1
|
Han Z, Xiong J, Zhou J, Wang Z, Hu T, Xu J. Microplastics removal from stormwater runoff by bioretention cells: A review. J Environ Sci (China) 2025; 154:73-90. [PMID: 40049912 DOI: 10.1016/j.jes.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 05/13/2025]
Abstract
Microplastics (MPs), as a new category of environmental pollutant, have been the hotspot of eco-friendly issues nowadays. Studies based on the aging process, the migration pattern of MPs in runoff rainwater, and the use of bioretention cells to remove MPs from runoff rainwater are beginning to attract widespread attention. This review analyses the migration patterns of MPs in rainwater runoff through their sources, structure and characteristics. The mechanism of removing MPs from runoff stormwater, the purification efficiency of different fillers and their influencing factors, and the accumulation, fate, and aging of MPs in bioretention cells are described. Furthermore, the hazards of MP accumulation on the performance of bioretention cells are summarised. Future directions for removing MPs in bioretention cells are proposed: (1) research on MPs smaller than 100 µm; (2) influence of MPs aging process on bioretention cells; (3) exploration of more effective fillers to enhance their removal efficiency; (4) research on synergistic removal mechanism of MPs and other pollution.
Collapse
Affiliation(s)
- Zhaolong Han
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyao Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tuanping Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxing Xu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Jiang C, Wang T, Wu X, Dang Z, Li H. Replacement depth and lifespan prediction of enhanced bioretention media under TSS impact conditions. ENVIRONMENTAL TECHNOLOGY 2025; 46:2331-2341. [PMID: 39557611 DOI: 10.1080/09593330.2024.2428836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
The enhanced bioretention system provides a new way to solve the problems of stormwater management brought by urbanization. The knowledge on effects of media modification and long-term operation is scattered, so clogging interaction function, clogging time and depth are analysed to uncover the underneath. River sand, loess, and compost were used as basic fillers, and air-dried water treatment residual (WTR) and recycled aggregate from construction waste (RACW) were used as modifiers to formulate mixed fillers, and synchronized observation of the change rule of hydraulic conductivity and porosity of vertical layering. The study found that the infiltration coefficient of each system tended to decay gradually from top to bottom as the influent TSS accumulated. A set of improved media clogging process prediction framework has been proposed, using rainfall conditions in Northwest China as input conditions, the system clogging time is about 5.5∼7.1 years and the depth of replacement is about 35 cm based on the principles of cake filtration and deep filtration. The results can further understand the function variation of bioretention system under TSS impact conditions, which is helpful to the prediction of the operating life of the system and the evaluation of media replacement depth.
Collapse
Affiliation(s)
- Chunbo Jiang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Teng Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Xijun Wu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Zhenguo Dang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Huaien Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Soltaninia S, Eskandaripour M, Golmohammadi MH, Taghavi L, Mehboodi A. Nitrate pollution in urban runoff: A comprehensive risk assessment for human and ecological health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179184. [PMID: 40138899 DOI: 10.1016/j.scitotenv.2025.179184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Nitrate pollution in urban runoff poses significant environmental and public health risks, with its impact varying across different land use types. This study investigates nitrate concentrations in runoff from residential, commercial, industrial, and traffic zones in Tehran, Iran, using Event Mean Concentration (EMC) analysis and Monte Carlo simulations to assess both ecological and human health risks. The results indicate that industrial and traffic zones exhibit the highest nitrate concentrations, reaching 58.13 mg/L, significantly exceeding regulatory thresholds. Ecological risk assessments highlight the potential for aquatic system degradation, while health risk evaluations reveal hazard index (HI) values surpassing the safe limit (HI > 4), particularly in industrial and high-traffic areas. These findings underscore the need for targeted mitigation strategies, including the implementation of green infrastructure and stricter pollution control measures, to improve urban water quality and reduce associated risks.
Collapse
Affiliation(s)
- Shahrokh Soltaninia
- Department of Environmental Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, UK.
| | | | | | - Lobat Taghavi
- Department of Environmental Science and Forest, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University (SRBIAU), P. O. Box 14515-775, Tehran, Iran
| | - Arvin Mehboodi
- Department of Agricultural Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
| |
Collapse
|
4
|
Sahraei M, McMaine J, May C, Bergstrom J. Looking beyond MS4 communities: Assessing impervious cover and population dynamics in small towns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124996. [PMID: 40121980 DOI: 10.1016/j.jenvman.2025.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Water quality and quantity are strongly influenced by land use and land cover, with impervious surfaces serving as a key indicator of watershed health. Increased imperviousness alters watershed hydrology, shifting it from infiltration-dominant to runoff-dominant, leading to reduced groundwater recharge, higher runoff, increased peak discharge, and channel enlargement. In the United States, policy regarding stormwater management is predominantly focused on towns with populations greater than 10,000. However, any increase in impervious cover can negatively affect hydrology and water quality, and communities with populations smaller than 10,000 often lack the financial and technical resources to mitigate issues from impervious cover. This study examines changes in impervious cover in small towns and HUC-12 watersheds in eastern South Dakota between 2001 and 2019, alongside population changes from 2000 to 2020 in towns with populations under 10,000. Imperviousness changes were evaluated using the NLCD, and population shift was assessed using U.S. census data. A t-test was performed to compare changes over time, followed by linear regression and generalized additive model to examine the effects of population density dynamics and proximity to larger cities on changes in imperviousness. Results reveal significant demographic changes, with more than half of the towns studied experiencing population declines, while those closer to larger cities saw growth. Despite these population declines, many towns saw significant increases in imperviousness, highlighting that population change alone does not fully explain shifts in impervious surfaces and that other factors, such as land-use policies and socio-economic factors, play a significant role. Although small towns contributed modestly to overall watershed imperviousness, more than half (52 %) of these towns had already exceeded the 10 % threshold commonly associated with ecological impairment by 2019. Additionally, the average imperviousness in these towns rose from 9.3 % in 2001 to 12.7 % in 2019, highlighting the need for expanding the focus of stormwater policy beyond larger communities. Interestingly, while imperviousness significantly increased in small towns, most watersheds experienced a decline, and only 28.2 % of watersheds saw increases primarily among those near larger urban centers, underscoring complex spatial patterns in land use. These findings highlight the importance of addressing these challenges with finer-scale watershed delineations, localized management support, and strategies to enhance community resilience and improve water resource management in small towns.
Collapse
Affiliation(s)
- Maryam Sahraei
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - John McMaine
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, 57007, USA; Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, 40506, USA.
| | - Candace May
- School of Psychology, Sociology and Rural Studies, South Dakota State University, Brookings, SD, 57007, USA
| | - Jeremiah Bergstrom
- School of Design, South Dakota State University, Brookings, SD, 57007, USA
| |
Collapse
|
5
|
Wang L, Tian Y, Sun J, Li Y, Yang Z. The efficacy of bioretention systems amended with iron-modified biochar for the source-separated and component-specific treatment of rainwater runoff: A microbiome perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123728. [PMID: 39700931 DOI: 10.1016/j.jenvman.2024.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Bioretention systems offer advantages in controlling non-point source pollution from runoff rainwater. However, the systems frequently encounter challenges, including insufficient stability of nitrogen and phosphorus removal. Limited research has been performed on bioretention systems which integrate actual data from non-point source pollution cases for the quantitative and qualitative refinement of initial and non-initial rainwater. Moreover, the potential linkages between amended media and microbial communities in bioretention systems with the addition of novel functional filler have not been explored. In this study, a system for treating both initial and non-initial rainwater was established through measurements including iron-modified biochar (FeBC) packing and the optimization of the layer structures. In system treating initial rainwater, the systems loaded with FeBC maintained stable NH4+-N and NO3--N removal rates of over 95% and 80%, respectively under 12 rainfall simulation events. After a 10-day antecedent drying duration (ADD), the removal rates for NH4+-N and PO43--P remained above 78% and 85%. In systems designed to process non-initial rainwater, increasing the height of the transition layer effectively enhanced the NH4+-N removal stability. Meanwhile, increasing the height of the drainage layer could promote PO43--P removal rates to over 75%. The addition of FeBC facilitated the growth of certain denitrifiers improved overall NO3--N removal during successive rainfall events. The microbial communities may adapt to variations in the external environment by enhancing the synthesis of ribosome and the metabolism of pyrimidine and purine, further improving the stability of NH4+-N removal. This study provides a theoretical basis for the precise enhancement of nitrogen and phosphorus removal and the design of bioretention systems for differentiated treatment of rainwater, guiding their design and applications in different regions.
Collapse
Affiliation(s)
- Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuan Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jie Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhengjian Yang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| |
Collapse
|
6
|
Sereni L, Junginger T, Payraudeau S, Imfeld G. Emissions and transport of urban biocides from facades to topsoil at the district-scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176269. [PMID: 39304152 DOI: 10.1016/j.scitotenv.2024.176269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Urban biocides used in facade paints and renders to prevent algae and fungal growth are released into the environment during rainfall, subsequently contaminating groundwater. However, quantitative data on the emission, transport and infiltration of urban biocides at the district scale are generally lacking. In this study, we quantified the fluxes of the urban biocide terbutryn and its major transformation product, terbutryn-sulfoxide, from building facades into stormwater, sediment, soil, and vegetation within a seven-year-old district employing sustainable stormwater management such as infiltration trenches and ponds. Combining four months of field observations with district scale modeling, we estimated initial concentrations of terbutryn in facade paint, quantified the emissions of terbutryn and terbutryn-sulfoxide from facades to soil, and evaluated terbutryn storage in soil under various painting scenarios. Terbutryn concentrations in sustainable stormwater management systems ranging from 2 to 67 ng L-1, frequently exceeding predicted no-effect concentrations. The constant release of terbutryn and its transformation products in runoff highlighted the chronic exposure of non-target organisms to urban biocides. Terbutryn concentrations in topsoil and pond sediment indicated accumulation, while concentrations exceeding 1 μg g-1 in the vegetation suggested plant uptake. Model results revealed that a substantial portion (27 to 73 %) of biocides infiltrated near facades through permeable surfaces like gravel, while a smaller portion (7 to 39 %) reached the stormwater management systems. Additionally, significant biocide leaching in the topsoil (30 cm below the surface) underscored the potential for biocide contamination in groundwater. Overall, this district-scale study and modeling approach provide a comprehensive framework for evaluating scenarios and measures for sustainable stormwater management to mitigate the infiltration of urban biocides into groundwater.
Collapse
Affiliation(s)
- Laura Sereni
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France; Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Tobias Junginger
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France; University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Gwenael Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France.
| |
Collapse
|
7
|
Xu M, Zhi Y, Kong Z, Ma H, Shao Z, Chen L, Chen H, Yuan Y, Liu F, Xu Y, Ni Q, Hu S, Chai H. Enhancing nitrogen and phosphorus removal in plant-biochar-pyrite stormwater bioretention systems: Impact of temperature and high-frequency heavy rainfall. ENVIRONMENTAL RESEARCH 2024; 262:119926. [PMID: 39276826 DOI: 10.1016/j.envres.2024.119926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Global climate change and rapid urbanization have resulted in more frequent and intense rainfall events in urban areas, raising concerns about the effectiveness of stormwater bioretention systems. In this study, we optimized the design by constructing a multi-layer filler structure, including plant layer, biochar layer, and pyrite layer, and evaluated its performance in nitrogen (N) and phosphorus (P) removal under different temperatures (5-18 °C and 24-43 °C), rainfall intensity (47.06 mm rainfall depth), and frequency (1-5 days rainfall intervals) conditions. The findings indicate that over 775 days, the plant system consistently removed 62.3% of total nitrogen (TN) and 97.0% of total phosphorus (TP) from 103 intense rainfall events. Temperature fluctuations had minimal impact on nitrate nitrogen (NO3--N) and TP removal, with differences in removal rates of only 1.0% and 0.6%, respectively, among plant groups. Across the multi-layer structure, plant roots mitigated the impact of temperature differences on NO3--N removal, while high-frequency rainfall fluctuated the stability of NO3--N removal. Dense plant roots reinforced N and P removal by facilitating denitrification in the vadose zone (biochar) and strengthening denitrification processes. Biochar and pyrite contributed to stable microenvironments and diverse ecological functions, enhancing NO3--N and PO43- removal. In summary, the synergistic effects of the multi-layer filler structure improved and stabilized N and P removal, providing valuable insights for addressing runoff pollution in bioretention systems amidst rapid urbanization and climate change challenges.
Collapse
Affiliation(s)
- Mei Xu
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Haiyuan Ma
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhiyu Shao
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lei Chen
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hong Chen
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yunsong Yuan
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fujian Liu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Yanhong Xu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Qichang Ni
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
8
|
Li J, Culver TB, Burgis CR, Zhang W, Smith JA. Validating Nitrogen Removal Models with Field Bioretention Data. JOURNAL OF ENVIRONMENTAL ENGINEERING 2024; 150. [DOI: 10.1061/joeedu.eeeng-7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Jiayi Li
- Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904. ORCID:
| | - Teresa B. Culver
- Associate Professor, Associate Chair for Academic Programs, Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904 (corresponding author). ORCID:
| | - Charles R. Burgis
- Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904. ORCID:
| | - Wuhuan Zhang
- Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904. ORCID:
| | - James A. Smith
- Henry L. Kinnier Professor of Civil Engineering, Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904
| |
Collapse
|
9
|
Chen F, Zhang Q, Zheng G, Shen X, Xue Z, Zhang M, Li R, Wang Y. Enhancing bioretention efficiency for pollutant mitigation in stormwater runoff: Exploring ecosystem cycling dynamics amidst temporal variability. BIORESOURCE TECHNOLOGY 2024; 402:130827. [PMID: 38734258 DOI: 10.1016/j.biortech.2024.130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
In this study, three distinct bioretention setups incorporating fillers, plants, and earthworms were established to evaluate the operational efficiency under an ecosystem concept across varying time scales. The results revealed that under short-term operating conditions, extending the drying period led to a notable increase in the removal of NO3--N, total phosphorus (TP), and chemical oxygen demand (COD) by 5 %-7%, 4 %-12 %, and 5 %-10 %, respectively. Conversely, under long-time operating conditions, the introduction of plants resulted in a significant boost in COD removal by 10 %-20 %, while the inclusion of earthworms improved NH4+-N and NO3--N removal, especially TP removal by 9 %-16 %. Microbial community analysis further indicated the favorable impact of the bioretention system on biological nitrogen and phosphorus metabolism, particularly with the incorporation of plants and earthworms. This study provides a reference for the operational performance of bioretention systems on different time scales.
Collapse
Affiliation(s)
- Feiwu Chen
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Qian Zhang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China.
| | - Guangtai Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiaojun Shen
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhu Xue
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Mucheng Zhang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Ruoxin Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuan Wang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
10
|
Johansson G, Fedje KK, Modin O, Haeger-Eugensson M, Uhl W, Andersson-Sköld Y, Strömvall AM. Removal and release of microplastics and other environmental pollutants during the start-up of bioretention filters treating stormwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133532. [PMID: 38387172 DOI: 10.1016/j.jhazmat.2024.133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Untreated stormwater is a major source of microplastics, organic pollutants, metals, and nutrients in urban water courses. The aim of this study was to improve the knowledge about the start-up periods of bioretention filters. A rain garden pilot facility with 13 bioretention filters was constructed and stormwater from a highway and adjacent impervious surfaces was used for irrigation for ∼12 weeks. Selected plants (Armeria maritima, Hippophae rhamnoides, Juncus effusus, and Festuca rubra) was planted in ten filters. Stormwater percolated through the filters containing waste-to-energy bottom ash, biochar, or Sphagnum peat, mixed with sandy loam. Influent and effluent samples were taken to evaluate removal of the above-mentioned pollutants. All filters efficiently removed microplastics >10 µm, organic pollutants, and most metals. Copper leached from all filters initially but was significantly reduced in the biochar filters at the end of the period, while the other filters showed a declining trend. All filters leached nutrients initially, but concentrations decreased over time, and the biochar filters had efficiently reduced nitrogen after a few weeks. To conclude, all the filters effectively removed pollutants during the start-up period. Before being recommended for full-scale applications, the functionality of the filters after a longer period of operation should be evaluated.
Collapse
Affiliation(s)
- Glenn Johansson
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Karin Karlfeldt Fedje
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Recycling and Waste Management, Renova AB, Box 156, Gothenburg SE-40122, Sweden
| | - Oskar Modin
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | - Wolfgang Uhl
- Aquateam COWI AS, Karvesvingen 2, 0579 Oslo, Norway
| | - Yvonne Andersson-Sköld
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Swedish National Road and Transport Research Institute Linköping (VTI), Box 8072, SE-40278 Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
11
|
Shi C, Feng X, Sun W, Qiu H, Liu G, Li S, Xie J, Wang P, Lin Y, Wei X, Xu T, Gao W. Pollutant removal in an experimental bioretention cell situated in a northern Chinese sponge city. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2164-2176. [PMID: 38678416 DOI: 10.2166/wst.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 04/30/2024]
Abstract
To assess the viability and effectiveness of bioretention cell in enhancing rainwater resource utilization within sponge cities, this study employs field monitoring, laboratory testing, and statistical analysis to evaluate the water purification capabilities of bioretention cell. Findings indicate a marked purification impact on surface runoff, with removal efficiencies of 59.81% for suspended solids (SS), 39.01% for chemical oxygen demand (COD), 37.53% for ammonia nitrogen (NH3-N), and 30.49% for total phosphorus (TP). The treated water largely complies with rainwater reuse guidelines and tertiary sewage discharge standards. Notably, while previous research in China has emphasized water volume control in sponge city infrastructures, less attention has been given to the qualitative aspects and field-based evaluations. This research not only fills that gap but also offers valuable insights and practical implications for bioretention cell integration into sponge city development. Moreover, the methodology and outcomes of this study serve as a benchmark for future sponge city project assessments, offering guidance to relevant authorities.
Collapse
Affiliation(s)
- Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan; School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xia Feng
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Weining Sun
- Environmental Building Branch, Changchun Municipal Engineering Design & Research Institute Co. Ltd, Changchun 130031, China
| | - Hong Qiu
- China Railway Eryuan Engineering Group Co., Ltd, Chengdu 610031, China
| | - Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jing Xie
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Pengxuan Wang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xindong Wei
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Tongyu Xu
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan E-mail:
| | - Weijun Gao
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| |
Collapse
|
12
|
Yang J, Luo H, Wang H, Qin T, Yang M, Chen L, Wu X, He BJ. Removal effect of pollutants from stormwater runoff in shallow bioretention system with gramineous plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1946-1960. [PMID: 38678401 DOI: 10.2166/wst.2024.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/24/2024] [Indexed: 04/30/2024]
Abstract
The bioretention system is one of the most widely used low impact development (LID) facilities with efficient purification capacity for stormwater, and its planting design has been a hot spot for research at home and abroad. In this paper, ryegrass (Lolium perenne L.), bermuda (Cynodon dactylon Linn.), bahiagrass (Paspalum notatum Flugge), and green grass (Cynodon dactylon × C .transadlensis 'Tifdwarf') were chosen as plant species to construct a shallow bioretention system. The growth traits and nutrient absorption ability of four gramineous plants were analyzed. Their tolerance, enrichment, and transportation capacity were also evaluated to compare plant species and their absorptive capacity of heavy metals (Cu, Pb, and Zn). Results showed that the maximum absorption rate (Imax) ranged from 22.1 to 42.4 μg/(g·h) for P and ranged from 65.4 to 104.8 μg/(g·h) for NH4+-N; ryegrass had the strongest absorption capacity for heavy metals and the maximum removal rates of Cu, Pb, and Zn by four grasses were 78.4, 59.4, and 51.3%, respectively; the bioretention cell with ryegrass (3#) was significantly more effective in purifying than the unplanted bioretention cell (1#) during the simulated rainfall test. Overall, the system parameters were optimized to improve the technical application of gramineous plants in the bioretention system.
Collapse
Affiliation(s)
- Jing Yang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Luo
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China E-mail:
| | - Huiteng Wang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Teng Qin
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingyu Yang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Limin Chen
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xi Wu
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bao-Jie He
- Faculty of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia; Centre for Climate-Resilient and Low-Carbon Cities, School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China; Network for Education and Research on Peace and Sustainability (NERPS), Hiroshima University, Hiroshima 739-8530, Japan
| |
Collapse
|
13
|
Boening-Ulman KM, Mikelonis AM, Heckman JL, Calfee MW, Ratliff K, Youn S, Smith JS, Mitchell CE, Hunt WF, Winston RJ. The potential to manage releases of Bacillus anthracis using bioretention and a high flow media filter: Results of simulated runoff testing with tracer spores Bacillus globigii. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120286. [PMID: 38354613 PMCID: PMC11649060 DOI: 10.1016/j.jenvman.2024.120286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores. In this study, the effectiveness of a bioretention cell (BRC) and high flow media filter (HFMF) in Huron, Ohio, were evaluated for removal of Bacillus globigii (Bg) spores (a harmless cognate of Ba). Three 4-8 mm simulated runoff events were created for each SCM using a fire hydrant and Bg spores were injected into the runoff upstream of the SCM inlets. The BRC significantly (p < 0.001) outperformed the HFMF in reducing Bg concentrations and loads, with an average load reduction of 1.9 log (∼99% reduction) compared to 0.4 (∼60% reduction), respectively. A probable critical design factor leading to these differences was the infiltration rate of the media and subsequent retention time within the filters, which was supported by similar disparities in suspended solids reductions. Differences in spore removal may also have been due to particle size distribution of the HFMF, which was more gravelly than the bioretention cell. At 3 and 6 months after the-simulated runoff tests, soil samples taken from both SCMs, yielding detectable Bg spores within the top 15 cm of media, with increased spore concentrations where ponding occurred for longer durations during the tests. This suggests that forebays and areas near inlets may be hotspots for spore cleanup in a real-world bioterrorism incident.
Collapse
Affiliation(s)
- Kathryn M Boening-Ulman
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA.
| | - Anne M Mikelonis
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - J Lee Heckman
- APTIM Government Solutions, 1600 Gest St., U.S. Environmental Protection Agency Test and Evaluation Facility, Cincinnati, OH, 45204, USA
| | - M Worth Calfee
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Katherine Ratliff
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Sungmin Youn
- Department of Civil Engineering, Marshall University, Huntington, WV, 25755, USA
| | - Joseph S Smith
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA
| | - Caleb E Mitchell
- Department of Biological and Agricultural Engineering, North Carolina State University, 3100 Faucette Dr., Raleigh, NC, 27695, USA
| | - William F Hunt
- Department of Biological and Agricultural Engineering, North Carolina State University, 3100 Faucette Dr., Raleigh, NC, 27695, USA
| | - Ryan J Winston
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave., Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Wu J, Ma Y, Song S. Reducing particle accumulation in sewers for mitigation of combined sewer overflow impacts on urban rivers: a critical review of particles in sewer sediments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:89-115. [PMID: 38214988 PMCID: wst_2023_394 DOI: 10.2166/wst.2023.394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Sewer sediments contain various hazardous compounds, leading to significant pollution risks when combined sewer overflows (CSOs) occur without appropriate controls. This paper presents a comprehensive review of the issues associated with particles in sewers, specifically focusing on the non-negligible contribution of particulate matter to CSOs, which leads to pollution in urban rivers. Therefore, the sources of particulate matter in sewers, their contributions to the overflow particles, and the specific areas of concern when it comes to managing particulate matter during particle transportation are outlined. Overall, carefully considering the goal of avoiding sedimentation during the drainage system design is the most effective prevention and control method for pipeline sediment, where minimum velocity and minimum shear stress are the core parameters. The establishment of a flexible and adaptive particle simulation method in drainage pipelines requires reliable simulation of particle sedimentation and erosion, the development of sediment prevention facilities with strong adaptability, and a comprehensive evaluation of economic and environmental benefits. With the ongoing enhancement of urbanization in developing countries, such studies will have more practical significance.
Collapse
Affiliation(s)
- Jun Wu
- Shanghai Urban Water Resources Development & Utilization National Engineering Center Co. Ltd, 200082 Shanghai, China; Shanghai Chengtou Water Group Co., Ltd, 200002 Shanghai, China E-mail:
| | - Yan Ma
- Shanghai Urban Water Resources Development & Utilization National Engineering Center Co. Ltd, 200082 Shanghai, China; Shanghai Chengtou Water Group Co., Ltd, 200002 Shanghai, China
| | - Shanshan Song
- Shanghai Urban Water Resources Development & Utilization National Engineering Center Co. Ltd, 200082 Shanghai, China; Shanghai Chengtou Water Group Co., Ltd, 200002 Shanghai, China
| |
Collapse
|
15
|
Akpinar D, Chowdhury S, Tian J, Guo M, Barton S, Imhoff PT. Understanding a wood-derived biochar's impact on stormwater quality, plant growth, and survivability in bioretention soil mixtures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119359. [PMID: 37871550 DOI: 10.1016/j.jenvman.2023.119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Bioretention systems are planted media filters used in stormwater infrastructure. Maintaining plant growth and survival is challenging because most designs require significant sand. Conventional bioretention soil media (BSM) might be augmented with biochar to make the BSM more favorable to plants, to improve nutrient removal efficiency, and enhance plant survivability during drought while replacing compost/mulch components that have been linked to excess nutrient export. Pots with BSMs representing high and moderate sand content were amended with wood biochar, planted with switchgrass, and subjected to weekly storms for 20 weeks, followed by a 10-week drought. After 20 weeks, 4% biochar amendment significantly increased stormwater infiltration (67%) and plant available water (52%) in the high sand content BSM (NC mix, which meets requirements for the state of North Carolina (US) and contains no compost/mulch), and these favorable hydraulic properties were not statistically different from a moderate sand content, biochar-free BSM with compost/mulch (DE mix, which meets requirements for state of Delaware (US)). While biochar amendment improved plant height (25%), the number of shoots (89%), and total biomass (70%) in the NC mix, these parameters were still less than those in the biochar-free DE mix containing compost/mulch. TN and NO3-1 removal were also improved (28-35%) by biochar amendment to NC mix, and the resulting TN and TP loadings to groundwater were 10 and 7 times less, respectively than biochar-free DE mix with compost/mulch. During the drought period, biochar amendment increased the time to switchgrass wilting by ∼8 days in the NC mix but remained 40% less than the biochar-free DE mix. A recalcitrant carbon-like biochar mitigates some of the deleterious effects of high sand content BSM on plants, and where nutrient pollution is a concern, replacement of compost/mulch with wood biochar in BSM may be desired.
Collapse
Affiliation(s)
- Derya Akpinar
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA
| | - Sraboni Chowdhury
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA; Department of Civil and Environmental Engineering, University of Iowa, IA, 52242, Iowa City, USA
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Mingxin Guo
- Department of Agriculture and Natural Resources, Delaware State University, DE, 19901, Dover, USA
| | - Susan Barton
- Department of Plant and Soil Sciences, University of Delaware, DE, 19716, Newark, USA
| | - Paul T Imhoff
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA.
| |
Collapse
|
16
|
Wang S, Feng L, Yuan Y. A closed-loop analysis approach for ensuring stormwater source control design solution to achieve the intended goals. WATER RESEARCH 2023; 247:120782. [PMID: 37913701 DOI: 10.1016/j.watres.2023.120782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Stormwater source controls have been adopted worldwide to address hydrological and environmental impairments caused by the spread of impervious surfaces in cities. Current design method in China uses 30-year daily rainfall records to generate relationship of rainfall volume capture ratio (αg) and daily design storm, and then uses design storm to propose design solution. However, source control performance differs from rain to rain, and hence the design solution's actual effect may deviate from αg. Borrowing closed-loop feedback concept from business domain, this study proposes closed-loop analysis (CLA) which uses design solution's 30-year simulated result as data feedback to check design solution's effectiveness and then make improvements if necessary. It consists of four methods: 1) hourly design storm statistical method, for addressing the weakness of current daily design storm; 2) design solution model credibility examination method, for guaranteeing credibility of 30-year simulated results for CLA; 3) appropriate design storms determination method for source control without underdrain; 4) additional design parameters optimization method for source control with underdrain. Taking Xiamen city for example, case study results shows that design solution's 30-year simulated results were consistent/comparable with sizing calculation formula that was used to propose design solution, and therefore they were credible for CLA. Appropriate design storms ensured design solutions without underdrain to achieve the intended αg±3 %. Optimal design parameters combinations ensured design solutions with underdrain to achieve αg but also restore natural runoff events with pre- and post-development runoff frequency spectra similarity being 0.670-0.691. Based on stormwater mathematical model, CLA can drive source control design computation to a new methodological stage.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment (Ministry of Education), Tongji University, Shanghai 200092, PR China.
| | - Lidan Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yezi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
17
|
Wang M, Sun C, Zhang D. Opportunities and challenges in green stormwater infrastructure (GSI): A comprehensive and bibliometric review of ecosystem services from 2000 to 2021. ENVIRONMENTAL RESEARCH 2023; 236:116701. [PMID: 37474090 DOI: 10.1016/j.envres.2023.116701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The great challenges induced by global climate change coupled with rapid urbanization underline the growing urgency for a change in stormwater management with a novel integrated approach. This study conducted a comprehensive review on state-of-the-art knowledge in the research field of green storm infrastructure (GSI) using bibliometric analysis. A corpus of 3988 GSI-related publications (2000-2021) extracted from the Web of Science database was used to evaluate the scientific output in GSI research through the "Bibliometrix" R package and "CiteSpace". Ever since 2010, the number of publications per year exhibited an exponential increase, with the annual publication growth rate of 28.61%. Notably, the United States (23.55%) and China (19.58%) contributed most in GSI publications. "Water" (306) was identified as the most relevant journal in GIS research field, followed by "Sustainability" (252) and "Science of the Total Environment" (200). Cluster analysis unveiled the predominant research themes, i.e., "Conceptual development of GSI" (69.25%), "Adaptation of GSI" (46.89%), and "Performance evaluation of GSI practices" (18.28%). Research foci have generally shifted from conventional engineering-based frameworks (e.g., reduce stormwater runoff and enhance water quality) to ecological-based multi-elements (e.g., preserve natural resources, augment urban biodiversity and optimize land-use patterns). This systematic review concludes trends, challenges and future research prospects of GSI, and aims to provide reference and guidance for decision-makers on the development of a more dynamic, resilient, and robust integrated GSI approach for sustainable urban stormwater management.
Collapse
Affiliation(s)
- Mo Wang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou, 510006, China.
| | - Chuanhao Sun
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou, 510006, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| |
Collapse
|
18
|
Yu S, Qin H. Modeling the effects of plant uptake dynamics on nitrogen removal of a bioretention system. WATER RESEARCH 2023; 247:120763. [PMID: 39492360 DOI: 10.1016/j.watres.2023.120763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bioretention systems are widely used to remove nutrients from urban runoff. Plants play a key role in the nitrogen removal performance of bioretention systems; however, few model studies have focused on the effects of plant uptake dynamics on the performance. In this study, we propose an eco-hydrological model of bioretention systems by coupling plant, hydrological, and nitrogen modules. The eco-hydrological model was verified using observed data on biomass, plant nitrogen uptake, hydrological performance, and effluent nitrogen concentrations of a bioretention system planted with Canna indica L. in Shenzhen, China. The validated model was used to evaluate the effects of seasonal or interannual variation of plant nitrogen uptake on nitrogen removal performance of the bioretention system. The results indicated that (i) The model is able to explicitly describe plant dynamics and nitrogen transformation processes of the system, and the Nash Sutcliffe Efficiency coefficients of biomass, monthly plant nitrogen uptake, and effluent nitrogen concentrations were all greater than 0.6; (ii) The plant nitrogen uptake is sensitive to most parameters in the plant module; The effluent nitrogen concentrations are sensitive to decomposition constant of plant residues (kres) during most months of the year and also sensitive to optimal nitrogen content at the germination (bn1) and optimal nitrogen content at the maturity (bn2) during the months with low influent nitrogen concentrations; and (iii) The seasonal and interannual variations in plant nitrogen uptake significantly affect nitrogen removal efficiencies, especially during rainy seasons. Therefore, the model can consider the influence of plant nitrogen uptake on the long-term nitrogen removal performance of bioretention systems.
Collapse
Affiliation(s)
- Shuqi Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055, Shenzhen, PR China
| | - Huapeng Qin
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055, Shenzhen, PR China.
| |
Collapse
|
19
|
Cheng J, Bi J, Gong Y, Cheng X, Yu J, Gan H, Wang R, Wang K. Processes of nitrogen removal from rainwater runoff in bioretention filters modified with ceramsite and activated carbon. ENVIRONMENTAL TECHNOLOGY 2023; 44:3317-3330. [PMID: 35316154 DOI: 10.1080/09593330.2022.2057236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Conventional bioretention filters lack satisfactory performance in nitrogen removal. In this study, we used a mixture of cultivated soil and river sand as the bioretention filter to remove nitrogen pollutants from simulated rainwater runoff. To improve its permeability and nitrogen removal performance, both activated carbon and ceramsite were used as additives. The nitrogen removal processes and its mass accumulation in the modified bioretention filters were studied. The contribution of adsorption and biotransformation processes, together with the effects of percolate rate on nitrogen removal performance was explored. The results showed that an activated carbon layer in the bioretention filters could obviously improve nitrogen removal efficiencies, but its location made no significant difference in nitrogen removal performance. Bioretention filters modified with 20% of ceramsite could achieve the optimal percolate rate and nitrogen removal efficiencies. At given conditions, the average removal efficiencies of ammonium nitrogen (NH3-N), nitrate-nitrogen (NO3-N), and total nitrogen (TN) by the modified bioretention filter reached 80.27%, 41.48%, and 59.45%, respectively. During the leaching processes, organic nitrogen originated in the filter materials can be mineralised into NH3-N, then be denitrified and completely removed in the anaerobic environment under flooding conditions. Biotransformation in the modified bioretention filters caused a reduction of NH3-N removal efficiency by 15.41% and an increase of NO3-N removal efficiency by 31.03%. The modified bioretention filter can withstand a long-term operation. Compared with NO3-N and TN, the pollutant of NH3-N in rainwater runoff is not easy to form a mass accumulation in the modified bioretention filter.Highlights The modified bioretention filter showed high percolation rate and nitrogen removal.Hydraulic residence time is a critical design parameter to achieve nitrogen removal.NH3-N is not easy to form a mass accumulation in the filler media as NO3-N.Biodegradation increased NO3-N removal efficiency by 31.03% at given conditions.
Collapse
Affiliation(s)
- Junrui Cheng
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Junpeng Bi
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Yuemin Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jie Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Rong Wang
- Ningbo Yinzhou Ecological and Environmental Monitoring Station, Ningbo, People's Republic of China
| | - Kan Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
20
|
Li J, Culver TB, Persaud PP, Hathaway JM. Developing nitrogen removal models for stormwater bioretention systems. WATER RESEARCH 2023; 243:120381. [PMID: 37517150 DOI: 10.1016/j.watres.2023.120381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Bioretention systems have the potential of simultaneous runoff volume reduction and nitrogen removal. Internal water storage (IWS) layers and real-time control (RTC) strategies may further improve performance of bioretention systems. However, optimizing the design of these systems is limited by the lack of effective models to simulate nitrogen transformations under the influences of IWS design and environment conditions including soil moisture and temperature. In this study, nitrogen removal models (NRMs) are developed with two complexity levels of nitrogen cycling: the Single Nitrogen Pool (SP) models and the more complex 3 Nitrogen Pool (3P) models. The 0-order kinetics, 1st order kinetics, and the Michaelis-Menten equations are applied to both SP and 3P models, creating six different NRMs. The Storm Water Management Model (SWMM), in combination with each NRM, is calibrated and validated with a lab dataset. Results show that 0-order kinetics are not suitable in simulating nitrogen removal or transformations in bioretention systems, while 1st order kinetics and Michaelis-Menten equation models have similar performances. The best performing NRM (referred to as 3P-m) can accurately predict nitrogen event mean concentrations in bioretention effluent for 20% more events when compared to SWMM. When only calibrated with soil moisture conditions in bioretention systems without internal storage layers, 3P-m was sufficiently adaptable to predict cumulative nitrogen mass removal rates from systems with IWS or RTC rules with less than ±7% absolute error, while the absolute error from SWMM prediction can reach -23%. In general, 3P models provide higher prediction accuracy and improved time series of biochemical reaction rates, while SP models improve prediction accuracy with less required user input for initial conditions.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States
| | - Teresa B Culver
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States.
| | - Padmini P Persaud
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, 851 Neyland Dr., Knoxville, TN, 37996, United States
| | - Jon M Hathaway
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, 851 Neyland Dr., Knoxville, TN, 37996, United States
| |
Collapse
|
21
|
Akpinar D, Tian J, Shepherd E, Imhoff PT. Impact of wood-derived biochar on the hydrologic performance of bioretention media: Effects on aggregation, root growth, and water retention. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117864. [PMID: 37080095 DOI: 10.1016/j.jenvman.2023.117864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Bioretention systems are one example of green stormwater infrastructure that may mitigate the hydrologic impact of stormwater runoff. To improve water retention while maintaining rapid stormwater infiltration, conventional bioretention soil media (BSM) might be augmented with biochar. Biochar may improve the BSM's structure by increasing soil aggregation, which might improve water retention and increase stormwater infiltration while also improving root growth. Pots with BSMs representing high and moderate sand content media were amended with a wood-derived biochar, planted with switchgrass, and subjected to weekly storms for 20 weeks, followed by a 10-week drought. In the high sand content medium (NC mix), biochar amendment increased hydraulic conductivity (Ksat), and this effect increased with time. At 0 weeks, 2% and 4% (w/w) biochar increased Ksat by 4 ± 2% and 10 ± 4%, respectively, while at 30 weeks the increase was 30 ± 10 and 70 ± 20%, respectively, above biochar-free media. Similar improvements were seen in plant available water (PAW) in NC mix. However, minimal improvements in Ksat and PAW from biochar amendment were found in the moderate sand content BSM that contained compost and mulch (DE mix). Where biochar promoted Ksat, this was correlated with increased water-stable aggregate size (r = 0.86), fine root volume (r = 0.88), and below ground biomass (r = 0.83). Important factors affecting Ksat and aggregation in the NC mix were biochar's influence on organo-mineral association, fungal hyphae length, and plant roots. Wood-derived biochar amendment to BSM may obviate the need for compost/mulch since biochar has similar effects on improving BSM hydrology and root growth without the risk of undesired nutrient leaching.
Collapse
Affiliation(s)
- Derya Akpinar
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Elizabeth Shepherd
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA
| | - Paul T Imhoff
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA.
| |
Collapse
|
22
|
Muerdter C, Powers MM, Webb DT, Chowdhury S, Roach KE, LeFevre GH. Functional Group Properties and Position Drive Differences in Xenobiotic Plant Uptake Rates, but Metabolism Shares a Similar Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:596-603. [PMID: 37455864 PMCID: PMC10339724 DOI: 10.1021/acs.estlett.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Plant uptake of xenobiotic compounds is crucial for phytoremediation (including green stormwater infrastructure) and exposure potential during crop irrigation with recycled water. Experimentally determining the plant uptake for every relevant chemical is impractical; therefore, illuminating the role of specific functional groups on the uptake of trace organic contaminants is needed to enhance predictive power. We used benzimidazole derivatives to probe the impact of functional group electrostatic properties and position on plant uptake and metabolism using the hydroponic model plant Arabidopsis thaliana. The greatest plant uptake rates occurred with an electron-withdrawing functional group at the 2 position; however, uptake was still observed with an electron-donating group. An electron-donating group at the 1 position significantly slowed uptake for both benzimidazole- and benzotriazole-based molecules used in this study, indicating possible steric effects. For unsubstituted benzimidazole and benzotriazole structures, the additional heterocyclic nitrogen in benzotriazole increased plant uptake rates compared to benzimidazole. Analysis of quantitative structure-activity relationship parameters for the studied compounds implicates energy-related molecular descriptors as uptake drivers. Despite significantly varied uptake rates, compounds with different functional groups yielded shared metabolites, including an impact on endogenous glutathione production. Although the topic is complex and influenced by multiple factors in the field, this study provides insights into the impact of functional groups on plant uptake, with implications for environmental fate and consumer exposure.
Collapse
Affiliation(s)
- Claire
P. Muerdter
- Department
of Civil and Environmental Engineering, The University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Megan M. Powers
- Department
of Civil and Environmental Engineering, The University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Danielle T. Webb
- Department
of Civil and Environmental Engineering, The University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Sraboni Chowdhury
- Department
of Civil and Environmental Engineering, The University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Kaitlyn E. Roach
- University
of Iowa Secondary Student Training Program, Belin-Blank Center, 600 Blank Honors Center, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, The University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
23
|
Cosma S, Rimo G, Cosma S. Conservation finance: What are we not doing? A review and research agenda. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117649. [PMID: 36870317 DOI: 10.1016/j.jenvman.2023.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Conservation finance embraces a series of innovative financing mechanisms aimed at raising and managing capital to be used for the conservation of biodiversity. The climate emergency and the pursuit of sustainable development underline the criticality of financial support for achieving this goal. Funding for the protection of biodiversity, in fact, has long been disbursed by governments in a residual form, only after they have dealt with social needs and political challenges. To date, the main challenge of conservation finance is to identify solutions that not only generate new revenue for biodiversity, but also effectively manage and allocate existing funding to provide a mix of social and community benefits as well. The paper, therefore, aims to act as a wake-up call, urging academics working in economics and finance to turn their attention to resolving the financial problems faced by conservation. Through a comparative bibliometric analysis, the study aims to outline the structure of scientific research on the topic of conservation finance, to understand the state of the art, and to identify open questions and new research trends. The results of the study show that the topic of conservation finance is currently a prerogative of scholars and journals of ecology, biology and environmental sciences. Finance scholars pay very little attention to the topic and yet there are many opportunities/needs for future research. The results are of interest to researchers in banking and finance, policy-makers and managers.
Collapse
Affiliation(s)
- Simona Cosma
- Department of Management, University of Bologna, Via Capo di, Lucca, 34, 40126, Bologna, Italy.
| | - Giuseppe Rimo
- Department of Economics, University of Salento, Via per Monteroni, 73100, Lecce, Italy.
| | - Stefano Cosma
- Department of Economics Marco Biagi, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
24
|
Yuan C, Davis AP, Kaya D, Kjellerup BV. Distribution and biodegradation potential of polycyclic aromatic hydrocarbons (PAHs) accumulated in media of a stormwater bioretention. CHEMOSPHERE 2023:139188. [PMID: 37302503 DOI: 10.1016/j.chemosphere.2023.139188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds that can be captured and accumulate in the bioretention cell media, which may lead to secondary pollution and ecological risks. This research aimed to understand the spatial distribution of 16 priority PAHs in bioretention media, identify their sources, evaluate their ecological impact, and assess the potential for their aerobic biodegradation. The highest total PAH concentration (25.5 ± 1.7 μg/g) was observed 1.83 m from the inlet and 10-15 cm deep. The individual PAHs with the highest concentrations were benzo [g,h,i]perylene in February (1.8 ± 0.8 μg/g) and pyrene in June (1.8 ± 0.8 μg/g). Data indicated that primary sources of PAHs were fossil fuel combustion and petroleum. The ecological impact and toxicity of the media were assessed by probable effect concentrations (PECs) and benzo [a]pyrene total toxicity equivalent (BaP-TEQ). The results showed that the concentrations of pyrene and chrysene exceeded the PECs, and the average BaP-TEQ was 1.64 μg/g, primarily caused by benzo [a]pyrene. The functional gene (C12O) of PAH-ring cleaving dioxygenases (PAH-RCD) was present in the surface media, which indicated that aerobic biodegradation of PAHs was possible. Overall, this study revealed the PAHs accumulated most at medium distance and depth, where biodegradation may be limited. Thus, the accumulation of PAHs below the surface of the bioretention cell may need to be considered during long-term operation and maintenance.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Devrim Kaya
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
25
|
Liu L, Dobson B, Mijic A. Water quality management at a critical checkpoint by coordinated multi-catchment urban-rural load allocation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117979. [PMID: 37094387 DOI: 10.1016/j.jenvman.2023.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Improving river water quality at critical checkpoints, defined as locations with significant impacts on water use, to satisfy regulation standards is an important goal of sustainable catchment management. Challenges remain in investigating pollution hotspots, designing efficient target reduction, and evaluating management performance. To address these challenges, we develop a systems approach for water quality management that integrates natural physical processes with human activities and their environmental impacts. In this approach, we firstly expand the concepts of headroom (amount under a permitted value) and excess (amount exceeding a permit) onto the source, spatial, and temporal domains for water quality management. We evaluate system-wide pollution contributions by simulating physical processes in a semi-distributed integrated representation using the CatchWat-SD model. We apply the model to the Upper Thames River basin and validate it using available monitoring data. We then incorporate the evaluated headroom-excess into a coordinated load allocation to enhance the efficiency and feasibility of interventions. Load allocation scenarios where headroom-excess is coordinated at different domains are generated and simulated. Finally, we evaluate the performance of these scenarios using multi-criteria metrics to demonstrate the advantages of headroom-excess coordination. Results show that urban sources, downstream sub-catchments, and dry season flows are associated with excess, thus, enabling managers to identify which cases (pollution sources, locations, and times) to focus load reductions towards. The more a load allocation strategy coordinates headroom-excess across domains, the more target reduction is allocated to the cases with excess, and the better performance it obtains in all the criteria. The study emphasises the need to incorporate headroom-excess in load allocation, which helps to improve systems-level water quality performance more efficiently. The approach can be further expanded to water quality management at multiple checkpoints for sustainable management of regional water systems.
Collapse
Affiliation(s)
- Leyang Liu
- Department of Civil and Environmental Engineering, Imperial College London, London, UK.
| | - Barnaby Dobson
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Ana Mijic
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| |
Collapse
|
26
|
Wan Y, Liu N, Wang J, Pei J, Mei G. Experimental and numerical research on the hydrological characteristics of sunken green space with a new type of composite structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47892-47912. [PMID: 36749511 DOI: 10.1007/s11356-023-25621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Based on the characteristics of concentrated rainwater runoff in the mountainous areas of southwestern China and the low rates of rainwater infiltration into low-permeability soils. We have built a new type of sunken green space structure with a combination of a "overflow port and rainwater storage layer" and carried out model tests of storage and drainage performance under heavy rain conditions. The hydrological response of the new composite structure parameters to the sunken green space was analyzed using the HYDRUS-2D program. The results show that the new composite structure has a significant impact on runoff reduction, drainage, and rainwater storage. For the 100a return period, compared with RSL-0 (0 cm rainwater storage layer), the initial and peak drainage times of RSL-25 were delayed by 30 min and 38 min, respectively, and the rainwater storage rate increased by 13.5%. Compared with no overflow port, the peak drainage increased by 78%, the initial drainage time advanced by 73 min, and the cumulative drainage volume increased by 186%. In addition, as the height of the overflow increased, the surface rainwater absorbed by the sunken green space gradually decreased. The sunken green space with OPH-5 (overflow port height of 5 cm) could absorb more than 75% of the rainwater in the rainwater overflow layer, while the absorption capacities of OPH-7.5 and OPH-10 (overflow port height of 7.5 cm and 10 cm) were basically below 75%. In this case, the OPH-5 and the depth of the storage layer not being less than 250 cm provide the best setting for the new combined structure of the sunken green space. In conclusion, the new composite structure designed in this experiment effectively increased the hydrological performance of the layered sunken green space.
Collapse
Affiliation(s)
- Yonghao Wan
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guiyang, 550025, China
| | - Ning Liu
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guiyang, 550025, China.
| | - Jun Wang
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Junhao Pei
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guiyang, 550025, China
| | - Guoxiong Mei
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
27
|
Mohamed BA, Huang C, Mok N, Swei O, Johnston C, Li LY. A comparative life-cycle assessment and cost analysis of biofilters amended with sludge-based activated carbon and commercial activated carbon for stormwater treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130632. [PMID: 37056026 DOI: 10.1016/j.jhazmat.2022.130632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 06/19/2023]
Abstract
Environmental and economic issues resulting from the unsustainable management of sewage sludge from wastewater have necessitated the development of eco-friendly sewage sludge disposal methods, whereas stormwater effluent contains tremendous amounts of pollutants. This study compares the feasibility and environmental impacts associated with incorporating biofilters with sludge-based activated carbon (SBAC) versus commercial activated carbon (CAC) for stormwater treatment. The results demonstrate that the construction and disposal life-cycle stages are the dominant contributors to several environmental impact categories, including resource scarcity, carcinogenic toxicity, terrestrial ecotoxicity, and ozone formation indicators. Across multiple impact categories, the incorporation of biofilters with SBAC can reduce the negative environmental impacts associated with biofilter construction and disposal by 40% over a 50-year analysis period. In contrast, the most significant improvement is on construction-dominant indicators, where the decreased need for biofilter reconstruction results in a higher reduction in environmental impacts. Economically, amending the biofilter with SBAC can increase profits by up to 66% due to extending its lifespan. This study shows that SBAC has similar performance as CAC for lowering the negative environmental impacts resulting from biofilter construction, while increasing the overall net profits of the system. However, converting sewage sludge to an effective sorbent (SBAC) and incorporating SBAC into a biofilter to capture pollutants from stormwater is an economically and environmentally sustainable solution available to practitioners to manage sewage sludge and stormwater effluent. This solution protects the environment in a cost efficient, sustainable manner.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, Egypt
| | - Carol Huang
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Nico Mok
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Omar Swei
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Chris Johnston
- Kerr Wood Leidal Associates Ltd., 200-4185 Still Creek Drive, Burnaby, BC V5C 6G9, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
28
|
Técher D. Real-time control technology for enhancing biofiltration performances and ecosystem functioning of decentralized bioretention cells. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1582-1586. [PMID: 37001167 DOI: 10.2166/wst.2023.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Urban stormwater management has become a major issue over the last decades for flood prevention as well as water resource preservation. The development of green infrastructures such as bioretention systems since the 1990s has often been reported as an effective means of runoff mitigation with subsequent conveyed pollutant capture. Nevertheless, climate change involving more frequent extreme weather events as well as the variety of emerging pollutants in urban runoff have put an increasing strain on bioretention processes. Within this context, this mini-review deals with the opportunity of upgrading vegetated bioretention systems with active control technology to enhance their pollutant treatment capacity through proper control of critical bioretention operational variables and relying on improved ecological functioning and resilience. It is envisioned that such nature-based solutions hybridized with real-time control technology would help to improve stormwater reuse for more sustainable urban water management within the nexus of water-energy-food and greenhouse gases in future cities.
Collapse
Affiliation(s)
- Didier Técher
- Cerema, TEAM Research Unit, 71 rue de la Grande Haie, Tomblaine 54510, France E-mail:
| |
Collapse
|
29
|
Gong Y, Li X, Xie P, Fu H, Nie L, Li J, Li Y. The migration and accumulation of typical pollutants in the growing media layer of bioretention facilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44591-44606. [PMID: 36694065 PMCID: PMC9873394 DOI: 10.1007/s11356-023-25305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
A series of complex physical and chemical processes, such as interception, migration, accumulation, and transformation, can occur when pollutants in stormwater runoff enter the growing media layer of bioretention facilities, affecting the purification of stormwater runoff by bioretention facilities. The migration and accumulation of pollutants in the growing media layer need long-term monitoring in traditional experimental studies. In this study, we established the Hydrus-1D model of water and solution transport for the bioretention facilities. By analyzing the variation of cumulative fluxes of NO3--N and Pb with time and depth, we investigated pollutant migration and accumulation trends in the growing media layer of bioretention facilities. It can provide support for reducing runoff pollutants in bioretention facilities. The Hydrus-1D model was calibrated and verified with experimental data, and the input data (runoff pollutant concentration) for the pollutant concentration boundary was obtained from the SWMM model. The results demonstrated that the cumulative fluxes of NO3--N and Pb increased with the passage of simulation time and depth of the growing media layer overall. From the top to the bottom of the growing media layer, the change rates of the peak cumulative fluxes of NO3--N and Pb were strongly linked with their levels in the runoff. An increase in rainfall decreased the content of NO3--N and Pb in the growing media layer, and this phenomenon was more obvious in the lower part of the layer.
Collapse
Affiliation(s)
- Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xia Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Xie
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hongyan Fu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Qingdao Planning Engineering Design Research Institute Co., Ltd., Qingdao, 266000, China
| | - Linmei Nie
- Centre for Sustainable Development and Innovation of Water Technology, 0957, Oslo, Norway
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yanhong Li
- Beijing Guohuan Tsinghua Environmental Engineering Design & Research Institute Co., Ltd., Beijing, 100084, China
| |
Collapse
|
30
|
Zhang Y, Wang M, Zhang D, Lu Z, Bakhshipour AE, Liu M, Jiang Z, Li J, Tan SK. Multi-stage planning of LID-GREI urban drainage systems in response to land-use changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160214. [PMID: 36395837 DOI: 10.1016/j.scitotenv.2022.160214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Long-term planning of urban drainage systems aimed at maintaining the sustainability of urban hydrology remains challenging. In this study, an innovative multi-stage planning framework involving two adaptation pathways for optimizing hybrid low impact development and grey infrastructure (LID-GREI) layouts in opposing chronological orders was explored. The Forward Planning and Backward Planning are adaptation pathways to increase LID in chronological order based on the initial development stage of an urban built-up area and reduce LID in reverse chronological order based on the final development stage, respectively. Two resilience indicators, which considered potential risk scenarios of extreme storms and pipeline failures, were used to evaluate the performance of optimized layouts when land-use changed and evolved over time. Compared these two pathways, Forward Planning made the optimized layouts more economical and resilient in most risk scenarios when land-use changed, while the layouts optimized by Backward Planning showed higher resilience only in the initial stage. Furthermore, a decentralized scheme in Forward Planning was chosen as the optimal solution when taking costs, reliability, resilience, and land-use changes into an overall consideration. Nevertheless, this kind of reverse optimization order offers a novel exploration in planning pathways for discovering the alternative optimization schemes. More comprehensive solutions can be provided to decision-makers. The findings will shed a light on the exploration of optimized layouts in terms of spatial configuration and resilience performance in response to land-use changes. This framework can be used to support long-term investment and planning in urban drainage systems for sustainable stormwater management.
Collapse
Affiliation(s)
- Yu Zhang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
| | - Mo Wang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China; Architectural design and Research Institute of Guangzhou University, Guangzhou 510091, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Zhongming Lu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Amin E Bakhshipour
- Civil Engineering, Institute of Urban Water Management, Technische Universität, Kaiserslautern 67663, Germany.
| | - Ming Liu
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
| | - Zhiyu Jiang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
| | - Jianjun Li
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China; Architectural design and Research Institute of Guangzhou University, Guangzhou 510091, China.
| | - Soon Keat Tan
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
31
|
Beral H, Dagenais D, Brisson J, Kõiv-Vainik M. Plant species contribution to bioretention performance under a temperate climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160122. [PMID: 36370788 DOI: 10.1016/j.scitotenv.2022.160122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Bioretention systems are green infrastructures increasingly used to manage urban stormwater runoff. Plants are an essential component of bioretention, improving water quality and reducing runoff volume and peak flows. However, there is little evidence on how this contribution varies between species, especially in temperate climates with seasonal variations and plant dormancy. The aim of our study was to compare the performance of four plant species for bioretention effectiveness during the growing and dormant periods in a mesocosm study. The species selected (Cornus sericea, Juncus effusus, Iris versicolor, Sesleria autumnalis) are commonly used in bioretention and cover a wide range of biological forms and functional traits.All bioretention mesocosms were effective in reducing water volume, flow and pollutant levels in both of the studied periods. Plants decreased runoff volume and increased contaminant retention by reducing water flow (up to 2.7 times compared to unplanted systems) and increasing water loss through evapotranspiration during the growing period (up to 2.5 times). Plants improved removal of macronutrients, with an average mass removal of 55 % for TN, 81 % for TP and 61 % for K compared to -6 % (release), 61 % and 22 % respectively for the unplanted systems. Except for Sesleria, mass removal of trace elements in planted mesocosms was generally higher than in unplanted ones (up to 8.7 %), regardless of season. Between-species differences in exfiltration rate and improved water quality followed the same order as their evapotranspiration rate and overall size, measured in terms of plant volume, leaf biomass, total leaf area and maximum average root density (Cornus > Juncus > Iris > Sesleria). By increasing evapotranspiration, plants decreased runoff volume and increased contaminant retention. Nutrient removal was partly explained by plant assimilation. Our study confirms the importance of plant species selection for improving water quality and reducing runoff volume during bioretention under a temperate climate.
Collapse
Affiliation(s)
- Henry Beral
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 East Sherbrooke St, Montreal, Quebec H1X 2B2, Canada.
| | - Danielle Dagenais
- École d'urbanisme et d'architecture de paysage, Faculté de l'aménagement, Université de Montréal, 2940, chemin de la Côte-Sainte-Catherine, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada.
| | - Jacques Brisson
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 East Sherbrooke St, Montreal, Quebec H1X 2B2, Canada.
| | - Margit Kõiv-Vainik
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 East Sherbrooke St, Montreal, Quebec H1X 2B2, Canada; Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia.
| |
Collapse
|
32
|
Pivetta GG, Tassi R, Piccilli DGA. Evaluating bioretention scale effect on stormwater retention and pollutant removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15561-15574. [PMID: 36169844 DOI: 10.1007/s11356-022-23237-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Bioretention column studies are commonly used in laboratory to assess the performance of such structures in removal of pollutants and to investigate different conceptions aiming to increase their efficiency. However, no studies were found recommending suitable diameters or sizes, or about the uncertainties related to the transfer of results among the different scales (i.e., among different experiments or from the laboratory to field scale). This study assessed the effect of the varying diameters in experimental bioretention columns on the retention and removal of pollutants from stormwater runoff. Three sets of columns with diameters of 400 mm, 300 mm, and 200 mm were assessed. The results showed that runoff retention (R) was affected by the time interval between stormwater events, but not by the bioretention diameter, although the diameter influenced the variability of R results. The removal of TSS (95%), nitrite (98%), and phosphate (96%) did present variability among the different bioretention diameters. However, the nitrate removal was statistically different among the bioretention columns, with removal efficiency above 50% in the 300-mm and 200-mm columns, while the 400-mm columns acted as a source of nitrate by increasing its concentration in the outflow stormwater by up to 285%, suggesting that the removal of this pollutant can be influenced by the scale effect of the bioretention columns and the experiments with small bioretention diameters may not provide reliable results.
Collapse
Affiliation(s)
- Glaucia Ghesti Pivetta
- Cidade Universitária, Centro de Tecnologia - Prédio INPE - Sala 2061, Av. Roraima n◦ 1000, Bairro Camobi, Santa Maria, Rio Grande Do Sul, 97105-900, Brazil.
| | - Rutineia Tassi
- Department of Sanitary and Environmental Engineering (DESA), Post-Graduate Program in Civil and Environmental Engineering Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Daniel Gustavo Allasia Piccilli
- Department of Sanitary and Environmental Engineering (DESA), Post-Graduate Program in Civil and Environmental Engineering Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
33
|
Jiang C, Li J, Gao J, Lv P, Zhang Y. Quantitative calculation of stormwater regulation capacity and collaborative configuration of sponge facilities in urban high-density built-up areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13571-13581. [PMID: 36136198 DOI: 10.1007/s11356-022-23107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Implemented in the frequent extreme rainstorms, aggravation of non-point source pollution, and complex drainage system of urban built-up area, sponge facility practices often intertwine with a very large number of hydro-environmental and socio-economic considerations and constraints. Due to the lack of basic and measured data, fragmented engineering design, more systematic and strategic approaches to address this multi-scale, and multi-parameter problem of practice allocation should be planned and optimized. In this study, a practical quantitative calculation method of stormwater regulation capacity in urban built-up areas is proposed. The details are as follows: the sub-catchment areas are divided by using the drainage pipe section editing function of Auto CAD and the regional analysis function of ArcGIS, and the stormwater regulation capacity in study area to be reconstructed is divided into four grades to define the water-sensitive areas according to the comprehensive runoff coefficient (α), which were excellent (α < 0.6), good (0.6 ≤ α < 0.7), medium (0.7 ≤ α < 0.8), and poor (α ≥ 0.8). The stormwater regulation capacity of green spaces is determined by empirical model calculation and soil moisture hydrograph field measurement. The measured soil saturated hydraulic conductivity in the study area was about 110 mm/h. The drainage capacity of the pipe networks was determined by the length of the overloaded pipe section. Under the conditions of 10a and 50a rainfall return period and 3-h rainfall duration simulated by SWMM, the length of the overloaded pipe section accounts for 33.0% and 40.8% of the total, respectively. Based on the identification of water-sensitive areas in urban high-density built-up areas, the quantitative calculation method of stormwater runoff regulation capacity was constructed through the calculation of the coupling coordination degree of "source-midway-terminal" infrastructures and the layout of storage tanks in the overloaded pipe section. These can estimate the current situation of stormwater regulation capacity of different sizes in urban built-up areas and formulate the optimized planning scheme of sponge reconstruction projects.
Collapse
Affiliation(s)
- Chunbo Jiang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiayu Gao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Peng Lv
- PowerChina Northwest Engineering Corporation Limited, Xi'an, 710065, China
| | - Yangxuan Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
34
|
Xie L, Shu X, Kotze DJ, Kuoppamäki K, Timonen S, Lehvävirta S. Plant growth-promoting microbes improve stormwater retention of a newly-built vertical greenery system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116274. [PMID: 36261966 DOI: 10.1016/j.jenvman.2022.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
On-site decentralized urban stormwater management has gained significant momentum in urban planning. Recently, vegetated roofs have been recommended as a viable decentralized stormwater management system and nature-based solution to meet the challenge of urban floods. However, as another type of unconventional green infrastructure, vertical greenery systems (VGS), also known as vegetated facades, have received much less research attention. Even though some researchers suggest that stormwater management by VGS is comparable to that of vegetated roofs, empirical evidence to substantiate this claim is limited. In this study, we conducted rain simulations on newly-built vegetation containers with water storage compartments. These vegetation containers were designed to be incorporated into a VGS specifically for stormwater management. We tested variables that could influence water retention efficiency and evapotranspiration of the containers under field conditions, i.e., inoculation of plant growth-promoting microbes (PGPMs) (Rhizophagus irregularis and Bacillus amyloliquefaciens), different substrate types (sandy loam and reed-based substrate), simulated rain quantity, natural precipitation, substrate moisture, and air temperature. The inoculation of PGPMs significantly reduced runoff quantity from the vegetation containers. Meanwhile, the well-ventilated sandy-loam substrate significantly reduced the remaining water in the water storage compartments over 1-week periods between rain simulation events, achieving high water-use efficiency. The selected microbes were established successfully in the containers and promoted the growth of 2 out of 5 plant species. R. irregularis colonization responded to substrate type and host plant species, while B. amyloliquefaciens population density in the substrate did not respond to these factors. Environmental conditions, such as antecedent substrate moisture, air temperature, and natural precipitation also influenced the efficiency of stormwater retention and/or evapotranspiration. In conclusion, this study provides instructive and practical insights to reduce urban flood risk by using VGS.
Collapse
Affiliation(s)
- Long Xie
- Faculty of Agriculture and Forestry, Department of Microbiology, PO Box 56, FI-00014, University of Helsinki, Finland
| | - Xi Shu
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, PO Box 65, FI-00014, University of Helsinki, Finland.
| | - D Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, FI-15140, University of Helsinki, Lahti, Finland
| | - Kirsi Kuoppamäki
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, FI-15140, University of Helsinki, Lahti, Finland
| | - Sari Timonen
- Faculty of Agriculture and Forestry, Department of Microbiology, PO Box 56, FI-00014, University of Helsinki, Finland
| | - Susanna Lehvävirta
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, PO Box 65, FI-00014, University of Helsinki, Finland
| |
Collapse
|
35
|
Liu W, Lu Z. Investigating the influences of concave depths on stormwater runoff and pollution retention of urban grasslands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2441-2453. [PMID: 36378191 DOI: 10.2166/wst.2022.354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, scale-based runoff plots of concave grasslands were designed and simulated rainfall experiments were conducted to investigate their retention effectiveness for runoff volume and pollutant loads, and to analyze the influences of concave depths on runoff and pollution retention of grasslands. Results showed that mean time to runoff of concave grasslands was 88.5 minutes, which was 5.3 times than that of flat grassland. Average peak flow rate of concave grasslands was reduced by 36.2% compared with flat grassland. Concaved grasslands averagely retained 58.2% of stormwater runoff. Deeper concave depths significantly increased runoff detention and retention performance of grasslands. Total suspended solids (TSS) load reduction rates of concave grasslands were ranged from 50.8% to 97.3%. Total nitrogen (TN) load reduction rate was 49.8% for concave depth of 10 cm. Total phosphorus (TP) load reduction rates were 45.0% and 93.9% for grasslands with 5 cm and 10 cm concave depths, respectively. Pollution load reduction rates of TSS, TN and TP enhanced along with the increase in concave depths. The estimated minimum area ratios of upslope impervious surface to grasslands of 5 cm and 10 cm concave depths were approximately 1:1 under 20 mm rainfall events, and 38:1 under 5 mm rainfalls, respectively.
Collapse
Affiliation(s)
- Wen Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China E-mail:
| | - Zhixiang Lu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China E-mail:
| |
Collapse
|
36
|
Wang C, O'Connor D, Wang L, Wu WM, Luo J, Hou D. Microplastics in urban runoff: Global occurrence and fate. WATER RESEARCH 2022; 225:119129. [PMID: 36170770 DOI: 10.1016/j.watres.2022.119129] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Public concerns on microplastic (MP) pollution and its prevalence in urban runoff have grown exponentially. Huge amounts of MPs are transported from urban environments via surface runoff to different environment compartments, including rivers, lakes, reservoirs, estuaries, and oceans. The global concentrations of MPs in urban runoff range from 0 to 8580 particles/L. Understanding the sources, abundance, composition and characteristics of MPs in urban runoff on a global scale is a critical challenge because of the existence of multiple sources and spatiotemporal heterogeneity. Additionally, dynamic processes in the mobilization, aging, fragmentation, transport, and retention of MPs in urban runoff have been largely overlooked. Furthermore, the MP flux through urban runoff into rivers, lakes and even oceans is largely unknown, which is very important for better understanding the fate and transport of MPs in urban environments. Here, we provide a critical review of the global occurrence, transport, retention process, and sinks of MPs in urban runoff. Relevant policies, regulations and measures are put forward. Future global investigations and mitigation efforts will require us to address this issue cautiously, cooperating globally, nationally and regionally, and acting locally.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester GL7 1RS, United Kingdom
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Stang C, Mohamed BA, Li LY. Microplastic removal from urban stormwater: Current treatments and research gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115510. [PMID: 35751294 DOI: 10.1016/j.jenvman.2022.115510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Stormwater is a major contributor to microplastic (MP) pollution in the aquatic environment. Although MPs are associated with many toxicological effects, their levels in stormwater are not regulated. This review compared the effectiveness of different MP removal technologies from stormwater runoff and examined the performance of typical stormwater treatment systems for MP removal to assess possible MP pollution control via stormwater management. Bioretention and filtration systems performed similarly with 84-96% MP removal efficiencies. Despite the limited number of studies that focused on wetlands and retention ponds, preliminary data suggested potential for MP removal with efficiencies of 28-55% and 85-99%, respectively. Despite the higher efficiency of bioretention and filtration systems, their removal efficiency of fibrous MPs was not optimal. Furthermore, wetlands were less effective in removing MPs than retention ponds, although the limited data might lead to an inaccurate representation of typical performances. Therefore, more research is required to arrive at definitive conclusions and to investigate alternative treatment options, such as ballasted sand flocculation, flotation, and biological degradation, and evaluate the effectiveness of bioretention and filtration for MPs <100 μm.
Collapse
Affiliation(s)
- Camryn Stang
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
38
|
Ament MR, Roy ED, Yuan Y, Hurley SE. Phosphorus removal, metals dynamics, and hydraulics in stormwater bioretention systems amended with drinking water treatment residuals. JOURNAL OF SUSTAINABLE WATER IN THE BUILT ENVIRONMENT 2022; 8:10.1061/jswbay.0000980. [PMID: 36776525 PMCID: PMC9907499 DOI: 10.1061/jswbay.0000980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drinking water treatment residuals (DWTRs) are a promising media amendment for enhancing phosphorus (P) removal in bioretention systems, but substantial removal of dissolved P by DWTRs has not been demonstrated in field bioretention experiments. We investigated the capacity of a non-amended control media (Control) and a DWTR-amended treatment media (DWTR) to remove soluble reactive P (SRP), dissolved organic P (DOP), particulate P (PP), and total P (TP) from stormwater in a two-year roadside bioretention experiment. Significant reductions m SRP, PP and TP concentrations and loads were observed in both the Control and DWTR media. However, the P removal efficiency of the DWTR cells were greater than those of the Control cells for all P species, particularly during the second monitoring season as P sorption complexes likely began to saturate in the Control cells. The difference in P removal efficiency between the Control and DWTR cells was greatest during large storm events, which transported the majority of dissolved P loads in this study. We also investigated the potential for DWTRs to restrict water flow through bioretention media or leach heavy metals. The DWTRs used in this study did not affect the hydraulic performance of the bioretention cells and no significant evidence of heavy metal leaching was observed during the study period. Contrasting these results with past studies highlights the importance of media design in bioretention system performance and suggests that DWTRs can effectively capture and retain P without affecting system hydraulics if properly incorporated into bioretention media.
Collapse
Affiliation(s)
- Michael R Ament
- Post-Doctoral Associate, Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN 55455; formerly, Graduate Research Assistant, Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA
- Corresponding Author:
| | - Eric D. Roy
- Assistant Professor, Rubenstein School of Environment and Natural Resources, Department of Civil and Environmental Engineering, and Gund Institute for Environment, University of Vermont, Burlington, VT 05405, USA
| | - Yongping Yuan
- Research Hydrologist, United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Stephanie E. Hurley
- Associate Professor, Department of Plant and Soil Science, Gund Institute for Environment, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
39
|
Chai G, Wang D, Shan J, Jiang C, Yang Z, Liu E, Meng H, Wang H, Wang Z, Qin L, Xi J, Ma Y, Li H, Qian Y, Li J, Lin Y. Accumulation of high-molecular-weight polycyclic aromatic hydrocarbon impacted the performance and microbial ecology of bioretention systems. CHEMOSPHERE 2022; 298:134314. [PMID: 35292274 DOI: 10.1016/j.chemosphere.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Bioretention has been considered as an effective management practice for urban stormwater in the removal of pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the accumulation of high-molecular-weight (HMW) PAHs in bioretention systems and their potential impact on the pollutants removal performance and microbial ecology are still not fully understood. In this study, comparisons of treatment effectiveness, enzyme activity and microbial community in bioretention systems with different types of media amendments were carried out at different spiking levels of pyrene (PYR). The results showed that the removal efficiencies of chemical oxygen demand (COD) and total nitrogen in the bioretention systems were negatively impacted by the PYR levels. The relative activities of soil dehydrogenase and urease were increasingly inhibited by the elevated PYR level, indicating the declining microbial activity regarding organic matter decomposition. The spiking of PYR negatively affected microbial diversity, and distinct time- and influent-dependent changes in microbial communities were observed. The relative abundance of PAH-degrading microorganisms increased in PYR-spiked systems, while the abundance of nitrifiers decreased. The addition of media amendments was beneficial for the enrichment of microorganisms that are more resistant to PYR-related stress, therefore elevating the COD concentration removal rate by ∼50%. This study gives new insight into the multifaceted impacts of HMW PAH accumulation on microbial fingerprinting and enzyme activities, which may provide guidance on better stormwater management practices via bioretention in terms of improved system longevity and performance.
Collapse
Affiliation(s)
- Guodong Chai
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Dongqi Wang
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Jiaqi Shan
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhangjie Yang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Enyu Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiayao Xi
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuenan Ma
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Huaien Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yishi Qian
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Jiake Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
40
|
Design and Evaluation of Green Space In Situ Rainwater Regulation and Storage Systems for Combating Extreme Rainfall Events: Design of Shanghai Gongkang Green Space to Adapt to Climate Change. LAND 2022. [DOI: 10.3390/land11060777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Global climate change has led to more extreme rainfall events. Exploring the different design schemes of rainwater in situ regulation and storage systems in green spaces to cope with extreme rainfall events is critical to cities for combating flood disasters. Using the Gongkang green space as the research object and the XPDrainage software program as the simulation tool, this study explored and evaluated different design schemes of rainwater in situ regulation and storage systems in green spaces and their responses to extreme rainfall events in Shanghai. Based on the simulated results of the runoff curves, paths and ponding area of the Gongkang green space, the ideal number and position of rainwater regulation and storage facilities were determined. Four different schemes were examined: Scheme A (diversion-oriented), Scheme B (infiltration- and detention-oriented) and schemes C and D (comprehensive rainwater regulation and storage systems). From the simulation evaluation, the total runoff volume capture rate of Scheme C reached 100%, 99.8% and 98.2% under one-, three- and five-year return period rainfall events, respectively. For the 210 mm extraordinary rainstorm event, Scheme C’s and Scheme D’s total runoff volume capture rates reached 81.9% and 94.7%, respectively. Therefore, the comprehensive rainwater regulation and storage schemes (schemes C and D) met the runoff control requirements under extreme rainfall events in the Gongkang green space. This study provides a technical reference for the optimal design of a rainwater in situ regulation and storage system in a green space and promotes the construction of resilient cities.
Collapse
|
41
|
Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature. LAND 2022. [DOI: 10.3390/land11050649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of life cycle assessment (LCA) allows work to go beyond the traditional scope of urban nature-based solutions (NBS), in which ecosystem services are provided to citizens, to include environmental impacts generated over the entire life cycle of the NBS, i.e., from raw material extraction, through materials processing, production, distribution, and use stages, to end-of-life management. In this work, we explored how LCA has been applied in the context of NBS through a critical analysis of the literature. Systems under review were not restricted to one typology of NBS or another, but were meant to cover a broad range of NBS, from NBS on the ground, water-related NBS, building NBS, to NBS strategies. In total, 130 LCA studies of NBS were analysed according to several criteria derived from the LCA methodology or from specific challenges associated with NBS. Results show that studies were based on different scopes, resulting in the selection of different functional units and system boundaries. Accordingly, we propose an innovative approach based on the ecosystem services (ES) concept to classify and quantify these functional units. We also identify and discuss two recent and promising approaches to solve multifunctionality that could be adapted for LCA of NBS.
Collapse
|
42
|
Feng W, Liu Y, Gao L. Stormwater treatment for reuse: Current practice and future development - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113830. [PMID: 34600425 DOI: 10.1016/j.jenvman.2021.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Stormwater harvesting is an effective measure to mitigate flooding risk and pollutant migration in our urban environment with the continuously increasing impermeable faction. Treatment of harvested stormwater also provides the fit-for-purpose water sources as an alternative to potable water supply ensuring the reliability and sustainability of the water management in the living complex. In order to provide the water management decision-maker with a broad range of related technology database and to facilitate the implementation of stormwater harvesting in the future, a comprehensive review was undertaken to understand the corresponding treatment performance, the applicable circumstances of current stormwater treatment and harvesting technologies. Technologies with promising potential for stormwater treatment were also reviewed to investigate the feasibility of being used in an integrated process. The raw stormwater quality and the required quality for different levels of stormwater reuses (irrigation, recreational, and potable) were reviewed and compared. The required level of treatment is defined for different 'fit-for-purpose' uses of harvested stormwater. Stormwater biofilter and constructed wetland as the two most advanced and widely used stormwater harvesting and treatment technologies, their main functionality, treatment performance and adequate scale of the application were reviewed based on published peer-reviewed articles and case studies. Excessive microbial effluent that exists in stormwater treated using these two technologies has restricted the stormwater reuse in most cases. Water disinfection technologies developed for wastewater and surface water treatment but with high potential to be used for stormwater treatment have been reviewed. Their feasibility and limitation for stormwater treatment are presented with respect to different levels of fit-for-purpose reuses. Implications for future implementation of stormwater treatment are made on proposing treatment trains that are suitable for different fit-for-purpose stormwater reuses.
Collapse
Affiliation(s)
- Wenjun Feng
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yue Liu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Li Gao
- Institute of Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia; South East Water Corporation, Seaford, VIC, 3198 Australia.
| |
Collapse
|
43
|
Li H, Liu J, Zhang H, Harvey J. Investigation on the effect of fine solid wastes on the runoff purification performance of porous asphalt mixture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113612. [PMID: 34560469 DOI: 10.1016/j.jenvman.2021.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Fine solid wastes such as coal fly ash (CFA), diatomite, and red mud have been widely applied as alternative fillers for porous asphalt pavement (PAP), and have varying impacts on the mechanical performance of materials. However, whether they will affect the runoff purification performance of PAP has not been studied yet. Based on the laboratory simulation rainfall test, this study investigated the purification performance of porous asphalt mixture (PA) with three fine solid wastes fillers. Combined with the analysis of multi-scale pore characteristics of PA, the purification mechanism was further discussed. The results show that pollutants are mainly removed within 3 cm on the surface of PA in 20-30min rainfall. Diatomite and red mud fillers can effectively increase the removal rates of some heavy metals and nutrients by 20-40%. On the one hand, diatomite and red mud can leach some ions, which are conducive to physical adsorption and chemical degradation (including chemical precipitation and ion change) of pollutants. On the other hand, they also contain abundant porous structures and large specific surface areas, which significantly improve the micro-surface physical properties of PA and enhance the interaction between PA and pollutants.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Road and Traffic Engineering of the Ministry of Education, College of Transportation Engineering, Tongji University, 4800 Caoan Rd, Shanghai, 201804, China.
| | - Jiawen Liu
- Key Laboratory of Road and Traffic Engineering of the Ministry of Education, College of Transportation Engineering, Tongji University, 4800 Caoan Rd, Shanghai, 201804, China.
| | - Hengji Zhang
- Shanxi Yellow River Frontier Materials Research Institute Co., Ltd., Taiyuan, 030000, China.
| | - John Harvey
- University of California Pavement Research Center, Department of Civil and Environmental Engineering, University of California, Davis, USA.
| |
Collapse
|
44
|
A New Strategy for Sponge City Construction of Urban Roads: Combining the Traditional Functions with Landscape and Drainage. WATER 2021. [DOI: 10.3390/w13233469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban roads play a key role in sponge city construction, especially because of their drainage functions. However, efficient methods to enhance their drainage performance are still lacking. Here, we propose a new strategy to combine roads, green spaces, and the drainage system. Generally, by considering the organization of the runoff and the construction of the drainage system (including sponge city facilities) as the core of the strategy, the drainage and traffic functions were combined. This new strategy was implemented in a pilot study of road reconstruction conducted in Zhangjiagang, Suzhou, China. Steel slag was used in the structural layers to enhance the water permeability of the pavement and the removal of runoff pollutants. The combined effects of this system and of the ribbon biological retention zone, allowed achieving an average removal rate of suspended solids, a chemical oxygen demand, a removal of total nitrogen and total phosphorus of 71.60%, 78.35%, 63.93%, and 49.47%; in contrast, a traditional road could not perform as well. Furthermore, the volume control rate of the annual runoff met the construction requirements (70%). The results of the present study indicate that, combining the traditional basic functions of roads with those of landscape and drainage might be a promising strategy for sponge city construction of urban road.
Collapse
|
45
|
Zhang Z, Li J, Li Y, Wang D, Zhang J, Zhao L. Assessment on the cumulative effect of pollutants and the evolution of micro-ecosystems in bioretention systems with different media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112957. [PMID: 34775342 DOI: 10.1016/j.ecoenv.2021.112957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Bioretention system is one of the most used green stormwater infrastructures (GSI), and its media is a key factor in reducing runoff water volume and purifying water quality. Many studies have investigated media improvement to enhance the pollutant removal capacity. However, the long-term cumulative effect and microbial effect of pollutants in the modified-media bioretention system is less known. This study investigated the cumulative effect of pollutants and their influence on microbial characteristics in conventional and modified media bioretention system. The addition of modifiers increased the background content of pollutants in the media, and the accumulation of pollutants in planting soil (PS) and bioretention soil mixing + water treatment residuals (BSM+WTR) was relatively higher after the simulated rainfall experiment. The accumulation of pollutants led to a decrease in dehydrogenase activity, and an increase in urease and invertase activities. Ten dominant bacterial species at the phylum level were found in all bioretention systems. The relative abundances of the bacteria with good viability under low nutritional conditions decreased, while the species which could live in the pollutant-rich environment increased. The accumulation of pollutants in the bioretention system led to the extinction of some functional microorganisms. The better the effects of modified media on pollutant removal showed, the more obvious effect on the media micro-ecosystem was. To ensure the long-term efficient and stable operation of the modified-media bioretention system, we recommend balancing the pollutant removal efficiency and cumulative effect in modified-media bioretention systems.
Collapse
Affiliation(s)
- Zhaoxin Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China; Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an 710075, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Yajiao Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jingyu Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lingzhi Zhao
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|