1
|
Zhu Y, Wang J, Yao L, Huang Y, Yang H, Yu X, Chen X, Chen Y. Electroacupuncture at BL15 attenuates chronic fatigue syndrome by downregulating iNOS/NO signaling in C57BL/6 mice. Anat Rec (Hoboken) 2023; 306:3073-3084. [PMID: 35608198 DOI: 10.1002/ar.24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/19/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
Chronic fatigue syndrome (CFS) has a high incidence due to the increased pressure of daily life and work in modern society. Our previous clinical studies have found the effects of electroacupuncture (EA) on CFS patients, however, the mechanism of EA on CFS is still unknown. In this study, we investigated the effects of EA on cardiac function in a CFS mouse model to explore its underlying mechanism. The mice were randomly divided into three groups: control, CFS, and CFS mice receiving EA (CFS + EA). After behavioral assessments and echocardiographic measurement, blood and heart tissue of the mice were collected for biochemical tests, and then we evaluated the effects of EA on the CFS mouse model when nitric oxide (NO) levels were enhanced by l-arginine. The results showed that EA ameliorated the injured motor and cardiac function. Meanwhile, EA also inhibited increased expression of inducible nitric oxide synthase (iNOS) at heart tissue and the serum NO levels in mice subjected to sustained forced swimming stress. Furthermore, the NO level in serum increased with l-arginine administration, which blocked the effects of EA on CFS mice. This study suggested that EA could improve the motor function and cardiac function in CFS mice and its effects may be associated with the down-regulation of iNOS/NO signaling.
Collapse
Affiliation(s)
- Yang Zhu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingya Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxuan Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojiang Yu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinghua Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
2
|
Aldakheel RK, Gondal MA, Alsayed HN, Almessiere MA, Nasr MM, Shemsi AM. Rapid Determination and Quantification of Nutritional and Poisonous Metals in Vastly Consumed Ayurvedic Herbal Medicine (Rejuvenator Shilajit) by Humans Using Three Advanced Analytical Techniques. Biol Trace Elem Res 2022; 200:4199-4216. [PMID: 34800280 DOI: 10.1007/s12011-021-03014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Shilajit is used commonly as Ayurvedic medicine worldwide which is Rasayana herbo-mineral substance and consumed to restore the energetic balance and to prevent diseases like cognitive disorders and Alzheimer. Locally, Shilajit is applied for patients diagnosed with bone fractures. For safety of the patients, the elemental analysis of Shilajit is imperative to evaluate its nutritional quality as well as contamination from heavy metals. The elemental composition of Shilajit was conducted using three advanced analytical techniques (LIBS, ICP, and EDX). For the comparative studies, the two Shilajit kinds mostly sold globally produced in India and Pakistan were collected. Our main focus is to highlight nutritional eminence and contamination of heavy metals to hinge on Shilajit therapeutic potential. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for qualitative and quantitative analysis of the Shilajit. Our LIBS analysis revealed that Shilajit samples composed of several elements like Ca, S, K, Mg, Al, Na, Sr, Fe, P, Si, Mn, Ba, Zn, Ni, B, Cr, Co, Pb, Cu, As, Hg, Se, and Ti. Indian and Pakistani Shilajits were highly enriched with Ca, S, and K nutrients and contained Al, Sr, Mn, Ba, Zn, Ni, B, Cr, Pb, As, and Hg toxins in amounts that exceeded the standard permissible limit. Even though the content of most elements was comparable among both Shilajits, nutrients, and toxins, in general, were accentuated more in Indian Shilajit with the sole detection of Hg and Ti. The elemental quantification was done using self-developed calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method, and LIBS results are in well agreement with the concentrations determined by standard ICP-OES/MS method. To verify our results by LIBS and ICP-OES/MS techniques, EDX spectroscopy was also conducted which confirmed the presence above mentioned elements. This work is highly significant for creating awareness among people suffering due to overdose of this product and save many human lives.
Collapse
Affiliation(s)
- R K Aldakheel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M A Gondal
- Laser Research Group, Physics Department, IRC-Hydrogen & Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- K.A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Hasan N Alsayed
- Department of Orthopedic Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M M Nasr
- Physics Department, Riyadh Elm University, P.O. Box 321815, Riyadh, 11343, Saudi Arabia
| | - A M Shemsi
- Center for Environment and Marine Study, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Dehhaghi M, Panahi HKS, Kavyani B, Heng B, Tan V, Braidy N, Guillemin GJ. The Role of Kynurenine Pathway and NAD + Metabolism in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Aging Dis 2022; 13:698-711. [PMID: 35656104 PMCID: PMC9116917 DOI: 10.14336/ad.2021.0824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious, complex, and highly debilitating long-term illness. People with ME/CFS are typically unable to carry out their routine activities. Key hallmarks of the disease are neurological and gastrointestinal impairments accompanied by pervasive malaise that is exacerbated after physical and/or mental activity. Currently, there is no validated cure of biomarker signature for this illness. Impaired tryptophan (TRYP) metabolism is thought to play significant role in the pathobiology of ME/CFS. TRYP is an important precursor for serotonin and the essential pyridine nucleotide nicotinamide adenine dinucleotide (NAD+). TRYP has been associated with the development of some parts of the brain responsible for behavioural functions. The main catabolic route for TRYP is the kynurenine pathway (KP). The KP produces NAD+ and several neuroactive metabolites with neuroprotective (i.e., kynurenic acid (KYNA)) and neurotoxic (i.e., quinolinic acid (QUIN)) activities. Hyperactivation of the KP, whether compensatory or a driving mechanism of degeneration can limit the availability of NAD+ and exacerbate the symptoms of ME/CFS. This review discusses the potential association of altered KP metabolism in ME/CFS. The review also evaluates the role of the patient’s gut microbiota on TRYP availability and KP activation. We propose that strategies aimed at raising the levels of NAD+ (e.g., using nicotinamide mononucleotide and nicotinamide riboside) may be a promising intervention to overcome symptoms of fatigue and to improve the quality of life in patients with ME/CFS. Future clinical trials should further assess the potential benefits of NAD+ supplements for reducing some of the clinical features of ME/CFS.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
- PANDIS.org, Australia.
| | | | - Bahar Kavyani
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
- PANDIS.org, Australia.
| | - Vanessa Tan
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
- PANDIS.org, Australia.
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
- PANDIS.org, Australia.
- Correspondence should be addressed to: Dr. Gilles J. Guillemin, Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia. .
| |
Collapse
|
4
|
Rahmani Barouji S, Shahabi A, Torbati M, Fazljou SMB, Yari Khosroushahi A. Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer Cells. Galen Med J 2021; 9:e1812. [PMID: 34466597 PMCID: PMC8343979 DOI: 10.31661/gmj.v9i0.1812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/26/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods:
The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay. Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR.
Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details.
Collapse
Affiliation(s)
- Solmaz Rahmani Barouji
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arman Shahabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Ahmad Yari Khosroushahi, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran Telephone Number: +98 41 33363234 Email Address:
| |
Collapse
|
5
|
Thakur V, Jamwal S, Kumar M, Rahi V, Kumar P. Protective Effect of Hemin Against Experimental Chronic Fatigue Syndrome in Mice: Possible Role of Neurotransmitters. Neurotox Res 2020; 38:359-369. [PMID: 32506340 DOI: 10.1007/s12640-020-00231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Chronic fatigue syndrome (CFS) is a disorder characterized by persistent and relapsing fatigue along with long-lasting and debilitating fatigue, myalgia, cognitive impairment, and many other common symptoms. The present study was conducted to explore the protective effect of hemin on CFS in experimental mice. Male albino mice were subjected to stress-induced CFS in a forced swimming test apparatus for 21 days. After animals had been subjected to the forced swimming test, hemin (5 and 10 mg/kg; i.p.) and hemin (10 mg/kg) + tin(IV) protoporphyrin (SnPP), a hemeoxygenase-1 (HO-1) enzyme inhibitor, were administered daily for 21 days. Various behavioral tests (immobility period, locomotor activity, grip strength, and anxiety) and estimations of biochemical parameters (lipid peroxidation, nitrite, and GSH), mitochondrial complex dysfunctions (complexes I and II), and neurotransmitters (dopamine, serotonin, and norepinephrine and their metabolites) were subsequently assessed. Animals exposed to 10 min of forced swimming session for 21 days showed a fatigue-like behavior (as increase in immobility period, decreased grip strength, and anxiety) and biochemical alteration observed by increased oxidative stress, mitochondrial dysfunction, and neurotransmitter level alteration. Treatment with hemin (5 and 10 mg/kg) for 21 days significantly improved the decreased immobility period, increased locomotor activity, and improved anxiety-like behavior, oxidative defense, mitochondrial complex dysfunction, and neurotransmitter level in the brain. Further, these observations were reversed by SnPP, suggesting that the antifatigue effect of hemin is HO-1 dependent. The present study highlights the protective role of hemin against experimental CFS-induced behavioral, biochemical, and neurotransmitter alterations.
Collapse
Affiliation(s)
- Vandana Thakur
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Sumit Jamwal
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Mandeep Kumar
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India.
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms. Pharmacol Res 2019; 148:104409. [DOI: 10.1016/j.phrs.2019.104409] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
|
7
|
Mishra T, Dhaliwal HS, Singh K, Singh N. Shilajit (Mumie): Current Status of Biochemical, Therapeutic and Clinical Advances. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666170823160217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: Shilajit (mumie), a natural multi-component herbomineral ethnomedicinal
food, is used as a traditional medicine for enhancing the quality of life and for management of health
ailments in many countries of the world. Use of Shilajit as an adaptogen, aphrodisiac, rejuvenator and
anti-aging substance is mentioned in many ancient texts. This review aims to provide comprehensive
insights into its biochemical aspects, microbial role in biosynthesis, bioactivities and to establish correlation
between traditional uses and scientifically validated research findings.
Methods:
Scientific literature and ethnopharmacological information were compiled from the published
peer-reviewed articles, unpublished materials, thesis, books, patent databases, clinical trial registries
and from the websites of research councils of traditional medicine. The scientific databases,
thesis repositories and books databases were searched with keywords Shilajit, mumie, mumijo,
salajeet, asphaltum, fulvic acid, dibenzo-alpha-pyrones etc.
Results:
Scientifically validated research and ancient texts suggest multifaceted benefits of Shilajit. It
is endowed with anti-stress, memory and energy enhancing, antioxidant, anti-inflammatory, antidiabetic,
spermatogenic, neuroprotective, antiulcer and wound healing activities. These pharmacological
effects are mainly attributed to the presence of humic acid, fulvic acid, dibenzo-α-pyrones, dibenzo-
α-pyrones chromoproteins and trace elements.
Conclusion:
This review summarizes the traditional importance of Shilajit for the treatment and prevention
of several acute and chronic diseases and health ailments. Despite numerous health claims,
there are still major gaps in our understanding of its mechanism of action, variability in efficacy and
toxicity profile. Therefore, a coordinated interdisciplinary approach is needed to establish the underlying
mechanisms of action, comprehensive toxicological profile, pharmacokinetics parameters and effects
on different organ systems. Regulatory and governmental impetus to basic and clinical research,
safety testing and formulations quality control is warranted.
Collapse
Affiliation(s)
- Tanuja Mishra
- Department of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| | - Harcharan S. Dhaliwal
- Department of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| | - Karan Singh
- Chemistry, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| | - Nasib Singh
- Department of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| |
Collapse
|
8
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
9
|
Sarvaiya K, Goswami S. Investigation of the effects of vanilloids in chronic fatigue syndrome. Brain Res Bull 2016; 127:187-194. [DOI: 10.1016/j.brainresbull.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/27/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022]
|
10
|
Yi T, Qi L, Li J, Le JJ, Shao L, Du X, Dong JC. Moxibustion upregulates hippocampal progranulin expression. Neural Regen Res 2016; 11:610-6. [PMID: 27212922 PMCID: PMC4870918 DOI: 10.4103/1673-5374.180746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.
Collapse
Affiliation(s)
- Tao Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; College of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai, China
| | - Li Qi
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; College of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai, China
| | - Jing-Jing Le
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; College of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai, China
| | - Lei Shao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; College of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai, China
| | - Xin Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; College of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; College of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ketkar S, Rathore A, Kandhare A, Lohidasan S, Bodhankar S, Paradkar A, Mahadik K. Alleviating exercise-induced muscular stress using neat and processed bee pollen: oxidative markers, mitochondrial enzymes, and myostatin expression in rats. Integr Med Res 2015; 4:147-160. [PMID: 28664121 PMCID: PMC5481795 DOI: 10.1016/j.imr.2015.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/16/2015] [Accepted: 02/17/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The current study was designed to investigate the influence of monofloral Indian mustard bee pollen (MIMBP) and processed monofloral Indian mustard bee pollen (PMIMBP) supplementation on chronic swimming exercise-induced oxidative stress implications in the gastrocnemius muscle of Wistar rats. METHODS MIMBP was processed with an edible lipid-surfactant mixture (Captex 355:Tween 80) to increase the extraction of polyphenols and flavonoid aglycones as analyzed by UV spectroscopy and high performance liquid chromatography-photo diode array. Wistar rats in different groups were fed with MIMBP or PMIMBP supplements at a dose of 100 mg/kg, 200 mg/kg and 300 mg/kg individually, while being subjected to chronic swimming exercise for 4 weeks (5 d/wk). Various biochemical [superoxide dismutase (SOD), glutathione (GSH), malonaldehyde (MDA), nitric oxide (NO), and total protein content], mitochondrial (Complex I, II, III, and IV enzyme activity), and molecular (myostatin mRNA expression) parameters were monitored in the gastrocnemius muscle of each group. RESULTS Administration of both MIMBP (300 mg/kg) and PMIMBP (100 mg/kg, 200 mg/kg, and 300 mg/kg) wielded an antioxidant effect by significantly improving SOD, GSH, MDA, NO, and total protein levels. Further MIMBP (300 mg/kg) and PMIMBP (200 mg/kg and 300 mg/kg) significantly improved impaired mitochondrial Complex I, II, III, and IV enzyme activity. Significant down-regulation of myostatin mRNA expression by MIMBP (300 mg/kg) and PMIMBP (200 mg/kg and 300 mg/kg) indicates a muscle protectant role in oxidative stress conditions. CONCLUSION The study establishes the antioxidant, mitochondrial upregulatory, and myostatin inhibitory effects of both MIMBP and PMIMBP in exercise-induced oxidative stress conditions, suggesting their usefulness in effective management of exercise-induced muscular stress. Further, processing of MIMBP with an edible lipid-surfactant mixture was found to improve the therapeutic efficiency of pollen.
Collapse
Affiliation(s)
- Sameer Ketkar
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Atul Rathore
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Amit Kandhare
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Sathiyanarayanan Lohidasan
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Subhash Bodhankar
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Anant Paradkar
- Centre for Pharmaceutical Engineering Sciences, University of Bradford, West Yorkshire, United Kingdom
| | - Kakasaheb Mahadik
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
12
|
Vasiadi M, Newman J, Theoharides TC. Isoflavones inhibit poly(I:C)-induced serum, brain, and skin inflammatory mediators - relevance to chronic fatigue syndrome. J Neuroinflammation 2014; 11:168. [PMID: 25359293 PMCID: PMC4236420 DOI: 10.1186/s12974-014-0168-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background Chronic Fatigue Syndrome (CFS) is a neuroimmunoendocrine disease affecting about 1% of the US population, mostly women. It is characterized by debilitating fatigue for six or more months in the absence of cancer or other systemic diseases. Many CFS patients also have fibromyalgia and skin hypersensitivity that worsen with stress. Corticotropin-releasing hormone (CRH) and neurotensin (NT), secreted under stress, activate mast cells (MC) necessary for allergic reactions to release inflammatory mediators that could contribute to CFS symptoms. Objective To investigate the effect of isoflavones on the action of polyinosinic:polycytidylic acid (poly(I:C)), with or without swim stress, on mouse locomotor activity and inflammatory mediator expression, as well as on human MC activation. Methods Female C57BL/6 mice were randomly divided into four groups: (a) control/no-swim, (b) control/swim, (c) polyinosinic:polycytidylic acid (poly(I:C))/no swim, and (d) polyinosinic:polycytidylic acid (poly(I:C))/swim. Mice were provided with chow low or high in isoflavones for 2 weeks prior to ip injection with 20 mg/kg poly(I:C) followed or not by swim stress for 15 minutes. Locomotor activity was monitored overnight and animals were sacrificed the following day. Brain and skin gene expression, as well as serum levels, of inflammatory mediators were measured. Data were analyzed using the non-parametric Mann-Whitney U-test. Results Poly(I:C)-treated mice had decreased locomotor activity over 24 hours, and increased serum levels of TNF-α, IL-6, KC (IL-8/CXCL8 murine homolog), CCL2,3,4,5, CXCL10, as well as brain and skin gene expression of TNF, IL-6, KC (Cxcl1, IL8 murine homolog), CCL2, CCL4, CCL5 and CXCL10. Histidine decarboxylase (HDC) and NT expression were also increased, but only in the skin, over the same period. High isoflavone diet reversed these effects. Conclusion Poly(I:C) treatment decreased mouse locomotor activity and increased serum levels and brain and skin gene expression of inflammatory mediators. These effects were inhibited by isoflavones that may prove useful in CFS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0168-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalini Vasiadi
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| | - Jennifer Newman
- Department of Neuroscience, Tufts University, School of Medicine, Boston, MA, USA.
| | - Theoharis C Theoharides
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
13
|
Joukar S, Najafipour H, Dabiri S, Sheibani M, Sharokhi N. Cardioprotective Effect of Mumie (Shilajit) on Experimentally Induced Myocardial Injury. Cardiovasc Toxicol 2014; 14:214-21. [DOI: 10.1007/s12012-014-9245-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
A review of hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. ISRN NEUROSCIENCE 2013; 2013:784520. [PMID: 24959566 PMCID: PMC4045534 DOI: 10.1155/2013/784520] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has been found in a high proportion of chronic fatigue syndrome (CFS) patients and includes enhanced corticosteroid-induced negative feedback, basal hypocortisolism, attenuated diurnal variation, and a reduced responsivity to challenge. A putative causal role for genetic profile, childhood trauma, and oxidative stress has been considered. In addition, the impact of gender is demonstrated by the increased frequency of HPA axis dysregulation in females. Despite the temporal relationship, it is not yet established whether the endocrine dysregulation is causal, consequent, or an epiphenomenon of the disorder. Nonetheless, given the interindividual variation in the effectiveness of existing biological and psychological treatments, the need for novel treatment strategies such as those which target the HPA axis is clear.
Collapse
|
15
|
Stohs SJ. Safety and efficacy of shilajit (mumie, moomiyo). Phytother Res 2013; 28:475-9. [PMID: 23733436 DOI: 10.1002/ptr.5018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/15/2013] [Accepted: 05/08/2013] [Indexed: 11/06/2022]
Abstract
Shilajit (mumie; moomiyo, mummiyo) has been used for a wide variety of illnesses and conditions for many years. However, relatively few well-controlled human studies have been conducted on the effects of shiliajit, although a growing number of studies have been published in recent years involving animal and in vitro systems. The safety of shilajit is well documented based on animal and human studies. Various research studies indicate that shilajit exhibits antioxidant, anti-inflammatory, adaptogenic, immunomodulatory, and anti-dyslipidemic properties. Animal and human studies indicate that shilajit enhances spermatogenesis. Furthermore, animal and human data support its use as a 'revitalizer', enhancing physical performance and relieving fatigue with enhanced production of ATP. Key constituents in shilajit responsible for these effects appear to be dibenzo-α-pyrones and fulvic acid and their derivatives. Various mechanistic studies provide support for the above observed effects. Additional well-controlled human and animal studies involving the use of standardized products are needed.
Collapse
Affiliation(s)
- Sidney J Stohs
- School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, NE, 68168, USA
| |
Collapse
|