1
|
Chang Y, Lin L, Shen J, Lin Z, Deng X, Sun W, Wu X, Wang Y, Li Y, Xu Z. Enhanced nitrogen fixation and Cd passivation in rhizosphere soil by biochar-loaded nitrogen-fixing bacteria: Chemisorption and microbial mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136588. [PMID: 39571359 DOI: 10.1016/j.jhazmat.2024.136588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
This study developed a biochar-loaded Ac material and clarified its chemical and microbial mechanisms for cadmium (Cd) immobilization and plant growth promotion. Results showed that biochar-loaded nitrogen-fixing bacteria (Azotobacter chroococcum; BAc) enhanced Cd adsorption by forming stable complexes with bacterial secretions and activating biochar functional groups. Compared with BC and Ac, after BAc application, Ac successfully colonized the lettuce rhizosphere, tagged with green fluorescent protein. It improved plant nitrogen by 47.39-72.47 % and increased root and shoot biomass by 50.35-107.32 % through nitrogen fixation and amino acid release. BAc reduced soil Cd bioavailability by 16.67-46.42 % and Cd accumulation in root and shoot by 14.28-69.74 %. This occurred through increasing soil pH and converting exchangeable Cd to carbonate-bound and Fe/Mn oxide-bound fractions. Importantly, BAc improved the rhizosphere nutrient environment and promoted the deterministic assembly of the rhizosphere microbial community. It also increased microbial diversity and attracted taxa like Actinomycetales (7.59 %), Solirubrobacteriales (5.17 %), Rhizobiales (5.17 %), and Sphingomonadales (5.17 %), all associated with nitrogen fixation, plant growth promotion, and Cd immobilization. Structural equation modeling (SEM) confirmed that BAc increased nitrogen utilization efficiency in lettuce and facilitated biotic immobilization of soil Cd by optimizing the microbial structure. This study provides insights into how biochar-loaded Ac improve plant growth and control soil Cd pollution.
Collapse
Affiliation(s)
- Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianlin Shen
- Key laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Zheng Lin
- Key laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Zhimin Xu
- Key laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.
| |
Collapse
|
2
|
Peng M, Deng G, Hu C, Hou X, Wang Z. Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly. Microorganisms 2024; 12:2458. [PMID: 39770660 PMCID: PMC11677749 DOI: 10.3390/microorganisms12122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, Rhodococcus qingshengii PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils. Exposure to sodium selenite initially led to reductions in microbial diversity and a shift in dominant bacterial groups, particularly an increase in Actinobacteria and a decrease in Acidobacteria. Sodium selenite significantly reduced microbial diversity and simplified co-occurrence networks, whereas inoculation with strain PM1 partially reversed these effects by enhancing community complexity. Ecological modeling, including the normalized stochasticity ratio (NST) and Sloan's neutral community model (NCM), suggested that stochastic processes predominated in the assembly of bacterial communities under selenium stress. Null model analysis further revealed that heterogeneous selection and drift were primary drivers of community turnover, with PM1 inoculation promoting species dispersal and buffering against the negative impacts of selenium. These findings shed light on microbial community assembly mechanisms under selenium contamination and highlight the potential of strain PM1 for the bioremediation of selenium-affected soils.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Guangai Deng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chongyang Hu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| | - Xue Hou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| |
Collapse
|
3
|
Han H, Song P, Jiang Y, Fan J, Khan A, Liu P, Mašek O, Li X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134838. [PMID: 38850944 DOI: 10.1016/j.jhazmat.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
Collapse
Affiliation(s)
- Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom.
| | - Xiangkai Li
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
4
|
Jiang W, Liu Y, Wang S, Yang H, Fan X. Combination of co-pyrolyzed biomass-sludge biochar and ultrasound for persulfate activation in antibiotic degradation: efficiency, synergistic effect, and reaction mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3208-3225. [PMID: 39150421 DOI: 10.2166/wst.2024.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 08/17/2024]
Abstract
A carbon material Cu-corn straw-sludge biochar (Cu-CSBC) was prepared by hydrothermally modifying sewage sludge and corn stover. The composite coupled to ultrasound can effectively catalyze the activation of PS for organic pollutants degradation, and the removal rate of 20 mg/L TC reached 89.15% in 5 min in the presence of 0.5 g/L Cu-CSBC and 3 mM PS. The synergistic effect between the factors in the system, the reaction mechanism, and the efficient removal of TC in the aqueous environment were explored in a Cu-CSBC/US/PS system established for that purpose. Quenching experiments and electron paramagnetic resonance analysis both demonstrated the Cu-CSBC/US/PS system generated •OH, SO4-•, 1O2, and O2- •, which involved in the reaction. The Cu, carboxyl, and hydroxyl groups on the Cu-CSBC surface promoted the generation of radicals and non-radicals for the degradation process, which was dominated by both radical and non-radical pathways. The degradation pathway is proposed by measuring the intermediate products with LC-MS. Finally, the stability of the Cu-CSBC/US/PS system was tested under various reaction conditions. This study not only prepared a novel biochar composite material for the active degradation of organic pollutants by PS but also provided an effective method for the resource utilization of solid waste and sludge treatment.
Collapse
Affiliation(s)
- Wan Jiang
- Jiangsu Fangyang Construction Engineerineg Management Co., LTD, Lianyungang 222065, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shenpeng Wang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Haifeng Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| |
Collapse
|
5
|
Liu X, Liu W, Su Z, Lu J, Zhang P, Cai M, Li W, Liu F, Andersen MN, Manevski K. Biochar addition and reduced irrigation modulates leaf morpho-physiology and biological nitrogen fixation in faba bean-ryegrass intercropping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171731. [PMID: 38492602 DOI: 10.1016/j.scitotenv.2024.171731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Intercropping legume with grass has potential to increase biomass and protein yield via biological N2-fixation (BNF) benefits, whereas the joint effects of biochar (BC) coupled with deficit irrigation on intercropping systems remain elusive. A 15N isotope-labelled experiment was implemented to investigate morpho-physiological responses of faba bean-ryegrass intercrops on low- (550 °C, LTBC) or high-temperature BC (800 °C, HTBC) amended sandy-loam soil under full (FI), deficit (DI) and partial root-zone drying irrigation (PRD). LTBC and HTBC significantly reduced intrinsic water-use efficiency (WUE) by 12 and 14 %, and instantaneous WUE by 8 and 16 %, respectively, in faba bean leaves, despite improved photosynthetic (An) and transpiration rate (Tr), and stomatal conductance (gs). Compared to FI, DI and PRD lowered faba bean An, gs and Tr, but enhanced leaf-scale and time-integrated WUE as proxied by the diminished shoots Δ13C. PRD enhanced WUE as lower gs, Tr and guard cell length than DI-plants. Despite higher carbon ([C]) and N concentration ([N]) in faba bean shoots amended by BC, the aboveground C- and N-pool of faba bean were reduced, while these pools increased for ryegrass. The N-use efficiency (NUE) in faba bean shoots was reduced by 9 and 14 % for LTBC and HTBC, respectively, but not for ryegrass. Interestingly, ryegrass shoots had 52 % higher NUE than faba bean shoots. The N derived from atmosphere (% Ndfa) was increased by 2 and 9 % under LTBC and HTBC, respectively, while it decreased slightly by reduced irrigation. Quantity of BNF in faba bean aboveground biomass decreased with HTBC coupled with reduced irrigation, mainly towards decreased biomass and soil N uptake by faba bean. Therefore, HTBC might not be a feasible option to improve WUE and BNF in faba bean-ryegrass intercropping, but PRD is permissible as the clear trade-off between BC and PRD.
Collapse
Affiliation(s)
- Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan 750021, China; Ningxia Waler-saving Irrigation and Water Resource Control Engineering Technology Research Center, Yinchuan, Ningxia 750021, China.
| | - Weilun Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhenjuan Su
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| | - Junsheng Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng Zhang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Mengting Cai
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Wangcheng Li
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan 750021, China; Ningxia Waler-saving Irrigation and Water Resource Control Engineering Technology Research Center, Yinchuan, Ningxia 750021, China
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; Sino-Danish Center for Education and Research, Eastern Yanqihu campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, 101400 Beijing, China
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; Sino-Danish Center for Education and Research, Eastern Yanqihu campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, 101400 Beijing, China
| | - Kiril Manevski
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; Sino-Danish Center for Education and Research, Eastern Yanqihu campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, 101400 Beijing, China.
| |
Collapse
|
6
|
Jiang Y, Liu J, Wei X, Wang R, Li Y, Liu Y, Xiao P, Cai Y, Shao J, Zhang Z. Biochar leachate reduces primary nitrogen assimilation by inhibiting nitrogen fixation and microbial nitrate assimilation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170608. [PMID: 38307291 DOI: 10.1016/j.scitotenv.2024.170608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Biochar contains biotoxic aromatic compounds, and their influence on nitrogen-fixing cyanobacteria, the critical nitrogen fixer in paddy soil, has never been tested. Here, the physiological, metabolomic, and transcriptomic analyses of Nostoc sp. PCC7120 in response to biochar leachate were performed. The results suggested that biochar leachate inhibited the efficiency of photosynthesis, nitrogen fixation, and nitrate assimilation activities of nitrogen-fixing cyanobacteria. Biochar leachate containing aromatic compounds and odd- and long-chain saturated fatty acids impaired the membrane structure and antenna pigments, damaged the D1 protein of the oxygen evolution complex, and eventually decreased the electron transfer chain activity of photosystem II. Moreover, the nitrogen fixation and nitrate assimilation abilities of nitrogen-fixing cyanobacteria were inhibited by a decrease in photosynthetic productivity. A decrease in iron absorption was another factor limiting nitrogen fixation efficiency. Our study highlights that biochar with relatively high contents of dissolved organic matter poses a risk to primary nitrogen assimilation reduction and ecosystem nitrogen loss. Further evidence of the potential negative effects of biochar leachates on the fixation and assimilation capacity of nitrogen by soil microbes is needed to evaluate the impact of biochar on soil multifunctionality prior to large-scale application.
Collapse
Affiliation(s)
- Yuexi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| | - Ji Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an, Shanxi, 710061, PR China; College of Urban and Environmental Sciences, Central China Normal University, Wuhan, Hubei, 430079, PR China; Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, 12587, Germany
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, PR China
| | - Rumeng Wang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| | - Yanyan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and the Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yixiang Cai
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and the Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China
| | - Jihai Shao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China.
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| |
Collapse
|