1
|
Rajbongshi BL, Mukherjee AK. Drugs from poisonous plants: Ethnopharmacological relevance to modern perspectives. Toxicon X 2025; 25:100215. [PMID: 39990776 PMCID: PMC11847069 DOI: 10.1016/j.toxcx.2025.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The world of plant diversity is endlessly fascinating and essential for life on Earth. Since the inception of early civilization, humans have utilized plants for several purposes, particularly for their medicinal value. While some plants are known for their toxicity, they also contain beneficial phytochemicals that are important for both plants and humans, indicating their dual nature. This study aims to explore and synthesize the existing knowledge on various poisonous plant species found worldwide. It primarily focuses on the therapeutic potential of specific types of phytochemicals responsible for treating multiple diseases. This review includes a list of 70 poisonous plants with medicinal properties for treating various ailments, as well as some of their traditional uses. A few of these plants are emphasized, which have been tremendously explored and studied, hold significant potential to contribute to modern drug discovery. Furthermore, it addresses the possible prospects and challenges of using poisonous plants and their phytochemicals as therapeutic agents. Although the therapeutic potential of poisonous plants is substantial, many toxins remain unexplored. This review accentuates the need for rigorous scientific investigations, prior to clinical trials to validate their traditional uses, which would reveal the pharmacological interventions that will eventually advance human health and well-being.
Collapse
Affiliation(s)
- Bhagya Lakhmi Rajbongshi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashis K. Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
2
|
Ogbole OO, Akin-Ajani OD, Ajala TO, Ogunniyi QA, Fettke J, Odeku OA. Nutritional and pharmacological potentials of orphan legumes: Subfamily faboideae. Heliyon 2023; 9:e15493. [PMID: 37151618 PMCID: PMC10161725 DOI: 10.1016/j.heliyon.2023.e15493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Legumes are a major food crop in many developing nations. However, orphan or underutilized legumes are domesticated legumes that have valuable properties but are less significant than main legumes due to use and supply restrictions. Compared to other major legumes, they are better suited to harsh soil and climate conditions, and their great tolerance to abiotic environmental circumstances like drought can help to lessen the strains brought on by climate change. Despite this, their economic significance in international markets is relatively minimal. This article is aimed at carrying out a comprehensive review of the nutritional and pharmacological benefits of orphan legumes from eight genera in the sub-family Faboidea, namely Psophocarpus Neck. ex DC., Tylosema (Schweinf.) Torre Hillc., Vigna Savi., Vicia L., Baphia Afzel. ex G. Lodd., Mucuna Adans, Indigofera L. and Macrotyloma (Wight & Arn.) Verdc, and the phytoconstituents that have been isolated and characterized from these plants. A literature search was conducted using PubMed, Google Scholar, and Science Direct for articles that have previously reported the relevance of underutilized legumes. The International Union for Conservation of Nature (IUCN) red list of threatened species was also conducted for the status of the species. References were scrutinized and citation searches were performed on the study. The review showed that many underutilized legumes have a lot of untapped potential in terms of their nutritional and pharmacological activities. The phytoconstituents from plants in the subfamily Faboideae could serve as lead compounds for drug discovery for the treatment of a variety of disorders, indicating the need to explore these plant species.
Collapse
Affiliation(s)
| | - Olufunke D. Akin-Ajani
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Tolulope O. Ajala
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Joerg Fettke
- Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Oluwatoyin A. Odeku
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
- Corresponding author.
| |
Collapse
|
3
|
Bala AA, Mohammed M, Umar S, Ungogo MA, Al-Kassim Hassan M, Abdussalam US, Ahmad MH, Ishaq DU, Mana D, Sha'aban A, Jatau AI, Jibril M, Kurfi B, Raji I, Ringim AS, Gulma K, Malami S, Michael GC, Chedi BAZ. Pre-clinical efficacy of African medicinal plants used in the treatment of snakebite envenoming: A systematic review. Toxicon 2023; 224:107035. [PMID: 36706926 DOI: 10.1016/j.toxicon.2023.107035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The World Health Organization has listed Snakebite Envenoming (SBE) as a priority neglected tropical disease, with a worldwide annual snakebite affecting 5.4 million people and injuring 2.7 million lives. In many parts of rural areas of Africa and Asia, medicinal plants have been used as alternatives to conventional antisnake venom (ASV) due in part to inaccessibility to hospitals. Systemic reviews (SR) of laboratory-based preclinical studies play an essential role in drug discovery. We conducted an SR to evaluate the relationship between interventional medicinal plants and their observed effects on venom-induced experiments. This SR was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The Modified collaborative approach to meta-analysis and review of animal data from experimental studies (CAMARADES) and SYRCLE's risk of bias tools were used to appraise the included studies. Data were searched online in Medline via PubMed, Embase via OVID, and Scopus. Studies reporting in vivo and in vitro pharmacological activities of African medicinal plants/extracts/constituents against venom-induced pathologies were identified and included for screening. Data from the included studies were extracted and synthesized. Ten studies reported statistically significant percentage protection (40-100%) of animals against venom-induced lethality compared with control groups that received no medicinal plant intervention. Sixteen studies reported significant effects (p ≤ 0.05) against venom-induced pathologies compared with the control group; these include hemolytic, histopathologic, necrotic, and anti-enzymatic effects. The plant family Fabaceae has the highest number of studies reporting its efficacy, followed by Annonaceae, Malvaceae, Combretaceae, Sterculiaceae, and Olacaceae. Some African medicinal plants are preclinically effective against venom-induced lethality, hematotoxicity, and cytotoxicity. The evidence was extracted from three in vitro studies, nine in vivo studies, and five studies that combined both in vivo and in vitro models. The effective plants belong to the Fabaceae family, followed by Malvaceae, and Annonaceae.
Collapse
Affiliation(s)
- Auwal A Bala
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Nigeria; Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria.
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Pulau Pinang, Malaysia; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Saifullahi Umar
- Department of Pharmacognosy and Herbal Medicine, Faculty of Pharmaceutical Sciences, College of Natural and Pharmaceutical Sciences, Bayero University Kano, Nigeria
| | - Marzuq A Ungogo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, 810107, Kaduna State, Nigeria; Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | | | - Umar S Abdussalam
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Capital City University, Kano State, Nigeria
| | - Daha U Ishaq
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science,Bayero University, Kano, Nigeria; Center for Mitochondrial Biology & Medicine, Xi'an Jiaotong University (XJTU), Xi'an, China
| | - Dillos Mana
- Department of Community Medicine and Primary Healthcare, Bingham University, Abuja, Nigeria
| | - Abubakar Sha'aban
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4YS, UK
| | - Abubakar I Jatau
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Murtala Jibril
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Binta Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science,Bayero University, Kano, Nigeria
| | - Ismaila Raji
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Nigeria
| | - Abubakar S Ringim
- Morgan State University, Patuxent Environmental and Aquatic Research Laboratory, Maryland, USA; Department of Biological Sciences, Federal University Dutse, Jigawa State, Nigeria
| | - Kabiru Gulma
- School of Global Health and Bioethics, Euclid University, Gambia
| | - Sani Malami
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Godpower C Michael
- Department of Family Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Basheer A Z Chedi
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria; Venom-Antivenom Research Project (VASP) and Nigeria- Snakebite Research and Intervention Centre(NSRIC), Nigeria
| |
Collapse
|
4
|
Dagar P, Mishra A. Herbal Compounds as an Antidote against Snake Bite. Curr Pharm Des 2022; 28:1714-1719. [PMID: 35440297 DOI: 10.2174/1381612828666220417134118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Snakebites have been declared a neglected health problem that must be considered a national disease of the WHO[world health organisation]. Asian countries like India have high snakebite death rates due to short antidotes and poorly equipped doctors. In today's scenario, local resources like herbs need to be used to prepare cheap antidotes and often available to victims. Snake bites should be viewed as an emergency problem and require additional national guidelines, doctor training, expertise, and human concentration for effective and timely treatment-measures to be taken to ensure the availability and mass production of antidotes. Currently available, antidotes have problems with storage, manufacture, and aspects of the results. Attention should be paid to the natural compound Gedunin with antitoxic effects. To determine Gedunin's therapeutic efficacy well-designed clinical research is required. This article emphasizes and proves the therapeutic effectiveness of the herbal plant active ingredient Gedunin against snakebites.
Collapse
Affiliation(s)
- Priya Dagar
- School of Biochemical Engineering, IIT [BHU]-Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT [BHU]-Varanasi-221005
| |
Collapse
|
5
|
Lone JK, Lekha MA, Bharadwaj RP, Ali F, Pillai MA, Wani SH, Yasin JK, Chandrashekharaiah KS. Multimeric Association of Purified Novel Bowman-Birk Inhibitor From the Medicinal Forage Legume Mucuna pruriens (L.) DC. FRONTIERS IN PLANT SCIENCE 2021; 12:772046. [PMID: 34899797 PMCID: PMC8655843 DOI: 10.3389/fpls.2021.772046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
A Bowman-Birk protease, i.e., Mucuna pruriens trypsin inhibitor (MPTI), was purified from the seeds by 55.702-fold and revealed a single trypsin inhibitor on a zymogram with a specific activity of 202.31 TIU/mg of protein. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions, the protease trypsin inhibitor fraction [i.e., trypsin inhibitor non-reducing (TINR)] exhibited molecular weights of 74 and 37 kDa, and under reducing conditions [i.e., trypsin inhibitor reducing (TIR)], 37 and 18 kDa. TINR-37 revealed protease inhibitor activity on native PAGE and 37 and 18 kDa protein bands on SDS-PAGE. TINR-74 showed peaks corresponding to 18.695, 37.39, 56.085, and 74.78 kDa on ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization/quadrupole time-of-flight-mass spectrometry (ESI/QTOF-MS). Similarly, TINR-37 displayed 18.695 and 37.39 kDa peaks. Furthermore, TIR-37 and TIR-18 exhibited peaks corresponding to 37.39 and 18.695 kDa. Multiple peaks observed by the UPLC-ESI/QTOF analysis revealed the multimeric association, confirming the characteristic and functional features of Bowman-Birk inhibitors (BBIs). The multimeric association helps to achieve more stability, thus enhancing their functional efficiency. MPTI was found to be a competitive inhibitor which again suggested that it belongs to the BBI family of inhibitors, displayed an inhibitor constant of 1.3 × 10-6 M, and further demonstrates potent anti-inflammatory activity. The study provided a comprehensive basis for the identification of multimeric associates and their therapeutic potential, which could elaborate the stability and functional efficiency of the MPTI in the native state from M. pruriens.
Collapse
Affiliation(s)
- Jafar K. Lone
- Department of Studies and Research in Biochemistry, Mangalore University, Konaje, India
| | - Mandapanda A. Lekha
- Department of Studies and Research in Biochemistry, Mangalore University, Konaje, India
| | - Rajiv P. Bharadwaj
- Department of Studies and Research in Biochemistry, Mangalore University, Konaje, India
| | - Fasil Ali
- Department of Studies and Research in Biochemistry, Mangalore University, Konaje, India
| | - M. Arumugam Pillai
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Tuticorin, India
| | - Shabir H. Wani
- Mountain Research Centre For Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
6
|
Rao AS, K L S, Concessao PL, Rao S G, R Pai K S. In vitro Evaluation of the Antimicrobial activity of Methanolic and Aqueous extract of Mucuna pruriens seed. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2021:4212-4214. [DOI: 10.52711/0974-360x.2021.00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
The present investigation was to find out efficacy of Mucuna pruriens (M. pruriens) seeds. The antimicrobial activity of methanol and aqueous extract of M. pruriens seeds was determined by well diffusion method with ATCC strains of gram positive and gram negative bacteria clinical strains of multidrug resistant (MDR) Klebsiella pneumoniae, and clinical strains of Candida albicans. It was observed that both the aqueous and the methanol extract of M. pruriens seeds had antibacterial activity against all the ATCC bacterial strains. The MDR strain of Klebsiella pneumoniae was resistant to both aqueous and methanol extract of M. pruriens seed. Antifungal activity against Candida albicans was exhibited by both aqueous and methanol extracts of M. pruriens seed.
Collapse
Affiliation(s)
- Amita Shobha Rao
- Dept. of Microbiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shobha K L
- Dept. of Microbiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Preethi Lavina Concessao
- Dept. of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gowrish Rao S
- Dept. of Microbiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sreedhara R Pai K
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Adeyi AO, Ajisebiola SB, Adeyi EO, Alimba CG, Okorie UG. Antivenom activity of Moringa oleifera leave against pathophysiological alterations, somatic mutation and biological activities of Naja nigricollis venom. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
8
|
Pathania R, Chawla P, Khan H, Kaushik R, Khan MA. An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech 2020; 10:261. [PMID: 32477848 DOI: 10.1007/s13205-020-02253-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Mucuna pruriens belongs to the Fabaceae family and is ordinarily known as velvet bean, in English cowitch and Hindi Kawaanch. The restorative quality of this bean makes it an excellent component in pharmaceutical and therapeutic applications. Apart from high protein and starch content, these beans contain (l-Dopa) 3, 4-dihydroxy-l-phenylalanine, which exhibits several medicinal properties. However, it is poisonous when ingested by ruminants. The obstruction to the advancement of Mucuna as nutrition or food is the nearness of antinutrients, which are high as opposed to other uncommon vegetables. Also, this legume is considered as a future restorative herb because of its anticholesterolemic, anti-Parkinson, antioxidant, antidiabetic, sexual enhancing, anti-inflammatory, antimicrobial, and antivenom activities. It also exhibits anticancer activities, but very few studies have been done. The seeds of Mucuna pruriens also contain a vast range of phytochemical constituents such as alkaloids, glycosides, saponins, reducing sugars, and tannins, which provide an avenue to explore it for wider applications. This review sheds light on the possible mechanism of action of Mucuna pruriens on some diseases (hypoglycemia, Parkinson's disease, microbial diseases and tumor). and also fills the gap in the studies of Mucuna pruriens. and Further more in vitro and in vivo studies should be done to explore the potential of these seeds against many diseases, its application as a food source, its antinutrient, and harmful properties as well as its nutraceutical perspective.
Collapse
|
9
|
Jain A, Kumar A, Shikhi M, Kumar A, Nair DT, Salunke DM. The structure of MP-4 from Mucuna pruriens at 2.22 Å resolution. Acta Crystallogr F Struct Biol Commun 2020; 76:47-57. [PMID: 32039885 PMCID: PMC7010354 DOI: 10.1107/s2053230x20000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
The structure of the MP-4 protein was previously determined at a resolution of 2.8 Å. Owing to the unavailability of gene-sequence information at the time, the side-chain assignment was carried out on the basis of a partial sequence available through Edman degradation, sequence homology to orthologs and electron density. The structure of MP-4 has now been determined at a higher resolution (2.22 Å) in another space group and all of the structural inferences that were presented in the previous report of the structure were validated. In addition, the present data allowed an improved assignment of side chains and enabled further analysis of the MP-4 structure, and the accuracy of the assignment was confirmed by the recently available gene sequence. The study reinforces the traditional concept that conservative interpretations of relatively low-resolution structures remain correct even with the availability of high-resolution data.
Collapse
Affiliation(s)
- Abha Jain
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
| | - Amit Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Meha Shikhi
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751 024, India
| | - Ashish Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
| | - Deepak T. Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad 121 001, India
| | - Dinakar M. Salunke
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
10
|
Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules 2019; 24:E3276. [PMID: 31505752 PMCID: PMC6767026 DOI: 10.3390/molecules24183276] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Snakebite envenomation is a life-threatening disease that was recently re-included as a neglected tropical disease (NTD), affecting millions of people in tropical and subtropical areas of the world. Improvement in the therapeutic approaches to envenomation is required to palliate the morbidity and mortality effects of this NTD. The specific therapeutic treatment for this NTD uses snake antivenom immunoglobulins. Unfortunately, access to these vital drugs is limited, principally due to their cost. Different ethnic groups in the affected regions have achieved notable success in treatment for centuries using natural sources, especially plants, to mitigate the effects of snake envenomation. The ethnopharmacological approach is essential to identify the potential metabolites or derivatives needed to treat this important NTD. Here, the authors describe specific therapeutic snakebite envenomation treatments and conduct a review on different strategies to identify the potential agents that can mitigate the effects of the venoms. The study also covers an increased number of literature reports on the ability of natural sources, particularly plants, to treat snakebites, along with their mechanisms, drawbacks and future perspectives.
Collapse
Affiliation(s)
- Isabel Gómez-Betancur
- Ophidism-Scorpionism Program, Faculty of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Vedanjali Gogineni
- Analytical Department, Cambrex Pharmaceuticals, Charles City, IA 50616, USA.
| | - Andrea Salazar-Ospina
- Research group in Pharmacy Regency Technology, Faculty of Pharmaceutical and Food Sciences University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Francisco León
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
11
|
Yirgu A, Chippaux JP. Ethnomedicinal plants used for snakebite treatments in Ethiopia: a comprehensive overview. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190017. [PMID: 31428140 PMCID: PMC6682375 DOI: 10.1590/1678-9199-jvatitd-2019-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/07/2019] [Indexed: 12/01/2022] Open
Abstract
Traditional medicine plays an important role in the daily lives of people living in rural parts of Ethiopia. Despite the fact that Ethiopia has a long history of using traditional medicinal plants as an alternative medicine source, there is no checklist compiling these plants used for snakebite treatment. This review collected and compiled available knowledge on and practical usage of such plants in the country. A literature review on medicinal plants used to treat snakebites was conducted from 67 journal articles, PhD dissertation and MSc theses available online. Data that summarize scientific and folk names, administration methods, plant portion used for treatment and method of preparation of recipes were organized and analyzed based on citation frequency. The summarized results revealed the presence of 184 plant species distributed among 67 families that were cited for treating snakebite in Ethiopia. In this literature search, no single study was entirely dedicated to the study of traditional medicinal plants used for the treatment of snakebite in Ethiopia. Most of the species listed as a snakebite remedy were shrubs and climbers (44%) followed by herbs (33%) and trees (23%). Fabaceae was the most predominant family with the greatest number of species, followed by Solanaceae and Vitaceae. Remedies are mainly prepared from roots and leaves, through decoctions, infusions, powders and juices. Most remedies were administered orally (69%). The six most frequently mentioned therapeutically important plants were Nicotiana tabacum, Solanum incanum, Carissa spinanrum, Calpurnia aurea, Croton macrostachyus and Cynodon dactylon. Authors reviewed the vegetal substances involved in snakebite management and their action mode. In addition to screening the biologically active ingredients and pharmacological activities of these plant materials, future studies are needed to emphasize the conservation and cultivation of important medicinal plants of the country.
Collapse
Affiliation(s)
- Abraham Yirgu
- Central Ethiopia Environment and Forest Research Center, Addis
Ababa, Ethiopia
| | - Jean-Philippe Chippaux
- MERIT, IRD, Paris Descartes University, Sorbonne Paris Cité, Paris,
France
- Centre de Recherche Translationnelle, Institut Pasteur, Paris,
France
| |
Collapse
|
12
|
Strauch MA, Tomaz MA, Monteiro-Machado M, Cons BL, Patrão-Neto FC, Teixeira-Cruz JDM, Tavares-Henriques MDS, Nogueira-Souza PD, Gomes SLS, Costa PRR, Schaeffer E, da Silva AJM, Melo PA. Lapachol and synthetic derivatives: in vitro and in vivo activities against Bothrops snake venoms. PLoS One 2019; 14:e0211229. [PMID: 30689661 PMCID: PMC6349327 DOI: 10.1371/journal.pone.0211229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/09/2019] [Indexed: 01/18/2023] Open
Abstract
Background It is known that local tissue injuries incurred by snakebites are quickly instilled causing extensive, irreversible, tissue destruction that may include loss of limb function or even amputation. Such injuries are not completely neutralized by the available antivenins, which in general are focused on halting systemic effects. Therefore it is prudent to investigate the potential antiophidic effects of natural and synthetic compounds, perhaps combining them with serum therapy, to potentially attenuate or eliminate the adverse local and systemic effects of snake venom. This study assessed a group of quinones that are widely distributed in nature and constitute an important class of natural products that exhibit a range of biological activities. Of these quinones, lapachol is one of the most important compounds, having been first isolated in 1882 from the bark of Tabebuia avellanedae. Methodology/Principal findings It was investigated the ability of lapachol and some new potential active analogues based on the 2-hydroxi-naphthoquinone scaffold to antagonize important activities of Bothrops venoms (Bothrops atrox and Bothrops jararaca) under different experimental protocols in vitro and in vivo. The bioassays used to test the compounds were: procoagulant, phospholipase A2, collagenase and proteolytic activities in vitro, venom-induced hemorrhage, edematogenic, and myotoxic effects in mice. Proteolytic and collagenase activities of Bothrops atrox venom were shown to be inhibited by lapachol and its analogues 3a, 3b, 3c, 3e. The inhibition of these enzymatic activities might help to explain the effects of the analogue 3a in vivo, which decreased skin hemorrhage induced by Bothrops venom. Lapachol and the synthetic analogues 3a and 3b did not inhibit the myotoxic activity induced by Bothrops atrox venom. The negative protective effect of these compounds against the myotoxicity can be partially explained by their lack of ability to effectively inhibit phospholipase A2 venom activity. Bothrops atrox venom also induced edema, which was significantly reduced by the analogue 3a. Conclusions This research using a natural quinone and some related synthetic quinone compounds has shown that they exhibit antivenom activity; especially the compound 3a. The data from 3a showed a decrease in inflammatory venom effects, presumably those that are metalloproteinase-derived. Its ability to counteract such snake venom activities contributes to the search for improving the management of venomous snakebites.
Collapse
Affiliation(s)
- Marcelo A. Strauch
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Vital Brazil, Niterói-RJ, Brazil
- * E-mail: (MAS); (MAT); (PAM)
| | - Marcelo Amorim Tomaz
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- * E-mail: (MAS); (MAT); (PAM)
| | - Marcos Monteiro-Machado
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Bruno Lemos Cons
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Fernando Chagas Patrão-Neto
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Jhonatha da Mota Teixeira-Cruz
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Matheus da Silva Tavares-Henriques
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Pâmella Dourila Nogueira-Souza
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Sara L. S. Gomes
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Laboratório de Catálise Orgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Paulo R. R. Costa
- Laboratório de Catálise Orgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Edgar Schaeffer
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Alcides J. M. da Silva
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais Walter Mors-Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Paulo A. Melo
- Laboratório de Farmacologia das Toxinas, Instituto de Ciências Biomédicas—Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- * E-mail: (MAS); (MAT); (PAM)
| |
Collapse
|
13
|
Panda S, Kumari L. Anti-Ophidian Properties of Herbal Medicinal Plants: Could it be a Remedy for Snake Bite Envenomation? Curr Drug Discov Technol 2018; 16:319-329. [PMID: 30019647 DOI: 10.2174/1570163815666180718095655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023]
Abstract
Snake bite envenoming causes high rates of morbidity and mortality and is one of the serious health-related concerns all over the globe. Around 3200 species of snakes have been discovered till date. Amid these species, about 1300 species of snakes are venomous. On account of its severity, World Health Organization (WHO) recently included snakebite envenoming in the list of neglected tropical diseases. Immunotherapy has partially solved the issues related to snakebite envenomation. However, it is associated with numerous adverse effects, due to which alternative treatment strategies are required for the treatment of snakebite. Traditionally, a large repository of herbal medicinal plants is known to possess activity against snake venom. An exploration of the therapeutic benefits of these medicinal plants used for the treatment of snakebites reveals the presence of various potential phytochemicals. The aim of the present review is to provide an outline regarding poisonous snakes all over the world, various compositions of snake venom, adverse effects related to anti-snake venom and numerous medicinal plants used for the anti-ophidian activity.
Collapse
Affiliation(s)
- Subhamay Panda
- Department of Pharmacy, Gupta College of Technological Sciences, Ashram More, Asansol-713301, India.,Indian Institute of Human and Social Sciences (IIHSS), Sitarampur, Asansol-713359, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
14
|
Quiroz D, Sosef M, van Andel T. Why ritual plant use has ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:48-56. [PMID: 27157629 DOI: 10.1016/j.jep.2016.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although ritual plant use is now recognised both for its socio-cultural importance and for its contribution to nature conservation, its potential pharmacological effects remain overlooked. AIM OF THE STUDY Our objective was to see whether ritual plant use could have ethnopharmacological relevance through practices that involve direct physical contact with the human body. We hypothesise that ritual practices reflect traditional knowledge on biological activities of plant species, even if plants are used in a symbolic way. MATERIALS AND METHODS Data were collected in collaboration with traditional healers and ritual plant vendors and harvesters in Benin (West Africa) and Gabon (Central Africa). Both ritual and medicinal uses of plants were recorded. Voucher specimens were collected and identified. We documented different administration routes of ritual plants and selected those whose uses involved direct contact with the human body. Based on our quantitative market surveys and field inventories, we identified 24 commercially or otherwise culturally important species and compared their ritual uses with proven biological activity from the literature. RESULTS We recorded 573 plant species with 667 ritual uses, of which ca. 75% (442 species and 499 uses) implied direct contact with the human body. The most common route of administration for ritual treatments was baths, followed by oral ingestion and skin rubbing. One third (186 species) of all ritual plants doubled as medicine for physical ailments. In contrast to previous research that explained the effectiveness of ritual plant use to be a matter of belief, our results hint at the potential medicinal properties of these plants. Ritual treatment of madness caused by evil spirits by the consumption of Rauvolfia vomitoria roots, for example, may be based on the species' proven anticonvulsant properties. DISCUSSION AND CONCLUSION We discuss some of the possible implications of ritual plant use for public health and conclude by suggesting that ritual plant uses that do not involve contact with the human body may also be vehicles for the transmission of traditional medicinal knowledge.
Collapse
Affiliation(s)
- Diana Quiroz
- Wageningen University (Biosystematics Group), P.O. Box 647, 6700 AP Wageningen, The Netherlands; Naturalis Biodiversity Center, Leiden University, P.O. Box 9517, 2300 RA Leiden, The Netherlands.
| | - Marc Sosef
- National Botanic Garden of Belgium, Nieuwelaan 38, 1860 Meise, Belgium.
| | - Tinde van Andel
- Wageningen University (Biosystematics Group), P.O. Box 647, 6700 AP Wageningen, The Netherlands; Naturalis Biodiversity Center, Leiden University, P.O. Box 9517, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
15
|
Kumar A, Gupta C, Nair DT, Salunke DM. MP-4 Contributes to Snake Venom Neutralization by Mucuna pruriens Seeds through an Indirect Antibody-mediated Mechanism. J Biol Chem 2016; 291:11373-84. [PMID: 26987900 DOI: 10.1074/jbc.m115.699173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 11/06/2022] Open
Abstract
Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism.
Collapse
Affiliation(s)
- Ashish Kumar
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India, the Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India, and
| | - Chitra Gupta
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India
| | - Deepak T Nair
- the Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India, and
| | - Dinakar M Salunke
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India, the Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India, and the International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
16
|
Vásquez J, Alarcón JC, Jiménez SL, Jaramillo GI, Gómez-Betancur IC, Rey-Suárez JP, Jaramillo KM, Muñoz DC, Marín DM, Romero JO. Main plants used in traditional medicine for the treatment of snake bites n the regions of the department of Antioquia, Colombia. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:158-166. [PMID: 25975514 DOI: 10.1016/j.jep.2015.04.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/26/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE In Colombia, more than 4.000 ophidian accidents occur per year and due to the scarce distribution and limited availability of antivenom, the use of traditional medicine has been perpetuated in some of its rural communities, in which initially, those affected are treated by healers and shamans using medicinal plants in different ways. METHODS Research was conducted with renowned healers or connoisseurs of plants on the ethnobotany of ophidian accidents in five different areas and their municipalities of Antioquia: Magdalena Medio (Caracolí, Puerto Berrío); Bajo Cauca (Caucasia, Zaragoza); Nordeste (San Roque, Yalí); Norte (Gómez Plata, Valdivia); Suroeste (Ciudad Bolívar, Salgar); collecting information related to experience and time of use of plants in the treatment of these poisonings, amounts used, ways of use (beverage, bathing, ointment, chupaderas, vapors), preparation types (maceration or decoction) and treatment duration. RESULTS 71 plant species were identified and collected, 49.29% of them without previous reports as antiophidian and 38.0% employed for the same purpose in other geographical areas. The leaves (24.82%), stems (11.68%) and flowers (10.95%) were found to be the most frequently employed structures in the preparation of the extracts, which are usually prepared by decoction (83.94%), maceration (6.57%). CONCLUSIONS In this work, specimens lacking previous ethnobotanical reports have been found, plants used by ethnic groups from other regions of Antioquia and the world to treat snake bites; and herbaceous plants whose inhibitory activity of symptoms produced by some snake venoms, has been experimentally verified by in vivo and in vitro tests.
Collapse
Affiliation(s)
- Julieta Vásquez
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Juan C Alarcón
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Silvia L Jiménez
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Gloria I Jaramillo
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | | | - J Paola Rey-Suárez
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Karen M Jaramillo
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Diana C Muñoz
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Daniela M Marín
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Jefferson O Romero
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
17
|
Shabbir A, Shahzad M, Masci P, Gobe GC. Protective activity of medicinal plants and their isolated compounds against the toxic effects from the venom of Naja (cobra) species. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:222-227. [PMID: 25291011 DOI: 10.1016/j.jep.2014.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various medicinal plants have protective properties against the toxicities of the venom of cobra snake (Naja species). They may be used as local first aid for the treatment of snakebite victims, and can significantly inhibit lethality, cardio-, neuro-, nephro- and myotoxicity, hemorrhage, and respiratory paralysis induced by the cobra snake venom. The plants or their extracts may also complement the benefits of conventional anti-serum treatment. AIM OF THE REVIEW This review provides information on the protective, anti-venom, properties of medicinal plants against snakebites from cobras. In addition, it identifies knowledge gaps and suggests further research opportunities. METHODS The literature was searched using databases including Google Scholar, PubMed, ScienceDirect, Scopus and Web of Science. The searches were limited to peer-reviewed journals written in English with the exception of some books and a few articles in foreign languages. RESULTS The plants possess neutralization properties against different cobra venom enzymes, such as hyaluronidase, acetylcholinesterase, phospholipase A2 and plasma proteases. Different active constituents that show promising activity against the effects of cobra venom include lupeol acetate, β-sitosterol, stigmasterol, rediocides A and G, quercertin, aristolochic acid, and curcumin, as well as the broad chemical groups of tannins, glycoproteins, and flavones. The medicinal plants can increase snakebite victim survival time, decrease the severity of toxic signs, enhance diaphragm muscle contraction, block antibody attachment to venom, and inhibit protein destruction. In particular, the cardiovascular system is protected, with inhibition of blood pressure decline and depressed atrial contractility and rate, and prevention of damage to heart and vessels. The designs of experimental studies that show benefits, or otherwise, of use of medicinal plants have some limitations: deficiency in identification and isolation of active constituents responsible for therapeutic activity; lack of comparison with reference drugs; and little investigation of the mechanism of anti-venom activity. CONCLUSION Despite some current deficiencies in experimental or clinical analysis, medicinal plants with anti-venom characteristics are effective and so are candidates for future therapeutic agents. We suggest that emphasis on identification and testing of active ingredients in research in the future will assist better understanding of their anti-venom activity.
Collapse
Affiliation(s)
- Arham Shabbir
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060 Pakistan.
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan; Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, The University of Queensland, Australia.
| | - Paul Masci
- Venomics Research Centre, Translational Research Institute, School of Medicine, The University of Queensland, Australia.
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, The University of Queensland, Australia.
| |
Collapse
|
18
|
Soni P, Bodakhe SH. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom. Asian Pac J Trop Biomed 2014; 4:S449-54. [PMID: 25183127 DOI: 10.12980/apjtb.4.2014c1048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. METHODS Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. RESULTS At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. CONCLUSIONS It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents.
Collapse
Affiliation(s)
- Pranay Soni
- Institute of Pharmaceutical Sciences, G. G. University, Bilaspur (CG)- 495009, India
| | - Surendra H Bodakhe
- Institute of Pharmaceutical Sciences, G. G. University, Bilaspur (CG)- 495009, India
| |
Collapse
|
19
|
Shenoy PA, Nipate SS, Sonpetkar JM, Salvi NC, Waghmare AB, Chaudhari PD. Production of high titre antibody response against Russell's viper venom in mice immunized with ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:159-63. [PMID: 24060214 DOI: 10.1016/j.phymed.2013.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/07/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. The aim of the study was to assess the production of antibody response against Russell's viper venom in mice after prophylactic immunization with ethanolic extract of fruits of Piper longum L. and piperine. The mice sera were tested for the presence of antibodies against Russell's viper venom by in vitro lethality neutralization assay and in vivo lethality neutralization assay. Polyvalent anti-snake venom serum (antivenom) manufactured by Haffkine Bio-Pharmaceutical Corporation Ltd. was used as standard. Further confirmation of presence of antibodies against the venom in sera of mice immunized with PLE and piperine was done using indirect enzyme-linked immunosorbent assay (ELISA) and double immunodiffusion test. Treatment with PLE-treated mice serum and piperine-treated mice serum was found to inhibit the lethal action of venom both in the in vitro lethality neutralization assay and in vivo lethality neutralization assay. ELISA testing indicated that there were significantly high (p<0.01) levels of cross reactions between the PLE and piperine treated mice serum and the venom antigens. In double immunodiffusion test, a white band was observed between the two wells of antigen and antibodies for both the PLE-treated and piperine-treated mice serum. Thus it can be concluded that immunization with ethanolic extract of fruits of Piper longum and piperine produced a high titre antibody response against Russell's viper venom in mice. The antibodies against PLE and piperine could be useful in antivenom therapy of Russell's viper bites. PLE and piperine may also have a potential interest in view of the development of antivenom formulations used as antidote against snake bites.
Collapse
Affiliation(s)
- P A Shenoy
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India.
| | - S S Nipate
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India.
| | - J M Sonpetkar
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India
| | - N C Salvi
- Haffkine Bio-Pharmaceutical Corporation Ltd., Pimpri, Pune 411018, Maharashtra, India
| | - A B Waghmare
- Haffkine Bio-Pharmaceutical Corporation Ltd., Pimpri, Pune 411018, Maharashtra, India
| | - P D Chaudhari
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune 411044, Maharashtra, India
| |
Collapse
|
20
|
Shenoy PA, Nipate SS, Sonpetkar JM, Salvi NC, Waghmare AB, Chaudhari PD. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:373-82. [PMID: 23506990 DOI: 10.1016/j.jep.2013.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/11/2013] [Accepted: 03/08/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. AIM OF THE STUDY To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. MATERIALS AND METHODS Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. RESULTS PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. CONCLUSIONS PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant.
Collapse
Affiliation(s)
- P A Shenoy
- Department of Pharmacology, Progressive Education Society's Modern College of Pharmacy, Sector No. 21, Yamunanagar, Nigdi, Pune-411044, Maharashtra, India.
| | | | | | | | | | | |
Collapse
|
21
|
Strauch MA, Tomaz MA, Monteiro-Machado M, Ricardo HD, Cons BL, Fernandes FFA, El-Kik CZ, Azevedo MS, Melo PA. Antiophidic activity of the extract of the Amazon plant Humirianthera ampla and constituents. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:50-58. [PMID: 23123799 DOI: 10.1016/j.jep.2012.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although serotherapy against snakebite has been discovered more than one hundred years ago, antivenom is not available all over Brazil. The use of plants from folk medicine is common mainly in the Brazilian Amazon area. One of these plants is named Humirianthera ampla (HA). MATERIALS AND METHODS We have investigated HA extract and constituents' antiophidic activity in different experimental protocols against some Bothrops snake venoms (Bothrops jararacussu, Bothrops atrox and Bothrops jararaca). The protocols investigated include phospholipase, proteolytic, pro-coagulant, hemorrhagic, edematogenic and myotoxic activities induced by these venoms in Swiss mice. RESULTS All the venoms caused an increase in the rate of creatine kinase (CK) release from isolated muscles, indicating damage to the sarcolemma. The crude extract of HA decreased the myotoxic activity in a concentration-dependent fashion. The presence of HA 300 μg/mL decreased up to 96% of Bothrops jararacussu and 94% of Bothrops atrox myotoxicity after 90 min of exposure. In vivo myotoxicity of Bothrops atrox venom was decreased in 75% when the venom was preincubated with HA 500 mg/kg. Similar results were observed with lupeol against Bothrops jararacussu and Bothrops atrox venoms. The hemorrhagic activity was evaluated by intradermal injection of Bothrops atrox venom. Preincubation and oral pre- and posttreatment with HA decreased hemorrhage by 100%, 45% and 45%, respectively. Bothrops atrox venom also induced formation of edema, which was significantly inhibited by pre- and posttreatment with HA. All the venoms showed extensive pro-coagulating properties, and these activities were inhibited by up to 90% with HA, which presented concentration-dependent inhibition. Finally, proteolytic and phospholipase activities of the venoms were all inhibited by increasing concentrations of HA, lupeol and sitosterol. The inhibition of these activities might help explain the actions against in vivo myotoxicity and the in vivo effects observed, i.e., edema, myotoxicity, pro-coagulation and hemorrhage. CONCLUSIONS Altogether, our results give support for the popular use of HA extracts in cases of accidents with snakes, suggesting that it can be used as an adjunct in the management of venomous snakebites.
Collapse
Affiliation(s)
- Marcelo Abrahão Strauch
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Brigadeiro Trompowski, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Grape seed extract neutralizes the effects of Cerastes cerastes cerastes post-synaptic neurotoxin in mouse diaphragm. Micron 2013; 44:298-302. [DOI: 10.1016/j.micron.2012.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/30/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
23
|
Abstract
Snake envenomation is a global public health problem, with highest incidence in Southeast Asia. Inadequate health services, difficult transportation and consequent delay in antisnake venom administration are the main reasons for high mortality. Adverse drug reactions and inadequate storage conditions limit the use of antisnake venom. The medicinal plants, available locally and used widely by traditional healers, therefore need attention. A wide array of plants and their active principles have been evaluated for pharmacological properties. However, numerous unexplored plants claimed to be antidotes in folklore medicine need to be studied. The present article reviews the current status of various medicinal plants for the management of snake bite.
Collapse
Affiliation(s)
- Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi - 110029, India
| | | |
Collapse
|
24
|
Molander M, Saslis-Lagoudakis CH, Jäger AK, Rønsted N. Cross-cultural comparison of medicinal floras used against snakebites. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:863-872. [PMID: 22209885 DOI: 10.1016/j.jep.2011.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Envenomation causes an estimated 1.8-2.5 million incidences per year with a mortality level of 100-125,000 persons annually and more than 100,000 individuals suffer from severe complications, which may end in amputation of the attacked limb. The use of plants is a major part of the traditional practitioners' treatment of snakebites. MATERIALS AND METHODS A database was created for plants used to treat snakebites worldwide. From this database, we selected five countries with a high number of entries and representing different cultures, geography and floristic zones: Brazil, Nicaragua, Nepal, China and South Africa. The datasets were analysed by regression and binominal analysis to see if any family or genus used against snakebites was overrepresented in the respective traditional medicinal systems relative to the abundance in the local flora. The families from the different geographical areas were compared to ascertain whether the same plant families are preferred by different peoples. RESULTS Three 'hot' families (Apocynaceae, Lamiaceae and Rubiaceae) were recovered in at least two of the five compared countries in the regression analyses and one 'hot' family (Zingiberaceae) was recovered in two of the compared countries in the binomial analyses. Four out of five floras possess families identified as outliers in both regression and binomial analyses. Eight families were recovered by both the binomial and the regression analysis (40-62% of all highlighted families respectively). At the genus level, only Piper (Piperaceae) was recovered as a 'hot' genus in at least two floras. Seven genera were highlighted by both analyses (25-44% of the highlighted genera). CONCLUSIONS Cross-cultural comparison of medicinal floras used against snakebites appears to be useful for highlighting candidate families and genera for further studies.
Collapse
Affiliation(s)
- Marianne Molander
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
25
|
Natural products from ethnodirected studies: revisiting the ethnobiology of the zombie poison. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:202508. [PMID: 21977054 PMCID: PMC3184504 DOI: 10.1155/2012/202508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/04/2011] [Indexed: 11/24/2022]
Abstract
Wade Davis's study of Haitian “zombification” in the 1980s was a landmark in ethnobiological research. His research was an attempt to trace the origins of reports of “undead” Haitians, focusing on the preparation of the zombification poison. Starting with this influential ethnopharmacological research, this study examines advances in the pharmacology of natural products, focusing especially on those of animal-derived products. Ethnopharmacological, pharmacological, and chemical aspects are considered. We also update information on the animal species that reportedly constitute the zombie poison. Several components of the zombie powder are not unique to Haiti and are used as remedies in traditional medicine worldwide. This paper emphasizes the medicinal potential of products from zootherapy. These biological products are promising sources for the development of new drugs.
Collapse
|
26
|
Ambikabothy J, Ibrahim H, Ambu S, Chakravarthi S, Awang K, Vejayan J. Efficacy evaluations of Mimosa pudica tannin isolate (MPT) for its anti-ophidian properties. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:257-262. [PMID: 21640180 DOI: 10.1016/j.jep.2011.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/14/2011] [Accepted: 05/10/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Evaluations of the anti-snake venom efficacy of Mimosa pudica tannin isolate (MPT) obtained from root of the plant. MATERIALS AND METHOD MPT was investigated in vitro and in vivo for its efficacy against the venom of Naja kaouthia snake. RESULTS In vitro: (1) mice injected i.p. with MPT pre-incubated with Naja kaouthia venom at concentrations as low as 0.625 mg/ml showed 100% survival after a 24-h observation period. (2) In the proteomics study, mice injected with MPT pre-incubated with the Naja kaouthia venom showed down-regulation of five serum proteins. (3) In the protein-dye-binding study, the percentage of Bradford dye-protein binding showed a reduction relative to the decrease in MPT concentration used to incubate with the venom. In vivo: the results from the animal studies showed that MPT had no in vivo protection against the Naja kaouthia venom (0.875 mg/kg) in four different rescue modes and in an oral pre-treatment experiment. CONCLUSION The study indicated the promising ability of MPT to neutralize the Naja kaouthia venom in in vitro experiments but fell short in its in vivo potential. As such, the use of Mimosa pudica (Mimosaceae) as therapeutics for snake bites is questionable as all the possible in vivo rescue studies and pre-treatment of the active constituents showed no protection against the affected mice.
Collapse
Affiliation(s)
- Jamunaa Ambikabothy
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
27
|
Effect of Mucuna pruriens Seed Extract Pretreatment on the Responses of Spontaneously Beating Rat Atria and Aortic Ring to Naja sputatrix (Javan Spitting Cobra) Venom. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:486390. [PMID: 21785646 PMCID: PMC3137961 DOI: 10.1155/2012/486390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/20/2011] [Accepted: 05/12/2011] [Indexed: 11/25/2022]
Abstract
Mucuna pruriens Linn. (velvet bean) has been used by native Nigerians as a prophylactic for snakebite. Rats pretreated with M. pruriens seed extract (MPE) have been shown to protect against the lethal and cardiovascular depressant effects of Naja sputatrix (Javan spitting cobra) venoms, and the protective effect involved immunological neutralization of the venom toxins. To investigate further the mechanism of the protective effect of MPE pretreatment against cobra venom toxicity, the actions of Naja sputatrix venom on spontaneously beating rat atria and aortic rings isolated from both MPE pretreated and untreated rats were studied. Our results showed that the MPE pretreatment conferred protection against cobra venom-induced depression of atrial contractility and atrial rate in the isolated atrial preparations, but it had no effect on the venom-induced contractile response of aortic ring preparation. These observations suggested that the protective effect of MPE pretreatment against cobra venom toxicity involves a direct protective action of MPE on the heart function, in addition to the known immunological neutralization mechanism, and that the protective effect does not involve action on blood vessel contraction. The results also suggest that M. pruriens seed may contain novel cardioprotective agent with potential therapeutic value.
Collapse
|
28
|
Bala V, Debnath A, Shill A, Bose U. Anti-Inflammatory, Diuretic and Antibacterial Activities of Aerial Parts of Mucuna pruriens Linn. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.498.503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|