330 Adana, Turkey
| | - Uğur Çağlayan
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343 Mersin, Turkey
- Central Research Laboratory of Çukurova University (CUMERLAB), Çukurova University, 01330 Adana, Turkey
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece
| | - Belgin Gözmen
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343 Mersin, Turkey
| |
Collapse
|
21
|
Fei Y, Han N, Zhang M, Yang F, Yu X, Shi L, Khataee A, Zhang W, Tao D, Jiang M. Facile preparation of visible light-sensitive layered g-C 3N 4 for photocatalytic removal of organic pollutants. CHEMOSPHERE 2022; 307:135718. [PMID: 35842043 DOI: 10.1016/j.chemosphere.2022.135718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The graphite-phase carbon nitride (g-C3N4) photocatalytic materials were prepared by one-step calcination method to degrade methylene blue (MB) and potassium butyl xanthate (PBX) under visible light irradiation. The prepared g-C3N4 photocatalytic materials were investigated in detail by various characterizations, and the experiments showed that the graphitic phase carbon nitride photocatalytic materials were successfully prepared by the one-step calcination method. The material possesses excellent optical properties and strong visible light absorption, thus achieving photocatalytic degradation of MB and PBX. The catalyst dosage, pH, the initial concentration of pollutants have important effects on photocatalytic activity of MB and PBX. The photocatalytic degradation efficiency was 98.99% for MB and 96.83% for PBX under the optimal conditions (catalyst dosage, initial pollutant concentration and pH value were 500 mg L-1, 20 mg L-1 and 7, respevtively). The photocatalytic mechanisms on MB and PBX were elucidated. ·OH was the key specie for MB, while ·O2- was the key specie for PBX. This study advances the development of photocatalytic technology for mineral wastewater.
Collapse
Affiliation(s)
- Yawen Fei
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
| | - Minghui Zhang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Feixue Yang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Xiaobing Yu
- Shandong Jinfu Mining Co. Ltd., Zibo, 255000, PR China
| | - Lilong Shi
- Shandong Yanggu Huatai Chemical Co. Ltd., Liaocheng, 252300, PR China
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation.
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Dongping Tao
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Man Jiang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China; State Key Laboratory of Mineral Processing, Beijing, 100160, PR China.
| |
Collapse
|
22
|
Duan P, Qian C, Wang X, Jia X, Jiao L, Chen Y. Fabrication and characterization of Ti/polyaniline-Co/PbO 2-Co for efficient electrochemical degradation of cephalexin in secondary effluents. ENVIRONMENTAL RESEARCH 2022; 214:113842. [PMID: 35843278 DOI: 10.1016/j.envres.2022.113842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/06/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The traditional interlayer of PbO2 electrode possessed many problems, such as short service lifetime and limited specific surface area. Herein, a novel and efficient Ti/polyaniline-Co/PbO2-Co electrode was conctructed employing cyclic voltammetry to introduce a Co-doped polyaniline interlayer and anodic electrodeposition to synthetize a β-PbO2-Co active layer. Compared with pristine PbO2 electrode, Ti/polyaniline-Co/PbO2-Co exhibited more compact crystalline shape and higher active sites amounts. Pratically, the electrochemical degradation of 5 mg L-1 cephalexin in real secondary effluents was effectively achieved by the novel anode with 87.42% cephalexin removal and 71.8% COD mineralization after 120 min of 15 mA cm-2 electrolysis. The hydroxyl radical production and electrochemical stability were increased by 3.16 and 3.27 times respectively. The cephalexin degradation pathway was investigated by combining a density functional theory-based theoretical approach and LC-QTrap-MS/MS. The most likely cleavage point of the β-lactam ring was the O=C-N bond, whose attack would produce small molecular compounds containing the thiazole and 4, 6-thiazine rings. Further oxidation produced inorganic ions; quantitative investigations indicated the amino groups to undergo decomposition to form aqueous NH4+, which was further oxidized to NO3-. The accumulation of NO3- and SO42-, combined with a decrease in toxicity toward Escherichia coli, demonstrated the efficient mineralization of cephalexin on the Ti/polyaniline-Co/PbO2-Co electrode.
Collapse
Affiliation(s)
- Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chang Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaobo Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yu Chen
- Baoding Institute of Environmental Science, Baoding, 071000, China
| |
Collapse
|
23
|
Nasrollahi N, Vatanpour V, Khataee A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156010. [PMID: 35595150 DOI: 10.1016/j.scitotenv.2022.156010] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics and related pharmaceuticals are applied to enhance public health and life quality. A major environmental concern is wastewaters from pharmaceutical industries, which contain significant amounts of antibiotics. Pharmaceutical industries apply conventional processes (biological, filtration, coagulation, flocculation, and sedimentation) for wastewater treatment, but these approaches cannot remove antibiotics completely. Moreover, unmetabolized antibiotics released by humans and animals are dangerous for municipal and effluent wastewater. Besides, antibiotic resistance is another challenge in treatment of wastewater for superbugs. This comprehensive study summarizes different techniques for antibiotic removal with an emphasis on membrane technology in individual and hybrid systems such as chemical, physical, biological, and conditional-based strategies. A combination of membrane processes with advanced oxidation processes (AOPs), adsorption, and biological treatments can be the right solution for perfect removal. Furthermore, this review briefly compares different procedures for antibiotic removal, which can be helpful for further studies with their advantages and drawbacks.
Collapse
Affiliation(s)
- Nazanin Nasrollahi
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
24
|
Azriouil M, Matrouf M, Ettadili FE, Laghrib F, Farahi A, Saqrane S, Bakasse M, Lahrich S, El Mhammedi MA. Recent trends on electrochemical determination of antibiotic Ciprofloxacin in biological fluids, pharmaceutical formulations, environmental resources and foodstuffs: Direct and indirect approaches. Food Chem Toxicol 2022; 168:113378. [PMID: 35987282 DOI: 10.1016/j.fct.2022.113378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminants. These compounds can have both chronic and acute harmful effects on aquatic ecosystems and consequently on human health. Therefore, there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. In the present review article, recent reports on the application of various voltammetric and photo-electrochemical techniques using different electrode materials for the determination of antibiotic Ciprofloxacin (CIPRO) are reported. This review provides an insight into direct and indirect electrochemical approaches as well as the photoelectrochemical methods used for the determination of CIPRO. Emphasis is put on the applications of unmodified and modified carbon-based electrodes considering the modifier, supporting electrolytes, analytical method, concentration range, limit of detection, and real matrices. Carbon-based electrodes are the most used materials attributed to their commercial availability, reduced cost, high chemical stability, and non-toxicity.
Collapse
Affiliation(s)
- M Azriouil
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Matrouf
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F E Ettadili
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Bakasse
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco.
| |
Collapse
|
25
|
Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Abdullah TAT, Kamaroddin MFA, Setiabudi HD. An intriguing Z-scheme titania loaded on fibrous silica ceria for accelerated visible-light-driven photocatalytic degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2022; 211:113069. [PMID: 35300961 DOI: 10.1016/j.envres.2022.113069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
A novel Z-scheme titania loaded on fibrous silica ceria (Ti-FSC) was triumphantly fabricated via hydrothermal followed by electrolysis method and evaluated for the visible-light degradation of ciprofloxacin (CIP). Noticeably, Ti-FSC exhibits as an efficient photocatalyst for CIP photodegradation with 95% as followed by titania loaded on fibrous silica (Ti-FS) (68%), Ti-CeO2 (35%), FSC (47%), FS (22%), and CeO2 (17%). The combination of the inherent merits of Ti loaded on FSC is able to realize the crucial role of Ce in harnessing the high dispersion of Ti, which could beneficial for improving the performance proven by XRD, FESEM, TEM and FTIR. Consequently, high dispersion of Ti on FSC has worthwhile towards the interaction of the Si-O-Ti, Ce-O-Ti, and Si-O-Ti, which could enhance the CIP photodegradation by providing more surface defects, narrowing the band gap, improving electron-hole separation and suppressing electron-hole recombination that revealed by XPS, UV-vis/DRS, Nyquist plots and PL studies, respectively. The scavenger study revealed that the controlling species in the system was hydroxyl radical and holes. A potential Z-scheme heterojunction mechanism for Ti-FSC was deduced from the band structure analysis. The possible photodegradation pathway was proposed based on GCMS analysis. Besides, the acceptable reusability, which exceeded 90% of degradation indicated the great application potential of Z-scheme Ti-FSC in wastewater treatment and others application.
Collapse
Affiliation(s)
- A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - T A T Abdullah
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M F A Kamaroddin
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - H D Setiabudi
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
26
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
27
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
28
|
Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS, Jusoh NWC, Jusoh R. A review on synergistic coexisting pollutants for efficient photocatalytic reaction in wastewater remediation. ENVIRONMENTAL RESEARCH 2022; 209:112748. [PMID: 35101397 DOI: 10.1016/j.envres.2022.112748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
With the tremendous development of the economy and industry, the pollution of water is becoming more serious due to the excessive chemical wastes that need to remove thru reduction or oxidation reactions. Simultaneous removal of dual pollutants via photocatalytic redox reaction has been tremendously explored in the last five years due to effective decontamination of pollutants compared to a single pollutants system. In a photocatalysis mechanism, the holes in the valence band can remarkably promote the oxidation of a pollutant. At the same time, photoexcited electrons are also consumed for the reduction reaction. The synergistic between the reduction and oxidation inhibits the recombination of electron-hole pairs extending their lifetime. In this review, the binary pollutants that selectively removed via photocatalysis reduction or oxidation are classified according to heavy metal-organic pollutant (HM/OP), heavy metal-heavy metal (HM/HM) and organic-organic pollutants (OP/OP). The intrinsic between the pollutants was explained in three different mechanisms including inhibition of electron-hole recombination, ligand to metal charge transfer and electrostatic attraction. Several strategies for the enhancement of this treatment method which are designation of catalysts, pH of mixed pollutants and addition of additive were discussed. This review offers a recent perspective on the development of photocatalysis system for industrial applications.
Collapse
Affiliation(s)
- F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N W C Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - R Jusoh
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
29
|
Najeeb J, Farwa U, Ishaque F, Munir H, Rahdar A, Nazar MF, Zafar MN. Surfactant stabilized gold nanomaterials for environmental sensing applications - A review. ENVIRONMENTAL RESEARCH 2022; 208:112644. [PMID: 34979127 DOI: 10.1016/j.envres.2021.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Surfactant stabilized Gold (Au) nanomaterials (NMs) have been documented extensively in recent years for numerous sensing applications in the academic literature. Despite the crucial role these surfactants play in the sensing applications, the comprehensive reviews that highlights the fundamentals associated with these assemblies and impact of these surfactants on the properties and sensing mechanisms are still quite scare. This review is an attempt in organizing the vast literature associated with this domain by providing critical insights into the fundamentals, preparation methodologies and sensing mechanisms of these surfactant stabilized Au NMs. For the simplification, the surfactants are divided into the typical and advanced surfactants and the Au NMs are classified into Au nanoparticles (NPs) and Au nanoclusters (NCs) depending upon the complexity in structure and size of the NMs respectively. The preparative methodologies are also elaborated for enhancing the understanding of the readers regarding such assemblies. The case studies regarding surfactant stabilized Au NMs were further divided into colorimetric sensors, surface plasmonic resonance (SPR) based sensors, luminescence-based sensors, and electrochemical/electrical sensors depending upon the property utilized by the sensor for the sensing of an analyte. Future perspectives are also discussed in detail for the researchers looking for further progress in that particular research domain.
Collapse
Affiliation(s)
- Jawayria Najeeb
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Fatima Ishaque
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98615-538, Iran
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Multan Campus, 60700, Pakistan.
| | | |
Collapse
|
30
|
Peng W, Liao J, Chen L, Wu X, Zhang X, Sun W, Ge C. Constructing a 3D interconnected "trap-zap" β-CDPs/Fe-g-C 3N 4 catalyst for efficient sulfamethoxazole degradation via peroxymonosulfate activation: Performance, mechanism, intermediates and toxicity. CHEMOSPHERE 2022; 294:133780. [PMID: 35104553 DOI: 10.1016/j.chemosphere.2022.133780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
A novel and high-efficiency catalyst Fe doped g-C3N4 (Fe-g-C3N4) composited with β-cyclodextrin polymers (β-CDPs) was synthesized for activating peroxymonosulfate (PMS). The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that the catalyst was 3D interconnected porous structure. The degradation rate constant of sulfamethoxazole (SMX) in β-CDPs/Fe-g-C3N4+PMS system was estimated to be 0.132 min-1, which was 14.7 times and 2.2 times that of g-C3N4+PMS and Fe-g-C3N4+PMS system, respectively. In addition, the β-CDPs/Fe-g-C3N4 exhibited superior degradation performance in a wide pH range (3.0-9.0) and good selectivity in the presence of other inorganic anions and natural organics. Radical scavenging, electron paramagnetic resonance (EPR) and electrochemical measurements indicated that 1O2 and Fe(V)O were the main active species for SMX degradation in β-CDPs/Fe-g-C3N4+PMS system. Moreover, β-CDPs accelerated electron transfer between catalyst and PMS and promoted the generation of reactive oxygen species (ROS) during PMS activation. The loading of β-CDPs increased the yields of Fe(V)O and 1O2 in the system and limited the leaching of Fe3+. In addition, the possible degradation pathways of SMX were described based on the intermediates detected by liquid chromatography-mass spectrometry (LC-MS), and the toxicity of the intermediates was also evaluated. This work investigate the role of β-CDPs in PMS activation for the first time and develop a promising material with potential for water treatment.
Collapse
Affiliation(s)
- Wenxing Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Jianjun Liao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China.
| | - Liqin Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Xiaochen Wu
- Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Xiaodong Zhang
- School of Applied Science and Technology, Hainan University, Haikou, 570228, China
| | - Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| |
Collapse
|
31
|
Rashtbari S, Dehghan G, Amini M, Khorram S, Khataee A. A sensitive colori/fluorimetric nanoprobe for detection of polyphenols using peroxidase-mimic plasma-modified MoO 3 nanoparticles. CHEMOSPHERE 2022; 295:133747. [PMID: 35120949 DOI: 10.1016/j.chemosphere.2022.133747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Herein, MoO3 nanoparticles were synthesized and modified using Argon cold plasma treatment (Ar-MoO3NPs) for the first time. Various characterization studies were performed using various methods, including SEM, XRD, and FTIR techniques. The catalytic activity of MoO3NPs before and after modification was investigated using fluorometric and colorimetric experiments. The results indicated that the enzyme-mimic activity of MoO3NPs increased after plasma-surface modification (1.5 fold). Also, a fluorometric method based on the oxidation of a non-fluorescent terephthalic acid by Ar-MoO3NPs in the presence of H2O2 and the production of a compound with a high emission was designed for polyphenols detection. Quercetin was used as a polyphenol standard for the optimization of the proposed system. Under the optimum conditions, the dynamic ranges of the calibration graphs and the detection limits were calculated for different polyphenols (μmol/L): quercetin (2-232, 12.22), resveratrol (2-270, 61.89), curcumin (39-400, 38.89), gallic acid (2-309, 21.5) and ellagic acid (39-309, 16.25). Also, the precision of the method, which was expressed as RSD%, was in the range of 0.286-1.19%. The proposed system could detect individual polyphenols and total polyphenols in three different fruit extracts (apple, orange, and grapes) with high sensitivity. The obtained total concentrations of polyphenols in real samples were comparable to those calculated by the spectrophotometric method. So, a novel and sensitive optical nanosensor for the detection of polyphenols was reported as an alternative to the routine Folin-Ciocalteu spectrophotometric technique.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sirous Khorram
- Faculty of Physics, University of Tabriz, Tabriz, 51666-16471, Iran; Plasma Research Group, Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
32
|
Rashtbari S, Dehghan G, Sadeghi L, Sareminia L, Iranshahy M, Iranshahi M, Khataee A, Yoon Y. Interaction of bovine serum albumin with ellagic acid and urolithins A and B: Insights from surface plasmon resonance, fluorescence, and molecular docking techniques. Food Chem Toxicol 2022; 162:112913. [PMID: 35276234 DOI: 10.1016/j.fct.2022.112913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) shows the sequence homology and structural similarity with bovine serum albumin (BSA). Therefore, here, the interaction of natural phenolic antioxidants, ellagic acid (ELA), and its derivatives-urolithins A (ULA) and B (ULB)-with BSA was investigated. The results of surface plasmon resonance (SPR) indicated a high affinity of ELA, ULA, and ULB to BSA, with KD value < 1 × 10-6 M. The KD values of binding of the studied compounds to BSA increased with temperature, revealing a reduction in affinity with an increase in temperature. Fluorescence data showed that the quenching of BSA by tested compounds occurred via a static quenching. However, the affinity of ELA for BSA was higher than that of ULA and ULB, which may be because of the presence of a large number of hydroxyl groups in its structure. The assessment of the antioxidant activity of BSA and BSA-ELA/ULA/ULB complexes using the DPPH assay indicated that the DPPH scavenging activity of BSA increased after complex formation with ELA/ULA/ULB in the following order: BSA-ELA > BSA-ULA > BSA-ULB > BSA, which was due to their structural differences. The results of the docking analysis were in agreement with the experimental results.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Leila Sareminia
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
33
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
34
|
Abstract
Nowadays, water pollution is one of the most dangerous environmental problems in the world. The presence of the so-called emerging pollutants in the different water bodies, impossible to eliminate through conventional biological and physical treatments used in wastewater treatment plants due to their persistent and recalcitrant nature, means that pollution continues growing throughout the world. The presence of these emerging pollutants involves serious risks to human and animal health for aquatic and terrestrial organisms. Therefore, in recent years, advanced oxidation processes (AOPs) have been postulated as a viable, innovative and efficient technology for the elimination of these types of compounds from water bodies. The oxidation/reduction reactions triggered in most of these processes require a suitable catalyst. The most recent research focuses on the use and development of different types of heterogeneous catalysts, which are capable of overcoming some of the operational limitations of homogeneous processes such as the generation of metallic sludge, difficult separation of treated water and narrow working pH. This review details the current advances in the field of heterogeneous AOPs, Fenton processes and photocatalysts for the removal of different types of emerging pollutants.
Collapse
|
35
|
Kulaksız E, Kayan B, Gözmen B, Kalderis D, Oturan N, Oturan MA. Comparative degradation of 5-fluorouracil in aqueous solution by using H 2O 2-modified subcritical water, photocatalytic oxidation and electro-Fenton processes. ENVIRONMENTAL RESEARCH 2022; 204:111898. [PMID: 34450155 DOI: 10.1016/j.envres.2021.111898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the degradation of the antineoplastic agent 5-fluorouracil (5-FU) widely applied to treat different cancers using different advanced oxidation processes such as electro-Fenton (EF), photocatalysis with TiO2, and H2O2-modified subcritical water oxidation. The treatment with the EF process was the most efficient compared to others. Interestingly, in the EF process, the oxidative degradation of 5-FU behaved differently depending on the anode used. At low currents (20 and 40 mA), Pt and DSA anodes performed better than BDD and Ti4O7 anodes. In contrast, at the higher current of 120 mA, the production of heterogeneous hydroxyl radicals (M(•OH)) became important and contributed significantly to the oxidation of 5-FU in addition to homogeneous •OH generated in the bulk solution. These latter have high O2-evolution overpotential leading to the high amount of physisorbed M(•OH) compared to Pt and DSA. The oxidative degradation of 5-FU was then performed by titanium dioxide-based photocatalytic oxidation and subcritical water oxidation processes, both of which showed a lower degradation efficiency and failed to achieve complete mineralization. Finally, a comparison was performed in laboratory-scale, taking into account the following performance indicators: the degradation efficiency, the mineralization power, the cost of equipment and reagents, and the energy required for the treatment of 5-FU.
Collapse
Affiliation(s)
- Esra Kulaksız
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey.
| | - Berkant Kayan
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey.
| | - Belgin Gözmen
- Department of Chemistry, Arts and Science Faculty, Mersin University, Mersin, Turkey.
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, 73100, Crete, Greece.
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
36
|
Sheydaei M, Haseli A, Ayoubi-Feiz B, Vatanpour V. MoS 2/N-TiO 2/Ti mesh plate for visible-light photocatalytic ozonation of naproxen and industrial wastewater: comparative studies and artificial neural network modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22454-22468. [PMID: 34787809 DOI: 10.1007/s11356-021-17285-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
This paper presents the results of visible-light assisted photocatalytic ozonation for the degradation of naproxen as a model pharmaceutical pollutant from water using MoS2/N-TiO2 immobilized on a titanium mesh plate in addition to treatment of a real industrial wastewater. The batch studies were performed for naproxen degradation by varying the reaction variables such as ozone flow rate, initial pH and pollutant concertation. It was observed that almost 90% degradation was achieved at pH = 4, ozone flow rate = 3 L min-1 and initial naproxen concentration = 5 mg L-1. The catalyst exhibited constant activity even after seven successive cycles. Comparative studies among sorption, ozonation, photocatalysis, catalytic ozonation and photocatalytic ozonation revealed that the later process had the highest degradation of pollutant. Moreover, an artificial neural network (ANN) model was developed to simulate the performance of visible-light photocatalytic ozonation in naproxen degradation. The developed ANN model could estimate the visible-light photocatalytic ozonation process under the different experimental conditions. Finally, the applicability of the photocatalytic ozonation was successfully approved for industrial wastewater treatment. The results showed that the COD removal efficiency reached 65% within 150 min. HIGHLIGHTS: • MoS2/N-TiO2/Ti was synthesized by the quick electrophoretic deposition method. • The catalyst showed good ability in naproxen degradation via visible-light photocatalytic ozonation. • A three-layer artificial neural network model was developed to predict the naproxen degradation. • Naproxen degradation efficiency through the photocatalytic ozonation was higher than the individual methods. • COD of real wastewater was reduced significantly after the visible-light photocatalytic ozonation process.
Collapse
Affiliation(s)
- Mohsen Sheydaei
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ali Haseli
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Baharak Ayoubi-Feiz
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| |
Collapse
|
37
|
Ge L, Shao B, Liang Q, Huang D, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Huang J, Hu Y. Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127612. [PMID: 34838358 DOI: 10.1016/j.jhazmat.2021.127612] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 05/24/2023]
Abstract
Recently, persulfate-based advanced oxidation processes (persulfate-AOPs) are booming rapidly due to their promising potential in treating refractory contaminants. As a type of popular two-dimensional material, layered double hydroxides (LDHs) are widely used in energy conversion, medicine, environment remediation and other fields for the advantages of high specific surface area (SSA), good tunability, biocompatibility and facile fabrication. These excellent physicochemical characteristics may enable LDH-based materials to be promising catalysts in persulfate-AOPs. In this work, we make a summary of LDHs and their composites in persulfate-AOPs from different aspects. Firstly, we introduce different structure and important properties of LDH-based materials briefly. Secondly, various LDH-based materials are classified according to the type of foreign materials (metal or carbonaceous materials, mainly). Latterly, we discuss the mechanisms of persulfate activation (including radical pathway and nonradical pathway) by these catalysts in detail, which involve (i) bimetallic synergism for radical generation, (ii) the role of carbonaceous materials in radical generation, (iii) singlet oxygen (1O2) production and several special nonradical mechanisms. In addition, the catalytic performance of LDH-based catalysts for contaminants are also summarized. Finally, challenges and future prospects of LDH-based composites in environmental remediation are proposed. We expect this review could bring new insights for the development of LDH-based catalyst and exploration of reaction mechanism.
Collapse
Affiliation(s)
- Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Yumeng Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
38
|
Fu C, Xu B, Chen H, Zhao X, Li G, Zheng Y, Qiu W, Zheng C, Duan L, Wang W. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151011. [PMID: 34715223 DOI: 10.1016/j.scitotenv.2021.151011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The emergence and pollution of antibiotics in surface water in various regions have drawn widespread concern because of the harm to aquatic ecosystems and human health. In this study, we aim to first investigate contamination and ecological risks of 39 antibiotics in Xiong'an New Area (XANA), China, and then illuminate relative abundances of antibiotic resistance genes (ARGs) and their correlations with antibiotics. The sum of antibiotic concentrations in the water circulation system, including surface water, groundwater, and sediment was 12.71-260.56 ng/L, ND-196.12 ng/L, and 38.03-406.31 ng/g, respectively. In surface water and sediment, cephalosporins and quinolones were the primary antibiotics, accounting for 45% and 16% of the total antibiotic concentrations in surface water and for 62% and 32% of the total antibiotic concentrations in sediment; this suggests a significant interaction between the two media. The antibiotic concentration was the highest in shallow groundwater at depths of <50 m (mean concentration of 79.22 ± 56.46 ng/L), indicating that surface water was a possible source of antibiotic contamination in groundwater. AMX presented the highest risk in both surface and groundwater and should be controlled as a priority. Moreover, the selection pressure of antibiotics on ARGs was discovered in the sediment in XANA, because the enrichment of sulA was significantly correlated with spiramycin and lincomycin and the enrichment of blaOXA-1 was significantly correlated with roxithromycin, ciprofloxacin, ofloxacin, and sulfapyridine. Thus, our investigation revealed potential antibiotic contamination in multiple environmental media in XANA, which should be addressed to prevent more serious pollution.
Collapse
Affiliation(s)
- Caixia Fu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - He Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanrong Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lei Duan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| |
Collapse
|
39
|
Sun YL, Toghraie D, Akbari OA, Pourfattah F, Alizadeh A, Ghajari N, Aghajani M. Thermal performance and entropy generation for nanofluid jet injection on a ribbed microchannel with oscillating heat flux: Investigation of the first and second laws of thermodynamics. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Soluble tetraaminophthalocyanines indium functionalized graphene platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Keyikoglu R, Khataee A, Yoon Y. Layered double hydroxides for removing and recovering phosphate: Recent advances and future directions. Adv Colloid Interface Sci 2022; 300:102598. [PMID: 35007948 DOI: 10.1016/j.cis.2021.102598] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
Eutrophication is a widespread environmental challenge caused by excessive phosphate. Thus, wastewater engineers primarily aim to limit the phosphate concentration in water bodies. Layered double hydroxides (LDHs) are lamellar inorganic materials containing tunable brucite-like structures. This review discusses the fundamental aspects and latest developments in phosphate removal using LDH-based materials. Based on the divalent cations, Ca, Mg, and Zn-containing LDHs are largely used along with trivalent cations such as Al and Fe owing to their limited toxicities. However, classical LDHs are affected by the presence of co-existing anions, have a narrow working pH range, and have moderate adsorption capacities. Binary LDHs have been designed to be selective towards phosphate by the addition of a third metal such as Zr4+. Developing LDH composites with magnetic, polymeric or carbon materials are feasible approaches for increasing adsorption capacity, stability, and reusability of LDHs. Biochar as a carrier material for LDHs achieved remarkable phosphate adsorption performance and improved LDH dispersion, anion exchange capacity, and ease of separation. The use of recovered phosphate as an SRF, which is a type of bioavailable fertilizer, is a promising approach.
Collapse
|
42
|
Gromboni MF, Cordeiro-Junior PJM, Corradini P, Mascaro LH, Lanza MRDV. One-step preparation of Co 2V 2O 7: synthesis and application as Fenton-like catalyst in gas diffusion electrode. Phys Chem Chem Phys 2022; 24:10249-10262. [DOI: 10.1039/d2cp00072e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic oxides and MOFs have been employed as catalysts for ORR via two-electron and Fenton-based processes. This work reports the development of a new green one-step route for obtaining Co2V2O7....
Collapse
|
43
|
Montazarolmahdi M, Masrournia M, Nezhadali A. Determination of Salicylic Acid Using a Highly Sensitive and New
Electroanalytical Sensor. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210111095822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A drug sensor (salicylic acid, in this case) was designed and made up of this research. The senor
was made by modification of paste electrode (MPE) with CuO-SWCNTs and 1-hexyl-3-methylimidazolium chloride
(HMICl). The MPE/CuO-SWCNTs/HMICl showed catalytic activity for the oxidation signal of salicylic acid in
phosphate buffer solution.
Methods:
Electrochemical methods were used as a powerful strategy for the determination of salicylic acid in
pharmaceutical samples. Aiming at this goal, carbon paste electrode was amplified with conductive materials and used as
a working electrode.
Results:
The MPE/CuO-SWCNTs/HMICl was used for the determination of salicylic acid in the concentration range of
1.0 nM – 230 µM using differential pulse voltammetric (DPV) method. At pH=7.0, as optimum condition, the MPE/CuOSWCNTs/HMICl displayed a high-quality ability for the determination of salicylic acid in urine, pharmaceutical serum,
and water samples.
Conclusion:
The MPE/CuO-SWCNTs/HMICl was successfully used as a new and high performance working electrode
for the determination of salicylic acid at a nanomolar level and in real samples.
Collapse
|
44
|
Karatas O, Gengec NA, Gengec E, Khataee A, Kobya M. High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process. CHEMOSPHERE 2022; 287:132370. [PMID: 34592209 DOI: 10.1016/j.chemosphere.2021.132370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to produce an electrode that can be used in H2O2 production and Electro-Fenton (EF) process by an effective, cheap, and easy method. For this reason, a superhydrophobic electrode with a higher PTFE ratio and high thickness was produced with a simple press. The produced electrode was used in the production of H2O2 and mineralization of Atrazine. First, the effect of pH, cathode voltage, and operation time on H2O2 production was evaluated. The maximum H2O2 concentration (409 mg/L), the highest current efficiency (99.80%), and the lowest electrical energy consumption (3.16 kWh/kg) were obtained at 0.8 V, 7.0 of pH, and 120 min, and the stability of the electrode was evaluated up to 720 min. Then, the effects of the operational conditions (pH, cathode voltage, operating time, and catalyst concentration) in electro-Fenton were evaluated. The fastest degradation of Atrazine (>99%) was obtained at 2.0 V, 3.0 of pH, and 0.3 mM of Fe2+ in 15 min. In the final part of the study, the degradation intermediates were identified, and the characterization of the electrode was evaluated by SEM, XRD, FT-IR, tensiometer, potentiostat, and elemental analyzer.
Collapse
Affiliation(s)
- Okan Karatas
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Bursa Technical University, 16310, Bursa, Turkey
| | - Nevin Atalay Gengec
- Department of Chemical Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Erhan Gengec
- Department of Environmental Protection, University of Kocaeli, 41275, Izmit, Kocaeli, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Kyrgyz-Turkish Manas University, Department of Environmental Engineering, Bishkek, Kyrgyzstan
| |
Collapse
|
45
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
46
|
Shahbazkhany S, Salehi M, Mousavi-Kamazani M, Salarvand Z. Zn 0.94Mn 0.06O for adsorption and photo-degradation of methyl orange dye under visible irradiation: Kinetics and isotherms study. ENVIRONMENTAL RESEARCH 2022; 203:111833. [PMID: 34403667 DOI: 10.1016/j.envres.2021.111833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Three photocatalyst-adsorbents consist of Zn0.97Mn0.03O, Zn0.94Mn0.06O, and Zn0.92Mn0.08O were synthesized by hydrothermal method and calcined at 800 °C. The structural and optical properties of the sample Zn0.94Mn0.06O were characterized by using XRD; TEM; SEM; EDS; DLS; and DRS. The surface of the sample Zn0.94Mn0.06O consists of nano-particles (<100 nm) and nano-holes (18.4 nm), also the band-gap of it was obtained 2.89 eV. Adsorption and photo-degradation of methyl orange (MO) dye was investigated in darkness and under visible light irradiation (200 W tungsten). The sample Zn0.94Mn0.06O showed the most decolorization efficiency in the shortest time, so that 0.15 g of it adsorbed and destroyed the MO dye molecules (99 ± 1 %) in 40 s under irradiation. The most adsorption capacity of Zn0.94Mn0.06O was obtained 30.06 mg/g and the mechanism of the dye adsorption was investigated by using BET analysis and zeta potential. Also the adsorption isotherm and kinetics were calculated for describing the adsorption of MO onto the Zn0.94Mn0.06O.
Collapse
Affiliation(s)
| | - Mehdi Salehi
- Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran.
| | - Mehdi Mousavi-Kamazani
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| | - Zohreh Salarvand
- Department of Chemistry, Chemistry and Petrochemistry Research Centre, Standard Research Institute(SRI), Karaj, Iran.
| |
Collapse
|
47
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
48
|
Wang L, Wang J, Ye C, Wang K, Zhao C, Wu Y, He Y. Photodeposition of CoO x nanoparticles on BiFeO 3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy. ULTRASONICS SONOCHEMISTRY 2021; 80:105813. [PMID: 34736118 PMCID: PMC8567443 DOI: 10.1016/j.ultsonch.2021.105813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Piezoelectric materials have received much attention due to their great potential in environmental remediation by utilizing vibrational energy. In this paper, a novel piezoelectric catalyst, CoOx nanoparticles anchored BiFeO3 nanodisk composite, was intentionally synthesized via a photodeposition method and applied in piezocatalytic degradation of rhodamine B (RhB) under ultrasonic vibration. The as-synthesized CoOx/BiFeO3 composite presents high piezocatalytic efficiency and stability. The RhB degradation rate is determined to be 1.29 h-1, which is 2.38 folds higher than that of pure BiFeO3. Via optimizing the reaction conditions, the piezocatalytic degradation rate of the CoOx/BiFeO3 can be further increased to 3.20 h-1. A thorough characterization was implemented to investigate the structure, piezoelectric property, and charge separation efficiency of the CoOx/BiFeO3 to reveal the nature behind the high piezocatalytic activity. It is found that the CoOx nanoparticles are tightly adhered and uniformly dispersed on the surface of the BiFeO3 nanodisks. Strong interaction between CoOx and BiFeO3 triggers the formation of a heterojunction structure, which further induces the migration of the piezoinduced holes on the BiFeO3 to CoOx nanoparticles. The recombination of electron-hole pairs is retarded, thereby increasing the piezocatalytic performance greatly. This work may offer a new paradigm for the design of high-efficiency piezoelectric catalysts.
Collapse
Affiliation(s)
- Linkun Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Junfeng Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Chenyin Ye
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Kaiqi Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Chunran Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
49
|
Ahmadi A, Zarei M, Hassani A, Ebratkhahan M, Olad A. Facile synthesis of iron(II) doped carbonaceous aerogel as a three-dimensional cathode and its excellent performance in electro-Fenton degradation of ceftazidime from water solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Orimolade BO, Idris AO, Feleni U, Mamba B. Recent advances in degradation of pharmaceuticals using Bi 2WO 6 mediated photocatalysis - A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117891. [PMID: 34364116 DOI: 10.1016/j.envpol.2021.117891] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
The pollution of water bodies by residual pharmaceuticals is a major problem globally. Bismuth tungstate mediated photocatalysis has been effective in the removal of these organics from water. Bismuth tungstate (Bi2WO6) has proven to be an excellent visible light active photocatalyst because of its non-toxicity, low band gap energy and ease of preparation. It has been widely applied for the removal of a wide array of organic pollutants, particularly dyes, from wastewater. However, recently, much attention has been channelled to its application for the degradation of pharmaceuticals. In this present review, the recent trends in the applications of Bi2WO6 based photocatalysts for the removal of pharmaceuticals in wastewater are comprehensively discussed. The fabrication of Bi2WO6 based photocatalysts with enhanced photocatalytic performances through morphology control, doping and formation of heterojunctions are highlighted. Much discussion centres on the mechanisms and possible degradation pathways of antibiotic pharmaceuticals in wastewater. Finally, areas needing more attention and investigation on the use of Bi2WO6 based photocatalysts for removal of pharmaceuticals from wastewater especially towards real-life applications are presented for future research directions.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa.
| | - Azeez Olayiwola Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa
| |
Collapse
|