1
|
Ojha A, Bandyopadhyay TK, Das D, Dey P. Microbial Carbonate Mineralization: A Comprehensive Review of Mechanisms, Applications, and Recent Advancements. Mol Biotechnol 2025:10.1007/s12033-025-01433-5. [PMID: 40338440 DOI: 10.1007/s12033-025-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/11/2025] [Indexed: 05/09/2025]
Abstract
Microbial carbonate mineralization, the process by which microorganisms (Bacillus sp., Sporosarcina sp., Penicillium sp., Cyanobacteria, etc.) directly mediate or indirectly influence mineral formation and deposition, represents the next frontier in technology with vast potential across scientific disciplines, including construction, environmental remediation, and carbon sequestration. This review explores the fundamental aspects of microbial carbonate mineralization, focusing on key mechanisms such as photosynthesis, methane oxidation, sulfate reduction, ureolysis, denitrification, carbonic anhydrase activity, iron reduction, and EPS mediation, all of which influence carbonate saturation and mineral nucleation. Additionally, it highlights critical regulatory factors that enhance biomineralization for bio-inspired material development in heavy metal remediation, wastewater treatment, self-healing concrete, biomedical applications, nanoscale technologies, and 3D printing. A major focus is microbial-induced calcite precipitation (MICP), an emerging and cost-efficient biomineralization technique, with an in-depth analysis of its molecular mechanisms and expanding applications. Furthermore, this review discusses current challenges, including process scalability, long-term stability, and environmental and safety considerations, while identifying future research directions to improve the efficacy and sustainability of microbial carbonate mineralization in advanced technological applications.
Collapse
Affiliation(s)
- Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | | | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| | - Palash Dey
- Department of Civil Engineering, The ICFAI University, Tripura, Kamalghat, Tripura, 799210, India
| |
Collapse
|
2
|
Wang X, Shi Y, Hu Y, Lin Y, Chen H, Zhang C, Li X. Preparation of eco-friendly dust suppressant by extracting biological enzyme from jack bean: Performance evaluation and mechanism exploration. Int J Biol Macromol 2025; 305:140580. [PMID: 39904431 DOI: 10.1016/j.ijbiomac.2025.140580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Soil dust in infrastructure construction sites seriously affects the working environment. In the study, urease is a biological enzyme extracted from jack bean, which is used as the core material to prepare dust suppressant. The best urease activity was observed at bean flour mass to Citric Acid-Sodium Citrate (CASC) volume ratio of 5:14. Urease activity increased with temperature rise and showed a trend of first increasing then decreasing with pH increase, with highest activity at pH 8. The precipitation rate of CaCO3 reached the highest when CaCl2-urea solution was 0.6 mol/L. The wind erosion resistance rate of soil dust samples treated with dust suppressant was 98.58 % under 120 min wind erosion. Under 6 h drying, the water retention rate was 32.67 %. The average hardness of the solidified layer is 62 HA. Under one week of natural degradation, the degradation rate was 4.65 %. In a one-month field experiment, the average total suspended particles (TSP) concentration in the experimental area of dust suppressant was 60.8 μg/m3. By analyzing the microstructure of dust samples, the reason for its excellent dust suppression performance is that there are many calcite type CaCO3. The study has important engineering application value for controlling soil dust.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yongjie Shi
- College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yue Hu
- College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuan Lin
- College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haoyu Chen
- College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chongyu Zhang
- College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiang Li
- College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| |
Collapse
|
3
|
Zeng H, Jin B, Xu S, Han L, Wang J, Jia H, Dapaah MF, Cheng L. Removal of copper, lead and cadmium from water through enzyme-induced carbonate precipitation by soybean urease. ENVIRONMENTAL RESEARCH 2025; 277:121610. [PMID: 40250586 DOI: 10.1016/j.envres.2025.121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
Enzyme-induced carbonate precipitation (EICP) is widely recognized as a green and sustainable technology for heavy metal remediation. In this study, a novel spherical porous vaterite (0.05-5 μm) was synthesized via EICP, demonstrating exhibited excellent performance in heavy metals removal from contaminated water. The Langmuir maximum adsorption capacity of vaterite for multiple heavy metals are in the order of Cu2+ (1207.20 mg/g) > Cd2+ (785.73 mg/g) > Pb2+ (654.95 mg/g), with adsorption primarily occurring on the vaterite surface. Notably, the vaterite exhibited a significantly higher removal capacity for Cd2+, which was 49.80 times that of Sinopharm-CaCO3 and 2.07 times that of Chemical-CaCO3, achieving over 90 % removal within the first 6 d in cyclic tests. On the 3th day of aqueous solution, calcite formation was first detected by X-ray Diffraction (XRD). Although 55 % of vaterite was transformed into calcite after 5 weeks, Cd2+ removal efficiency remained above 80 %, with XRD analysis confirmed that the formation of precipitate is CdCO3. Comprehensive characterization (SEM-EDS and XRD) showed that distinct immobilization products for Cd2+ and Pb2+ were identified as CdCO3, and PbCO3 or Pb3(CO3)2(OH)2, respectively. For Cu2+, the presence of Cl- promoted Cu2Cl(OH)3 formation rather than CuCO3 during biomineralization. These results demonstrate that EICP-derived vaterite maintains excellent long-term remediation performance while forming stable precipitates that effectively prevent secondary pollution.
Collapse
Affiliation(s)
- Haipeng Zeng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Bingbing Jin
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Shiming Xu
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Li Han
- Shanxi Academy of Eco-Environmental Planning and Technology, Taiyuan, 030009, China
| | - Jiaqian Wang
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hui Jia
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Malcom Frimpong Dapaah
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liang Cheng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Yang Z, Yu L, Yan X, Li P, Si M, Liao Q, Zhao F, Lin Z, Sheng A, Yang W. Mechanistic and kinetic understanding of Pb-phosphate biomineralization from humic acid-bound Pb under active growth of phosphate solubilizing Enterobacter aerogenes W6. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124894. [PMID: 40068499 DOI: 10.1016/j.jenvman.2025.124894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Humic acid-bound Pb (HA-Pb), as one of the representative solid-associated Pb species, plays important roles in Pb mobility and toxicity in aqueous environments. Stable Pb-phosphate minerals formation mediated by phosphate solubilizing bacteria (PSB) is a promising approach to immobilizing Pb in contaminated waters. However, the underlying processes and kinetics of Pb-phosphate biomineralization from labile HA-Pb species remain unclear. Here, experiments were conducted using dialysis bags to separate PSB Enterobacter Aerogenes W6 cells from HA-Pb and FePO4 solids, and the time-dependent evolutions of solution conditions, PSB metabolites, Pb species, and Pb-phosphate minerals were systematically analyzed. Acid-soluble Pb species (∼25%) in HA-Pb, mainly complexing with phenolic hydroxyl groups, served as the source for Pb-phosphate mineralization. Extracellular secreted small organic acids contributed to Pb solubilization from HA-Pb, while polysaccharide macromolecules played critical roles in promoting Pb-phosphate nucleation on PSB cell surfaces. By coupling time-dependent bacterial growth, an integrated kinetic model was developed and performed well in describing the underlying processes of Pb-phosphate biomineralization, including Pb solubilization from HA-Pb (RMSE<1%), Pb adsorption onto PSB cells (RMSE<20%), and Pb-phosphate mineral precipitation (RMSE<5%). The findings provide insights into the Pb-phosphate biomineralization of solid-associated Pb and could help to predict the fate of Pb in natural and engineering systems.
Collapse
Affiliation(s)
- Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Lin Yu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiao Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Penggang Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Anxu Sheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|
5
|
Chen J, Wang H, He Y, Liu R, Zeng C, Yan K, Zhu J. Preparation and performance evaluation of an efficient microbial dust suppressant for dust control in disturbed areas of blast piles in open-pit coal mines. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123684. [PMID: 39675340 DOI: 10.1016/j.jenvman.2024.123684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Open-pit coal mining creates large rock piles as a result of removing overlying strata. When disturbed by loading operations and wind, these rock piles release considerable dust, leading to significant environmental pollution. This study aims to develop an environmentally friendly and cost-effective method for dust control in disturbed areas of open-pit coal mines, using Sporosarcina pasteurii as a microbial dust suppressant to explore its potential application and development. Laboratory experiments were conducted to simulate the growth characteristics of Sporosarcina pasteurii in the microenvironment of blast pile dust. The effectiveness of the microbial dust suppressant was evaluated under conditions of impact disturbance and rainfall erosion through wind and rain erosion tests. Results showed that under optimal conditions, the wind erosion resistance of treated samples improved significantly, with an increase of 98.24%, 86.99%, 64.08%, and 40.98% after 1, 2, 3, and 4 impact disturbances, respectively. Additionally, rain erosion resistance improved by 75.55% after 35 min of simulated rainfall. The growth conditions of Sporosarcina pasteurii in blast pile dust leachate were similar to those in sterile water, demonstrating robust growth and consistent urease activity of 7.78 mmol L⁻1 min⁻1 after 24 h. The mineralization product was calcite-type CaCO3 with uneven particle sizes. This work confirms the feasibility of microbial dust suppressants for managing dust in disturbed areas of open-pit coal mine blast piles, offering a promising approach for dust control in such environments.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; School of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Haoran Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; School of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Yi He
- School of Metallurgy and Power Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Rong Liu
- Institute of Future Civil Engineering Science and Technology, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Chuanhui Zeng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; School of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Kunyu Yan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; School of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Junpeng Zhu
- Zhunneng Group Co., Ltd., China Energy Investment Corporation, Ordos, Inner Mongolia, 010300, China
| |
Collapse
|
6
|
Xue ZF, Cheng WC, Wang L, Xie YX, Qin P, Shi C. Immobilizing lead in aqueous solution and loess soil using microbially induced carbonate/phosphate precipitation (MICP/MIPP) under harsh pH environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135884. [PMID: 39298970 DOI: 10.1016/j.jhazmat.2024.135884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The bioaccumulation of heavy metals due to metallurgical and smelting activities threatens human health. Although microbial-induced carbonate/phosphate precipitation (MICP/MIPP) technology has been applied to heavy metal remediation, the relative merits of MICP and MIPP, especially under extreme pH environments, have not yet been documented. In this study, Sporosarcina pasteurii (SP)-based MICP and Bacillus megaterium (BM)-based MIPP were applied to immobilize lead (Pb) in aqueous solution and loess soil. The results showed that the BM retained a strong phosphorolysis ability when under strongly acidic conditions, while the ureolysis ability of SP approached zero. Furthermore, the bioprecipitates obtained under BM-based MIPP had a denser appearance, presumably due to the enrichment of calcite and apatite crystals. The results also showed that Pb immobilization was achieved through bacterial adsorption, the chelate function of sodium glycerophosphate (SGP), large organic matter complexation, and biomineralization through the MICP/MIPP mechanism. Under SP-based MICP, SP and large organic matter immobilized Pb2+ at rates of 17.6 % and 31.7 %, respectively, while under BM-based MIPP, BM, organic matter, and SGP immobilized Pb2+ at rates of 21.5 %, 23.4 %, and 48.5 % respectively. The MICP and MIPP mechanisms dominated Pb immobilization at rates of 78.6 % and 99.6 %, respectively.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Cong Shi
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| |
Collapse
|
7
|
Cuaxinque-Flores G, Talavera-Mendoza O, Aguirre-Noyola JL, Hernández-Flores G, Martínez-Miranda V, Rosas-Guerrero V, Martínez-Romero E. Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135005. [PMID: 38996684 DOI: 10.1016/j.jhazmat.2024.135005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, β, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.
Collapse
Affiliation(s)
- Gustavo Cuaxinque-Flores
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico
| | - Oscar Talavera-Mendoza
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda, San Juan Bautista s/n, CP 40323 Taxco el Viejo, Guerrero, Mexico.
| | - José Luis Aguirre-Noyola
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Giovanni Hernández-Flores
- CONAHCyT-Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco de Alarcón 40323, Mexico
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Víctor Rosas-Guerrero
- Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Tecpan de Galeana 40900, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
8
|
Jiang C, Hu L, He N, Liu Y, Zhao H, Jiang Z. Different calcium sources affect the products and sites of mineralized Cr(VI) by microbially induced carbonate precipitation. CHEMOSPHERE 2024; 363:142977. [PMID: 39084306 DOI: 10.1016/j.chemosphere.2024.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Microbially induced carbonate precipitation (MICP) is a common biomineralization method, which is often used for remediation of heavy metal pollution such as hexavalent chromium (Cr(VI)) in recent years. Calcium sources are essential for the MICP process. This study investigated the potential of MICP technology for Cr(VI) remediation under the influence of three calcium sources (CaCl2, Ca(CH3COO)2, Ca(C6H11O7)2). The results indicated that CaCl2 was the most efficient in the mineralization of Cr(VI), and Ca(C6H11O7)2 could significantly promote Cr(VI) reduction. The addition of different calcium sources all promoted the urease activity of Sporosarcina saromensis W5, in which the CaCl2 group showed higher urease activity at the same Ca2+ concentration. Besides, with CaCl2, Ca(CH3COO)2 and Ca(C6H11O7)2 treatments, the final fraction of Cr species (Cr(VI), reduced Cr(III) and organic Cr(III)-complexes) were mainly converted to the carbonate-bound, cytoplasm and cell membrane state, respectively. Furthermore, the characterization results revealed that three calcium sources could co-precipitate with Cr species to produce Ca10Cr6O24(CO3), and calcite and vaterite were present in the CaCl2 and Ca(CH3COO)2 groups, while only calcite was present in the Ca(C6H11O7)2 group. Overall, this study contributes to the optimization of MICP-mediated remediation of heavy metal contaminated soil. CaCl2 was the more suitable calcium source than the other two for the application of MICP technology in the Cr(VI) reduction and mineralization.
Collapse
Affiliation(s)
- Chunyangzi Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yayuan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Zuopei Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
Yang Z, Liu L, Dong Y, Liu X, Wang X. Analysis of unconfined compressive strength and environmental impact of MICP-treated lead-zinc tailings sand instead of sand as embankment material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172809. [PMID: 38679087 DOI: 10.1016/j.scitotenv.2024.172809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Tailings can be used as embankment materials instead of sand. However, they contain large amounts of heavy metal pollutants, which can lead to groundwater pollution. In this study, (lead-zinc) Pb-Zn tailings with five particle sizes and Sporosarcina pasteurii were used as test materials. Combined with the unconfined compressive strength (UCS) and leaching of heavy metal pollutants from Pb-Zn tailings, the feasibility of applying microbial induced carbonate precipitation (MICP)-treated Pb-Zn tailings to embankment materials was analysed from the perspective of strength and environmental performance. The results showed that the UCS and carbonate content of the specimens made of Pb-Zn tailings treated using MICP decreased with a decrease in the number of Pb-Zn tailing particles. The pH value of the leaching solution after MICP treatment of Pb-Zn tailings sand was stable at 7.83-8.03, and the fixation rate of metal ions was 90.28 %-100 %. FTIR, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy tests showed that after the Pb-Zn tailings with particle sizes less than 100 mesh were treated using MICP, the number of carbonate crystals, crystal uniformity, and crystal overlap on the surface of the sample were considerably higher than those of the tailings with particle sizes greater than 250 mesh. The compressive strength and environmental performance of Pb-Zn tailings with particle sizes less than 100 mesh treated using MICP are good, and they are more suitable for embankment materials.
Collapse
Affiliation(s)
- Zhenhua Yang
- College of Mining, Liaoning Technical University, Fuxin, China.
| | - Longkang Liu
- College of Mining, Liaoning Technical University, Fuxin, China
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, China
| | - Xiaoshuai Liu
- College of Mining, Liaoning Technical University, Fuxin, China
| | - Xuezeng Wang
- College of Mining, Liaoning Technical University, Fuxin, China
| |
Collapse
|
10
|
Wang G, Chen C, Li J, Lan Y, Lin X, Chen J. Conversion of Phosphogypsum into Porous Calcium Silicate Hydrate for the Removal and Recycling of Pb(II) and Cd(II) from Wastewater. Molecules 2024; 29:2665. [PMID: 38893539 PMCID: PMC11173502 DOI: 10.3390/molecules29112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The discharge of lead and cadmium wastewater, along with the pollution caused by phosphogypsum, represents a particularly urgent environmental issue. This study employed a straightforward hydrothermal method to convert phosphogypsum into porous calcium silicate hydrate (P-CSH), which was then used to remove and recover Pb(II) and Cd(II) from wastewater. The adsorption capacities of P-CSH for Pb(II) and Cd(II) were notably high at 989.3 mg/g and 290.3 mg/g, respectively. The adsorption processes adhered to the pseudo-second-order kinetics model and the Langmuir isotherm model. Due to identical adsorption sites on P-CSH for both Pb(II) and Cd(II), competitive interaction occurred when both ions were present simultaneously. Additionally, the adsorption efficacy was minimally impacted by the presence of common coexisting cations in wastewater. The dominant mechanisms for removing Pb(II) and Cd(II) via P-CSH were chemical precipitation and surface complexation. Moreover, the adsorbed heavy metals were efficiently separated and reclaimed from the wastewater through a stepwise desorption process. The primary components of the residue from stepwise desorption were quartz and amorphous SiO2. Following dissolution via pressurized alkaline leaching, this residue could be recycled for synthesizing P-CSH. This research offered a new strategy for the resourceful use of phosphogypsum and heavy metal wastewater.
Collapse
Affiliation(s)
- Gangan Wang
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (G.W.); (Y.L.); (X.L.); (J.C.)
| | - Chaoyi Chen
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (G.W.); (Y.L.); (X.L.); (J.C.)
| | - Junqi Li
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (G.W.); (Y.L.); (X.L.); (J.C.)
- Guizhou Province Dual Carbon and New Energy Technology Innovation and Development Research Institute, Guiyang 550025, China
| | - Yuanpei Lan
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (G.W.); (Y.L.); (X.L.); (J.C.)
| | - Xin Lin
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (G.W.); (Y.L.); (X.L.); (J.C.)
| | - Jiahang Chen
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (G.W.); (Y.L.); (X.L.); (J.C.)
| |
Collapse
|
11
|
Hu X, Yu C, Li X, Zou J, Du Y, Paterson DM. Biomineralization of heavy metals based on urea transport and hydrolysis within a new bacterial isolate, B. intermedia TSBOI. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134049. [PMID: 38522207 DOI: 10.1016/j.jhazmat.2024.134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
A newly isolated ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced calcite precipitation (MICP) which is a promising technique for the remediation of heavy metals in polluted environments. Brucella intermedia TSBOI achieved 90-100% removal of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. A distinctive feature lies in B. intermedia TSBOI's capacity for the transport and hydrolysis of urea, considered to be critical for its strong urease activity. This study explored the mechanisms of this capacity at the genetic, molecular and protein levels through complete genome sequencing, molecular docking and enzymatic reaction kinetics. The results revealed that, for urea hydrolysis, B. intermedia TSBOI exhibited a comprehensive urease gene cluster, with the key gene ureC demonstrating an absolute expression level approximating to 4 × 104 copies/RNA ng under optimal conditions. Results also confirmed the strong spontaneous, energy-independent binding ability of it's urease to urea, with the lowest Gibbs free energy binding site linking to the three amino acids, alanine, asparagine and serine. The urea transport gene yut presented and expressed, with the absolute expression enhanced in response to increasing urea concentrations. The significant positive correlation between ureC/yut expression levels and urease activity provided a theoretical basis for B. intermedia TSBOI's heavy metal bioremediation potential. ENVIRONMENTAL IMPLICATION: Heavy metals (Cu, Pb and Zn) were studied in this study. Heavy metals are hazardous due to their toxicity, persistence, and ability to bioaccumulate in living organisms. They can cause severe health issues, harm ecosystems, and contaminate air, water, and soil. A novel ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced carbonate precipitation capability was isolated which removed 90-100% of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. Its advantages in urea hydrolysis and transport facilitate the remediation of actual heavy metal contaminated environments.
Collapse
Affiliation(s)
- Xuesong Hu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China.
| | - Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Jiacheng Zou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - David M Paterson
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St. Andrews, Fife KY16 8LB, UK
| |
Collapse
|
12
|
Anand S, Kumar V, Singh A, Phukan D, Pandey N. Statistical modelling, optimization, and mechanistic exploration of novel ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium immobilization under microbial inclusive and cell-free conditions through microbially induced calcite precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123880. [PMID: 38554835 DOI: 10.1016/j.envpol.2024.123880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
The study aimed to evaluate the potential of a novel isolated ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium bioremoval through MICP. The optimization and modelling of the biotic and abiotic factors affecting the process of mineralization were also performed. In addition, the underlying mechanism of MICP-driven Cd mineralization under microbial-inclusive and cell-free conditions was revealed and supported through the characterization of the bio-precipitates obtained using various characterization techniques. The results indicated that the isolate could remove 97.18% Cd2+ of 11.4 ppm under optimized conditions of 36.86 h, pH 7.63, and biomass dose of 1.75 ml. Besides, the presence and absence of bacterial cells were found to influence both the morphologies and crystalline structures of precipitates. The precipitates obtained under microbial-inclusive conditions showed typical rhombohedral crystalline structures of the composition comprising CaCO3, CdCO3, and 0.67Ca0.33CdCO3. However, the crystalline nature of the precipitate reduced to a nano-sized granular structure in cell-free media. Unlike the cadmium mineralization process under microbial-inclusive media, where bacterial cells serve as nucleation sites for crystallization, the carbonate precipitation effectively captures Cd2+ through co-precipitation, chemisorption, or alternative mechanisms involving interactions between metal ions and CaCO3 under cell-free conditions. The findings presented suggest that using cell-free culture supernatant enriched with carbonate ions provides an avenue that could be harnessed for sustainable metal remediation.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Dixita Phukan
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Nishant Pandey
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
13
|
Ma Y, Li C, Yan J, Yu H, Kan H, Yu W, Zhou X, Meng Q, Dong P. Application and mechanism of carbonate material in the treatment of heavy metal pollution: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36551-36576. [PMID: 38755474 DOI: 10.1007/s11356-024-33225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Among the many heavy metal pollution treatment agents, carbonate materials show strong flexibility and versatility by virtue of their high adsorption capacity for heavy metals and the characteristics of multiple and simple modification methods. It shows good potential for development. This review summarizes the application of carbonate materials in the treatment of heavy metal pollution according to the research of other scholars. It mainly relates to the application of surface-modified, activated, and nano-sized carbonate materials in the treatment of heavy metal pollution in water. Natural carbonate minerals and composite carbonate minerals solidify and stabilize heavy metals in soil. Solidification of heavy metals in hazardous waste solids is by MICP. There are four aspects of calcium carbonate oligomers curing heavy metals in fly ash from waste incineration. The mechanism of treating heavy metals by carbonate in different media was discussed. However, in the complex environment where multiple types of pollutants coexist, questions on how to maintain the efficient processing capacity of carbonate materials and how to use MICP to integrate heavy metal fixation and seepage prevention in solid waste base under complex and changeable natural environment deserve our further consideration. In addition, the use of carbonate materials for the purification of trace radioactive wastewater and the safe treatment of trace radioactive solid waste are also worthy of further exploration.
Collapse
Affiliation(s)
- Yaoqiang Ma
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - ChenChen Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jin Yan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Hanjing Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Huiying Kan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Wanquan Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xinyu Zhou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qi Meng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peng Dong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
14
|
Zhang L, Wang W, Yue C, Si Y. Biogenic calcium improved Cd 2+ and Pb 2+ immobilization in soil using the ureolytic bacteria Bacillus pasteurii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171060. [PMID: 38378057 DOI: 10.1016/j.scitotenv.2024.171060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Bioremediation based on microbial-induced carbonate precipitation (MICP) was conducted in cadmium and lead contaminated soil to investigate the effects of MICP on Cd and Pb in soil. In this study, soil indigenous nitrogen was shown to induce MICP to stabilize heavy metals without inputting exogenous urea. The results showed that applying Bacillus pasteurii coupled with CaCl2 reduced Cd and Pb bioavailability, which could be clarified through the proportion of exchangeable Cd and Pb in soil decreasing by 23.65 % and 12.76 %, respectively. Moreover, B. pasteurii was combined separately with hydroxyapatite (HAP), eggshells (ES), and oyster shells (OS) to investigate their effects on soil heavy metals' chemical fractions, toxicity characteristic leaching procedure (TCLP)-extractable Cd and Pb as well as enzymatic activity. Results showed that applying B. pasteurii in soil significantly decreased the heavy metals in the exchangeable fraction and increased them in the carbonate phase fraction. When B. pasteurii was combined with ES and OS, the content of carbonate-bound Cd increased by 114.72 % and 118.81 %, respectively, significantly higher than when B. pasteurii was combined with HAP, wherein the fraction of carbonate-bound Cd increased by 86 %. The combination of B. pasteurii and biogenic calcium effectively reduced the leached contents of Cd and Pb in soil, and the TCLP-extractable Cd and Pb fractions decreased by 43.88 % and 30.66 %, respectively, in the BP + ES group and by 52.60 % and 41.77 %, respectively, in the BP + OS group. This proved that MICP reduced heavy metal bioavailability in the soil. Meanwhile, applying B. pasteurii and calcium materials significantly increased the soil urease enzyme activity. The microstructure and chemical composition of the soil samples were studied, and the results from scanning electron microscope, Fourier transform infra-red spectroscopy, and X-ray diffraction demonstrated the MICP process and identified the formation of CaCO3, Ca0.67Cd0.33CO3, and PbCO3 in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenjun Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Caili Yue
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Xue ZF, Cheng WC, Wang L, Qin P, Xie YX, Hu W. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions. ENVIRONMENTAL RESEARCH 2023; 239:117423. [PMID: 37858687 DOI: 10.1016/j.envres.2023.117423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
16
|
Xie YX, Cheng WC, Wang L, Xue ZF, Xu YL. Biopolymer-assisted enzyme-induced carbonate precipitation for immobilizing Cu ions in aqueous solution and loess. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116134-116146. [PMID: 37910372 DOI: 10.1007/s11356-023-30665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Wastewater, discharged in copper (Cu) mining and smelting, usually contains a large amount of Cu2+. Immobilizing Cu2+ in aqueous solution and soils is deemed crucial in preventing its migration into surrounding environments. In recent years, the enzyme-induced carbonate precipitation (EICP) has been widely applied to Cu immobilization. However, the effect of Cu2+ toxicity denatures and even inactivates the urease. In the present work, the biopolymer-assisted EICP technology was proposed. The inherent mechanism affecting Cu immobilization was explored through a series of test tube experiments and soil column tests. Results indicated that 4 g/L chitosan may not correspond to a higher immobilization efficiency because it depends as well on surrounding pH conditions. The use of Ca2+ not only played a role in further protecting urease and regulating the environmental pH but also reduced the potential for Cu2+ to migrate into nearby environments when malachite and azurite minerals are wrapped by calcite minerals. The species of carbonate precipitation that are recognized in the numerical simulation and microscopic analysis supported the above claim. On the other hand, UC1 (urease and chitosan colloid) and UC2 (urea and calcium source) grouting reduced the effect of Cu2+ toxicity by transforming the exchangeable state-Cu into the carbonate combination state-Cu. The side effect, induced by 4 g/L chitosan, promoted the copper-ammonia complex formation in the shallow ground, while the acidic environments in the deep ground prevented Cu2+ from coordinating with soil minerals. These badly degraded the immobilization efficiency. The Raman spectroscopy and XRD test results tallied with the above results. The findings shed light on the potential of applying the biopolymer-assisted EICP technology to immobilizing Cu ions in water bodies and sites.
Collapse
Affiliation(s)
- Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Yin-Long Xu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| |
Collapse
|
17
|
Yu X, Jiang N, Yang Y, Liu H, Gao X, Cheng L. Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115305. [PMID: 37517309 DOI: 10.1016/j.ecoenv.2023.115305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Heavy metals are pervasive pollutants found in water, soil, and solid wastes. Bio-solidification offers an environmentally friendly approach to immobilize heavy metal ions using two types of bacteria: urease-producing bacteria (UPB) and phosphatase-producing bacteria (PPB). UPB, exemplified by Sporosarcina pasteurii, secretes urease to hydrolyze urea and generate CO32- ions, while PPB, like Bacillus subtilis, produces alkaline phosphatase to hydrolyze organophosphate monoester (ROP) and produce PO43- ions. These ions react with heavy metal ions, effectively reducing their concentration by forming insoluble carbonate or phosphate precipitates. The success of bio-solidification is influenced by various factors, including substrate concentration, temperature, pH, and bacterial density. Optimal operational conditions can significantly enhance the remediation performance of heavy metals. UPB and PPB hold great potential for remediating heavy metal pollution in diverse contaminated areas such as tailings ponds, electroplating sewage, and garbage incineration plants. In conclusion, harnessing the power of these microbial methods can provide effective solutions for remediating heavy metal-induced pollution across a range of environmental conditions.
Collapse
Affiliation(s)
- Xiaoniu Yu
- Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China.
| | - Ningjun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Yang Yang
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Haijun Liu
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Xuecheng Gao
- School of Civil Engineering, Chongqing University; Chongqing University Industrial Technology Research Institute, Chongqing 400045, China.
| | - Liang Cheng
- School of Environmental and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
18
|
Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131738. [PMID: 37285788 PMCID: PMC11249206 DOI: 10.1016/j.jhazmat.2023.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.
Collapse
Affiliation(s)
- S Elizabeth George
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Yongshan Wan
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
19
|
Xue ZF, Cheng WC, Xie YX, Wang L, Hu W, Zhang B. Investigating immobilization efficiency of Pb in solution and loess soil using bio-inspired carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121218. [PMID: 36764377 DOI: 10.1016/j.envpol.2023.121218] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) metal accumulation in surrounding environments can cause serious threats to human health, causing liver and kidney function damage. This work explored the potential of applying the MICP technology to remediate Pb-rich water bodies and Pb-contaminated loess soil sites. In the test tube experiments, the Pb immobilization efficiency of above 85% is attained through PbCO3 and Pb(CO3)2(OH)2 precipitation. Notwithstanding that, in the loess soil column tests, the Pb immobilization efficiency decreases with the increase in depth and could be as low as approximately 40% in the deep ground. PbCO3 and Pb(CO3)2(OH)2 precipitation has not been detected as the majority of Pb2+ combines with -OH (hydroxyl group) when subjected to 500 mg/kg Pb2+. The alkaline front promotes the chemisorption of Pb2+ with CO32- reducing the depletion of quartz mineral close to the surface. However, OH- is in shortage in the deep ground retarding the Pb immobilization. The Pb immobilization efficiency thus decreases with the increase in depth. Quartz and albite minerals, when subjected to 16,000 mg/kg Pb2+, appear not to intervene in the chemisorption with Pb2+ where the chemisorption of Pb2+ with CO32- plays a major role in the Pb immobilization. Compared to the nanoscale urease applied to the enzyme-induced carbonate precipitation (EICP) technology, the micrometer scale ureolytic bacteria penetrate into the deep ground with difficulty. The 'size' issue remains to be addressed in near future.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Bin Zhang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
20
|
Kumar A, Song HW, Mishra S, Zhang W, Zhang YL, Zhang QR, Yu ZG. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. CHEMOSPHERE 2023; 318:137894. [PMID: 36657570 DOI: 10.1016/j.chemosphere.2023.137894] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of imbalanced heavy metals concentration due to anthropogenic hindrances in the aquatic and terrestrial environment has become a potential risk to life after circulating through different food chains. The microbial-induced carbonate precipitation (MICP) method has gradually received great attention from global researchers but the underlying mechanism of heavy metal mineralization is not well-understood and challenging, limiting the applications in wastewater engineering. This paper reviews the metabolic pathways, mechanisms, operational factors, and mathematical/modeling approaches in the MICP process. Subsequently, the recent advancement in MICP for the remediation of heavy metal pollution is being discussed. In the follow-up, the key challenges and prospective associated with technical bottlenecks of MICP method are elaborated. The prospective study reveals that MICP technology could be efficiently used to remediate heavy metal contaminants from the natural environment in a cost-effective way and has the potential to improve soil properties while remediating heavy metal contaminated soil.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - He-Wei Song
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yu-Ling Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Qian-Ru Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, China.
| | - Zhi-Guo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
21
|
Zhang P, Liu XQ, Yang LY, Sheng HZY, Qian AQ, Fan T. Immobilization of Cd 2+ and Pb 2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22471-22482. [PMID: 36301386 DOI: 10.1007/s11356-022-23587-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microbially induced carbonate precipitation (MICP) has been proven to effectively immobilize Cd2+ and Pb2+ using a single bacterium. However, there is an urgent need for studies of Cd2+ and Pb2+ immobilized by a bacterial consortium. In this study, a stable consortium designated JZ1 was isolated from soil that was contaminated with cadmium and lead, and the dominant genus Sporosarcina (99.1%) was found to have carbonate mineralization function. The results showed that 91.52% and 99.38% of Cd2+ and Pb2+ were mineralized by the consortium JZ1 with 5 g/L CaCl2 at an initial concentration of 5 mg/L Cd2+ and 150 mg/L Pb2+, respectively. The bioprecipitates were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Moreover, the kinetic studies indicated that the urea hydrolysis reaction fit well with the Michaelis-Menten equation, and the kinetic parameters Km and Vmax were estimated to be 38.69 mM and 58.98 mM/h, respectively. When the concentration of urea increased from 0.1 to 0.3 M, the mineralization rate increased by 1.58-fold. This study can provide a novel microbial resource for the biomineralization of Cd and Pb in soil and water environments.
Collapse
Affiliation(s)
- Peng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xiao-Qiang Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Li-Yuan Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hua-Ze-Yu Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - An-Qi Qian
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
22
|
Zeng Y, Chen Z, Lyu Q, Cheng Y, Huan C, Jiang X, Yan Z, Tan Z. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129866. [PMID: 36063711 DOI: 10.1016/j.jhazmat.2022.129866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically induced calcite precipitation (MICP) has shed new light on solving the problem of in situ stabilization of heavy metals (HMs) in sewage sludge before land disposal. In this study, we examined whether MICP treatment can be integrated into a sewage sludge anaerobic digestion-land application process. Our results showed that MICP treatment not only prevented the transfer of ionic-state Cd from the sludge to the supernatant (98.46 % immobilization efficiency) but also reduced the soluble exchangeable Pb and Cd fractions by up to 100 % and 48.54 % and increased the residual fractions by 22.54 % and 81.77 %, respectively. In addition, the analysis of the stability of HMs in MICP-treated sludge revealed maximum reductions of 100 % and 89.56 % for TCLP-extractable Pb and Cd, respectively. Three-dimensional fluorescence, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy analyses confirmed the excellent performance of the ureolytic bacteria Sporosarcina ureilytica ML-2 in the sludge system. High-throughput sequencing showed that the relative abundance of Sporosarcina sp. reached 53.18 % in MICP-treated sludge, and the urease metabolism functional genes unit increased by a maximum of 239.3 %. The MICP technology may be a feasible method for permanently stabilizing HMs in sewage sludge before land disposal.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xinru Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
23
|
Wang Q, Miao Q, Liu F, Wang X, Xu Q. Coupled effect of microbiologically induced calcium carbonate and biofilms in leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116350. [PMID: 36179474 DOI: 10.1016/j.jenvman.2022.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Fouling and clogging are persistent challenges to the collection and treatment of leachate. The main components of fouling and clogging are calcium carbonate (CaCO3) and biofilms. However, the relationships between CaCO3 and biofilms remain to be clarified. In this study, the interaction between microbially induced CaCO3 precipitation (MICP) and biofilms was investigated using Luria-Bertani (LB) or urea media. Results showed that the bacteria promoted the precipitation of CaCO3 and the formation of a complex mixture of biofilms. The amount of formed CaCO3 in the urea medium was 12.9 times of that in the LB medium. The high MICP potential in the urea medium was associated with increased pH and alkalinity. In addition, the clogging materials exhibited a layered structure and uneven distribution over the clogging width and depth profile. These results indicated the presence of nucleation sites of CaCO3 on the surface of and inside the bacteria. This research provides insights into the regulation of MICP and biofilms through dynamic control of clogging and fouling.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Feng Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Xinwei Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
24
|
Zeng Y, Chen Z, Lyu Q, Wang X, Du Y, Huan C, Liu Y, Yan Z. Mechanism of microbiologically induced calcite precipitation for cadmium mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158465. [PMID: 36063935 DOI: 10.1016/j.scitotenv.2022.158465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically induced calcite precipitation (MICP) technology shows potential for remediating heavy metal pollution; however, the underlying mechanism of heavy metal mineralization is not well-understood, limiting the application of this technology. In this study, we targeted Cd contamination (using 15:1, 25:1, and 50:1 Ca2+/Cd2+ molar ratios) and showed that the ureolytic bacteria Sporosarcina ureilytica ML-2 removed >99.7 % Cd2+ with a maximum fixation capacity of 75.61 mg-Cd/g-CaCO3 and maximum precipitation production capacity of 135.99 mg-CaCO3/mg-cells. Quantitative PCR analysis showed that Cd2+ inhibited the expression of urease genes (ureC, ureE, ureF, and ureG) by 70 % in the ML-2 strain. Additionally, the pseudo-first-order kinetics model (R2 = 0.9886), intraparticle diffusion model (R2 = 0.9972), and Temkin isotherm model (R2 = 0.9828) described the immobilization process of Cd2+ by bio calcite in MICP-Cd system. The three Cd2+ mineralization products generated by MICP were attributed to surface precipitation (Cd2+ → Cd(OH)2), direct binding with the CO32-/substitution calcium site of calcite (Cd2+ → CdCO3, otavite), and calcite lattice vacancy anchors (Cd2+ → (CaxCd1-x)CO3). Our findings improve the understanding of the mechanisms by which MICP can achieve in situ stabilization of heavy metals.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiuxiu Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yaling Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
25
|
Removal of Cd2+ from wastewater by microorganism induced carbonate precipitation (MICP): An economic bioremediation approach. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Su Z, Li X, Xi Y, Xie T, Liu Y, Liu B, Liu H, Xu W, Zhang C. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153767. [PMID: 35157862 DOI: 10.1016/j.scitotenv.2022.153767] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms play a key role in the natural circulation of various constituent elements of metal sulfides. Some microorganisms (such as Thiobacillus ferrooxidans) can promote the oxidation of metal sulfides to increase the release of heavy metals. However, other microorganisms (such as Desulfovibrio vulgaris) can transform heavy metals into metal sulfides crystals. Therefore, insight into the metal sulfides transformation mediated by microorganisms is of great significance to environmental protection. In this review, first, we discuss the mechanism and influencing factors of microorganisms transforming heavy metals into metal sulfides crystals in different environments. Then, we explore three microbe-mediated transformation forms of heavy metals to metal sulfides and their environmental applications: (1) transformation to metal sulfides precipitation for metal resource recovery; (2) transformation to metal sulfides nanoparticles (NPs) for pollutant treatment; (3) transformation to "metal sulfides-microbe" biohybrid system for clean energy production and pollutant remediation. Finally, we further provide critical views on the application of microbe-mediated metal sulfides transformation in the environmental field and discuss the need for future research.
Collapse
Affiliation(s)
- Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
27
|
Cui MJ, Teng A, Chu J, Cao B. A quantitative, high-throughput urease activity assay for comparison and rapid screening of ureolytic bacteria. ENVIRONMENTAL RESEARCH 2022; 208:112738. [PMID: 35041816 DOI: 10.1016/j.envres.2022.112738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Urease is a dinickel enzyme commonly found in numerous organisms that catalyses the hydrolysis of urea into ammonia and carbon dioxide. The microbially induced carbonate precipitation (MICP) process mediated by urease-producing bacteria (UPB) can be used for many applications including, environmental bioremediation, soil improvement, healing of cracks in concrete, and sealing of rock joints. Despite the importance of urease and UPB in various applications, a quantitative, high-throughput assay for the comparison of urease activity in UPB and rapid screening of UPB from diverse environments is lacking. Herein, we reported a quantitative, 96-well plate assay for urease activity based on the Christensen's urea agar test. Using this assay, we compared urease activity of six bacterial strains (E. coli BL21, P. putida KT2440, P. aeruginosa PAO1, S. oneidensis MR-1, S. pasteurii DSM 33, and B. megaterium DSM 319) and showed that S. pasteurii DSM 33 exhibited the highest urease activity. We then applied this assay to quantify the inhibitory effect of calcium on urease activity of S. pasteurii DSM 33. No significant inhibition was observed in the presence of calcium at concentrations below 10 mM, while the urease activity decreased rapidly at higher concentrations. At a concentration higher than 200 mM, calcium completely inhibited urease activity under the tested conditions. We further applied this assay to screen for highly active UPB from a wastewater enrichment and identified a strain of S. pasteurii exhibiting a substantially higher urease activity than DSM 33. Taken together, we established a 96-well plate-based quantitative, high-throughput urease activity assay that can be used for comparison and rapid screening of UPB. As UPB and urease activity are of interest to environmental, civil, and medical researchers and practitioners, we envisage wide applications of the assay reported in this study.
Collapse
Affiliation(s)
- Ming-Juan Cui
- College of Civil Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Aloysius Teng
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Jian Chu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore.
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore.
| |
Collapse
|
28
|
Xue ZF, Cheng WC, Wang L, Hu W. Effects of bacterial inoculation and calcium source on microbial-induced carbonate precipitation for lead remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128090. [PMID: 34952498 DOI: 10.1016/j.jhazmat.2021.128090] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal contamination has caused serious threats to surrounding fragile environments and human health. While the novel microbial-induced carbonate precipitation (MICP) technology in the recent years has been proven effective in improving material mechanical and durability properties, the mechanisms remedying heavy metal contamination still remain unclear. In this study, the potential of applying the MICP technology to the lead remediation under the effects of urease activity and calcium source was explored. The values of OD600 corresponding to the ureolytic bacterial activity, electrical conductivity (EC), urease activity (UA) and pH were applied to monitor the degree of urea hydrolysis. Further, the carbonate precipitations that possess different speciations and cannot be distinguished through test tube experiments were reproduced using the Visual MINTEQ software package towards verifying the validity of the proposed simulations, and revealing the mechanisms affecting the lead remediation efficiency. The findings summarised in this work give deep insights into lead-contaminated site remediation engineering.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| |
Collapse
|