1
|
Luo J, Li C, Zhu Y, Guo R, Huang J, Yu H, Sun M, Zhu Q, Guo Q, Li Y, Guo P, Su L, Hu L. Deficiency of inducible nitric oxide synthase (iNOS) enhances MC903-induced atopic dermatitis-like inflammation in mice. Biochem Biophys Res Commun 2025; 771:152028. [PMID: 40398095 DOI: 10.1016/j.bbrc.2025.152028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The production and secretion of inflammatory mediators contribute to the development of atopic dermatitis (AD). The production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) is essential for inflammation. Because of the association of iNOS with type 2 inflammation, upregulated iNOS expression in patients with AD suggests a potential pathogenic role of iNOS in AD. In addition, NO regulates keratinocyte and immune cell functions in various inflammatory dermatoses, contributing to the triggering and amplification of inflammation. To ascertain the role of iNOS in inflammation, we utilized a calcipotriol (CPT, MC903)-induced AD-like inflammation in C57BL/6J wildtype mice and iNOS knockout (iNOS KO) mice to investigate the role of iNOS in inflammation. The results showed that iNOS deficiency aggravated dermatitis in MC903-induced inflammation. The expression levels of pro-inflammatory cytokines and chemokines were dramatically elevated, accompanied by the activation of several pro-inflammatory signaling pathways. Moreover, immunofluorescence staining showed that iNOS was mainly expressed in the epidermis and iNOS deficiency significantly promoted the expression of inflammatory factors in keratinocytes. Additionally, topical application of NO donors ameliorated dermatitis symptoms in the iNOS KO mice. These results indicated that epidermal iNOS is important for the occurrence and development of AD. Our results also underscore the therapeutic potential of NO donors in the treatment of AD.
Collapse
Affiliation(s)
- Jing Luo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Chenxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Yufei Zhu
- Natural Sciences, Mathematical and Physical Sciences Department, University College London (UCL), London, WC1E 6BT, UK.
| | - Ruitan Guo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Mengke Sun
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Qi Guo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Pan Guo
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Long Su
- Department of Ophthalmology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China; Department of Ophthalmology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
2
|
Wang Y, Ye Y, Ji J, Wang JS, Tang L, Zhang L, Li Y, Sun J, Sheng L, Sun X. Effect of cadmium and fumonisin B 1 co-exposure on mitochondrial dysfunction and ferroptosis pathway in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136504. [PMID: 39612872 DOI: 10.1016/j.jhazmat.2024.136504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Fumonisin B1 (FB1) is a typical mycotoxin that widely contaminates food crops and their products and is known to be neurotoxic. In diverse dietary patterns, organisms are at risk of co-exposure to FB1 and the heavy metal cadmium (Cd), but how Cd affects the toxic damaging effects of FB1 is unknown. Therefore, this study explored the potential mechanism of co-exposure of Cd and FB1 using a Caenorhabditis elegans (C. elegans) model. Our findings indicate that co-exposure with FB1 (200 μg/mL) and Cd (25, 100, and 200 μg/mL) for 24 h significantly aggravated oxidative stress damage and mitochondrial dysfunction in dose-dependent. This included abnormal expression of mitochondrial membrane proteins and disruptions in the division and fusion processes of mitochondria. Moreover, the co-exposure to Cd and FB1 induced ferroptosis, characterized by abnormally high levels of unstable ferrous iron and alterations in the expression levels of ferroptosis-related genes such as aat-9, acs-17, gpx-1, ftn-1, and frh-1. Collectively, these results underscore the aggravating effect of combined exposure to FB1 and Cd on mitochondrial dysfunction and ferroptosis pathways in C. elegans. This study offers a novel perspective for exploring the mixture toxicity between FB1 and Cd.
Collapse
Affiliation(s)
- Yating Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lanlan Zhang
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 100070, PR China
| | - Yufeng Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Nanjing Institute of Product Quality Inspection, Nanjing 210019, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China.
| |
Collapse
|
3
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
4
|
He J, Xu P, Xu T, Yu H, Wang L, Chen R, Zhang K, Yao Y, Xie Y, Yang Q, Wu W, Sun D, Wu D. Therapeutic potential of hydrogen-rich water in zebrafish model of Alzheimer's disease: targeting oxidative stress, inflammation, and the gut-brain axis. Front Aging Neurosci 2025; 16:1515092. [PMID: 39839307 PMCID: PMC11746902 DOI: 10.3389/fnagi.2024.1515092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, with amyloid-beta (Aβ) aggregation playing a key role in its pathogenesis. Aβ-induced oxidative stress leads to neuronal damage, mitochondrial dysfunction, and apoptosis, making antioxidative strategies promising for AD treatment. This study investigates the effects of hydrogen-rich water (HRW) in a zebrafish AD model. Zebrafish were exposed to aluminum chloride to induce AD-like pathology and then treated with HRW using a nanobubble device. Behavioral assays, ELISA, Hematoxylin-eosin (H&E) staining, and reactive oxygen species (ROS) and neutrophil fluorescence labeling were employed to assess HRW's impact. Additionally, 16S rRNA sequencing analyzed HRW's effect on gut microbiota. HRW can significantly improve cognitive impairment and depression-like behavior in zebrafish AD model, reduce Aβ deposition (p < 0.0001), regulate liver Soluble epoxide hydrolase (sEH) levels (p < 0.05), reduce neuroinflammation, and reduce oxidative stress. Furthermore, HRW reduced the number of harmful bacteria linked to AD pathology by restoring the balance of microbiota in the gut. These findings suggest that HRW has potential as a therapeutic strategy for AD by targeting oxidative stress, inflammation, and gut-brain axis modulation.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Peiye Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Ting Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haiyang Yu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yueliang Yao
- Fuzhou Innovation Center for AI Drug, Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Yanyan Xie
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Dejun Wu
- Department of Geriatric Medicine, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
5
|
Zhang J, Hu G, Guo H, Yang W, Li X, Ni Y, He M, Ding P, Yu Y. Amino modifications exacerbate the developmental abnormalities of polystyrene microplastics via mitochondria-mediated apoptosis pathway in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178031. [PMID: 39689476 DOI: 10.1016/j.scitotenv.2024.178031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been identified as a potential threat to ecosystems. However, the mechanisms of toxicity of modified MPs remain unknown. This study investigated the developmental toxicity of amino-modified polystyrene microplastics (PS-NH2) with environmentally relevant concentrations ranging from 0.1 to 100 μg/L in the early developmental stages of zebrafish. Adding amino functional groups resulted in significant alterations in the surface morphology and zeta potential of traditional polystyrene microplastics (PS-MPs). Zebrafish larvae exposed to PS-NH2 exhibited increased developmental toxicity compared to PS-MPs, as indicated by reduced body length, heart rate, and spontaneous movement. The expression of cat1, sod1, gstr1, nrf2a, nrf2b, and HO-1, as well as alterations in ROS, SOD, CAT, and MDA levels, all demonstrated oxidative damage caused by PS-NH2 exposure. Mitochondrial dysfunction was also induced, as evidenced by changes in the expression of cox4i1, ndufs1, and uqcrc1, as well as changes in the levels of ATP, cytochrome c, NAD, and NADH. Furthermore, PS-NH2 exposure disrupted apoptosis regulation, increasing apoptotic cells and caspase activity, along with changes in caspase-3 and bcl-2 expression. Molecular docking showed that PS-NH2 interacts with bcl-2 with high binding energy. This study contributes to understanding the toxic effects and mechanisms of charge-modified MPs in zebrafish.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenhui Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yuyang Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Miao He
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
6
|
Liu H, Li H, Liu Y, Zhao H, Peng R. Toxic effects of microplastic and nanoplastic on the reproduction of teleost fish in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62530-62548. [PMID: 39467868 DOI: 10.1007/s11356-024-35434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Microplastics and nanoplastics are widely present in aquatic environments and attract significant scholarly attention due to their toxicity, persistence, and ability to cross biological barriers, which pose substantial risks to various fish species. Microplastics and nanoplastics can enter fish through their digestive tract, gills and skin, causing oxidative damage to the body and adversely affecting their reproductive system. Given that fish constitute a crucial source of high-quality protein for humans, it is necessary to study the impact of microplastics on fish reproduction in order to assess the impact of pollutants on ecology, biodiversity conservation, environmental sustainability, and endocrine disruption. This review explores the reproductive consequences of microplastics and nanoplastics in fish, examining aspects such as fecundity, abnormal offspring, circadian rhythm, gonad index, spermatocyte development, oocyte development, sperm quality, ovarian development, and changes at the molecular and cellular level. These investigations hold significant importance in environmental toxicology.
Collapse
Affiliation(s)
- Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Chen J, Yan L, Zhang Y, Liu X, Wei Y, Zhao Y, Li K, Shi Y, Liu H, Lai W, Tian L, Lin B. Maternal exposure to nanopolystyrene induces neurotoxicity in offspring through P53-mediated ferritinophagy and ferroptosis in the rat hippocampus. J Nanobiotechnology 2024; 22:651. [PMID: 39438901 PMCID: PMC11520165 DOI: 10.1186/s12951-024-02911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
There are increasing concerns regarding the rapid expansion of polystyrene nanoplastics (PS-NPs), which could impact human health. Previous studies have shown that nanoplastics can be transferred from mothers to offspring through the placenta and breast milk, resulting in cognitive deficits in offspring. However, the neurotoxic effects of maternal exposure on offspring and its mechanisms remain unclear. In this study, PS-NPs (50 nm) were gavaged to female rats throughout gestation and lactation to establish an offspring exposure model to study the neurotoxicity and behavioral changes caused by PS-NPs on offspring. Neonatal rat hippocampal neuronal cells were used to investigate the pathways through which NPs induce neurodevelopmental toxicity in offspring rats, using iron inhibitors, autophagy inhibitors, reactive oxygen species (ROS) scroungers, P53 inhibitors, and NCOA4 inhibitors. We found that low PS-NPs dosages can cause ferroptosis in the hippocampus of the offspring, resulting in a decline in the cognitive, learning, and memory abilities of the offspring. PS-NPs induced NOCA4-mediated ferritinophagy and promoted ferroptosis by inciting ROS production to activate P53-mediated ferritinophagy. Furthermore, the levels of the antioxidant factors glutathione peroxidase 4 (GPX4) and glutathione (GSH), responsible for ferroptosis, were reduced. In summary, this study revealed that consumption of PS-NPs during gestation and lactation can cause ferroptosis and damage the hippocampus of offspring. Our results can serve as a basis for further research into the neurodevelopmental effects of nanoplastics in offspring.
Collapse
Affiliation(s)
- Jiang Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Licheng Yan
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Yaping Zhang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yizhe Wei
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yiming Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| |
Collapse
|
8
|
Zheng Y, Tang H, Hu J, Sun Y, Zhu H, Xu G. Integrated transcriptomics and proteomics analyses reveal the ameliorative effect of hepatic damage in tilapia caused by polystyrene microplastics with chlorella addition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117076. [PMID: 39303634 DOI: 10.1016/j.ecoenv.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Fish exhibit varying responses to polystyrene microplastics (MPs) depending on particle size. Previous studies suggested that microorganisms adhering to the surface of MPs can induce toxic effects. In this study, Tilapia were exposed to MPs of control (group A), 75 nm (B), 7.5 μm (C), 750 μm (D), as well as combinations of all sizes (E) and 75 nm MPs with Chlorella vulgaris addition (F) for 7, 10 and 14 days. Histopathological changes in liver of tilapia were assessed using enzyme activities, transcriptomics and proteomics. The results showed that in groups combined MPs of different particle sizes and those supplemented with chlorella, MPs were localized on the surface of goblet cells, leading to vacuoles, constricted hepatic sinuses and nuclei displacement. Exposure to 7.5 and 750 μm MPs significantly increased the contents of fatty acid synthase (FAS), adenosine triphosphate (ATP), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), total cholesterol (TC), total triglyceride (TG) contents at 7 and 10 days. In particular, cytochrome p450 1a1 (EROD), reactive oxygen species (ROS) and superoxide dismutase (SOD) were markedly elevated following exposure to MPs. Apoptotic markers caspase-3, and inflammatory markers, including tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β), had a similar upward trend in comparisons of group C vs A at 7 d, group D vs A at 14 d. The peroxisome proliferator activated receptor (PPAR) signaling pathway, spliceosome, was highly enriched during the 7-day exposure of medium sized MPs, while largest MPs in the comparison of group D vs A at 14 d activated pathways such as phagosome, apoptosis, salmonella infection. Transcriptomic analysis revealed that after 14 days, the kyoto encyclopedia of genes and genomes (KEGG) pathways associated with protein processing in endoplasmic reticulum and the PPAR signaling has been significantly enriched in the Chlorella-supplemented group, which was further confirmed via the proteomic analysis. Overall, the findings highlight the size-dependent effects of MPs on histopathological changes, gene and protein expression in the liver of tilapia, and C. vulgaris effectively attenuated liver damages, likely through modulation of endoplasmic reticulum protein processing and PPAR signaling pathways.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China.
| | - Haijun Tang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
9
|
Xiang Y, Wang Q, Li M, Li Y, Yan W, Li Y, Dong J, Liu Y. Protective effects of dietary additive quercetin: Nephrotoxicity and ferroptosis induced by avermectin pesticide. Toxicon 2024; 246:107789. [PMID: 38843999 DOI: 10.1016/j.toxicon.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
In recent years, contamination of aquatic systems with Avermectin (AVM) has emerged as a significant concern. This contamination poses substantial challenges to freshwater aquaculture. Plant-derived Quercetin (QUE), known for its anti-inflammatory, antioxidant, and ferroptosis-inhibiting properties, is commonly employed as a supplement in animal feed. However, its protective role against chronic renal injury in freshwater carp induced by AVM remains unclear. This study assesses the influence of dietary supplementation with QUE on the consequences of chronic AVM exposure on carp renal function. The carp were subjected to a 30-day exposure to AVM and were provided with a diet containing 400 mg/kg of QUE. Pathological observations indicated that QUE alleviated renal tissue structural damage caused by AVM. RT-QPCR study revealed that QUE effectively reduced the increased expression levels of pro-inflammatory factors mRNA produced by AVM exposure, by concurrently raising the mRNA expression level of the anti-inflammatory factor. Quantitative analysis using DHE tests and biochemical analysis demonstrated that QUE effectively reduced the buildup of ROS in the renal tissues of carp, activity of antioxidant enzymes CAT, SOD, and GSH-px, which were inhibited by AVM, and increased the content of GSH, which was induced by prolonged exposure to AVM. QUE also reduced the levels of MDA, a marker of oxidative damage. Furthermore, assays for ferroptosis markers indicated that QUE increased the mRNA expression levels of gpx4 and slc7a11, which were reduced due to AVM induction, and it caused a reduction in the mRNA expression levels of ftl, ncoa4, and cox2, along with a drop in the Fe2+ concentration. In summary, QUE mitigates chronic AVM exposure-induced renal inflammation in carp by inhibiting the transcription of pro-inflammatory cytokines. By blocking ROS accumulation, renal redox homeostasis is restored, thereby inhibiting renal inflammation and ferroptosis. This provides a theoretical basis for the development of freshwater carp feed formula.
Collapse
Affiliation(s)
- Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qiao Wang
- Department of Pathology, The First People's Hospital of Lianyungang, Lianyungang, 222005, Jiangsu, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Weiping Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yi Liu
- Department of Pathology, The First People's Hospital of Lianyungang, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
10
|
Jiang Y, Cao Y, Li Y, Bi L, Wang L, Chen Q, Lin Y, Jin H, Xu X, Peng R, Chen Z. SNP alleviates mitochondrial homeostasis dysregulation-mediated developmental toxicity in diabetic zebrafish larvae. Biomed Pharmacother 2024; 177:117117. [PMID: 38996709 DOI: 10.1016/j.biopha.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The incidence of diabetes is increasing annually, and the disease is uncurable due to its complex pathogenesis. Therefore, understanding diabetes pathogenesis and developing new treatments are crucial. This study showed that the NO donor SNP (8 µM) significantly alleviated high glucose-induced developmental toxicity in zebrafish larvae. High glucose levels caused hyperglycemia, leading to oxidative stress and mitochondrial damage from excessive ROS accumulation. This promoted mitochondrial-dependent apoptosis and lipid peroxidation (LPO)-induced ferroptosis, along with immune inflammatory reactions that decreased mitochondrial function and altered intracellular grid morphology, causing imbalanced kinetics and autophagy. After SNP treatment, zebrafish larvae showed improved developmental toxicity and glucose utilization, reduced ROS accumulation, and increased antioxidant activity. The NO-sGC-cGMP signaling pathway, inhibited by high glucose, was significantly activated by SNP, improving mitochondrial homeostasis, increasing mitochondrial count, and enhancing mitochondrial function. It's worth noting that apoptosis, ferroptosis and immune inflammation were effectively alleviated. In summary, SNP improved high glucose-induced developmental toxicity by activating the NO-sGC-cGMP signaling pathway to reduce toxic effects such as apoptosis, ferroptosis and inflammation resulting from mitochondrial homeostasis imbalance.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lv Wang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Xiaoming Xu
- Scientific Research Center, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China.
| |
Collapse
|
11
|
Liu H, Li H, Chen T, Yu F, Lin Q, Zhao H, Jin L, Peng R. Research Progress on Micro(nano)plastic-Induced Programmed Cell Death Associated with Disease Risks. TOXICS 2024; 12:493. [PMID: 39058145 PMCID: PMC11281249 DOI: 10.3390/toxics12070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Due to their robust migration capabilities, slow degradation, and propensity for adsorbing environmental pollutants, micro(nano)plastics (MNPs) are pervasive across diverse ecosystems. They infiltrate various organisms within different food chains through multiple pathways including inhalation and dermal contact, and pose a significant environmental challenge in the 21st century. Research indicates that MNPs pose health threats to a broad range of organisms, including humans. Currently, extensive detection data and studies using experimental animals and in vitro cell culture indicate that MNPs can trigger various forms of programmed cell death (PCD) and can induce various diseases. This review provides a comprehensive and systematic analysis of different MNP-induced PCD processes, including pyroptosis, ferroptosis, autophagy, necroptosis, and apoptosis, based on recent research findings and focuses on elucidating the links between PCD and diseases. Additionally, targeted therapeutic interventions for these diseases are described. This review provides original insights into the opportunities and challenges posed by current research findings. This review evaluates ways to mitigate various diseases resulting from cell death patterns. Moreover, this paper enhances the understanding of the biohazards associated with MNPs by providing a systematic reference for subsequent toxicological research and health risk mitigation efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.L.); (H.L.); (T.C.); (F.Y.); (Q.L.); (H.Z.); (L.J.)
| |
Collapse
|
12
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Zhang F, Hao Y, Yang N, Liu M, Luo Y, Zhang Y, Zhou J, Liu H, Li J. Oridonin-induced ferroptosis and apoptosis: a dual approach to suppress the growth of osteosarcoma cells. BMC Cancer 2024; 24:198. [PMID: 38347435 PMCID: PMC10863210 DOI: 10.1186/s12885-024-11951-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the most common aggressive bone malignancy tumors in adolescents. With the application of new chemotherapy regimens, finding new and effective anti-OS drugs to coordinate program implementation is urgent for the patients of OS. Oridonin had been proved to mediate anti-tumor effect on OS cells, but its mechanism has not been fully elucidated. METHODS The effects of oridonin on the viability, clonal formation and migration of 143B and U2OS cells were detected by CCK-8, colony formation assays and wound-healing test. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore the mechanism of oridonin on OS. Western blot (WB), real-time quantitative PCR (qRT-PCR) were used to detect the expression levels of apoptosis and ferroptosis-relative proteins and genes. Annexin V-FITC apoptosis detection kit and flow cytometry examination were used to detect the level of apoptosis. Iron assay kit was used to evaluate the relative Fe2+ content. The levels of mitochondrial membrane potential and lipid peroxidation production was determined by mitochondrial membrane potential detection kit and ROS assay kit. RESULTS Oridonin could effectively inhibit the survival, clonal formation and metastasis of OS cells. The KEGG results indicated that oridonin is associated with the malignant phenotypic signaling pathways of proliferation, migration, and drug resistance in OS. Oridonin was capable of inhibiting expressions of BAX, cl-caspase3, SLC7A11, GPX4 and FTH1 proteins and mRNA, while promoting the expressions of Bcl-2 and ACSL4 in 143B and U2OS cells. Additionally, we found that oridonin could promote the accumulation of reactive oxygen species (ROS) and Fe2+ in OS cells, as well as reduce mitochondrial membrane potential, and these effects could be significantly reversed by the ferroptosis inhibitor ferrostatin-1 (Fer-1). CONCLUSION Oridonin can trigger apoptosis and ferroptosis collaboratively in OS cells, making it a promising and effective agent for OS therapy.
Collapse
Affiliation(s)
- Feifan Zhang
- Hunan University of Chinese Medicine, Changsha, China
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yang Hao
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Yang
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Man Liu
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yage Luo
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Ying Zhang
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Jian Zhou
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao Municipal Hospital, Qingdao, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jitian Li
- Hunan University of Chinese Medicine, Changsha, China.
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China.
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
14
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|