1
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
2
|
Bai J, Zeng Q, Den W, Huang L, Wu Z, Li X, Tong P, Chen H, Yang A. Synergistic Synbiotic-Containing Lactiplantibacillus plantarum and Fructo-Oligosaccharide Alleviate the Allergenicity of Mice Induced by Soy Protein. Foods 2025; 14:109. [PMID: 39796399 PMCID: PMC11720218 DOI: 10.3390/foods14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prebiotics and probiotics have key roles in the intervention and treatment of food allergies. This study assesses the effect of Lactiplantibacillus plantarum synergistic fructo-oligosaccharide (Lp-FOS) intervention using an allergic mouse model induced by soy protein. The results showed that Lp synergistic FOS significantly decreased clinical allergy scores, inhibited specific antibodies (IgE, IgG, and IgG1), IL-4, IL-6, and IL-17A levels, and increased IFN-γ and IL-10 levels. Meanwhile, flow cytometry showed that Lp-FOS intervention inhibited the percentage of dendritic cell (DC) subsets in splenocytes and increased the Th1/Th2 and Treg/Th17 ratios. Furthermore, Lp-FOS intervention upregulated the mRNA levels of T-bet and Foxp3 and downregulated the mRNA levels of GATA3. Finally, non-targeted metabolomic analysis showed that Lp-FOS improved serum metabolic disorders caused by food allergies through regulating glycine, serine, and threonine metabolism, butanoate metabolism, glyoxylate and dicarboxylate metabolism, the biosynthesis of cofactors, and glycerophospholipid metabolism. These data showed that the combination formulation Lp-FOS could be a promising adjuvant treatment for food allergies.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Qian Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Wen Den
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Liheng Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| |
Collapse
|
3
|
Shi Q, Chen Z, Yang J, Liu X, Su Y, Wang M, Xi J, Yang F, Li F. Review of Codonopsis Radix biological activities: A plant of traditional Chinese tonic. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118334. [PMID: 38740108 DOI: 10.1016/j.jep.2024.118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis Radix, commonly known as Dangshen in Chinese, is frequently used to treat deficiencies of spleen and lung Qi, gastrointestinal discomfort, fatigue, asthmatic breathing, sallow complexion, lack of strength, shortness of breath, deficiencies of both Qi and blood, as well as impairments to both Qi and body fluids in suboptimal health status. AIM OF THE REVIEW This review systematically expounds on the modern pharmacological studies related to the use of Codonopsis Radix in invigorating Qi and nourishing the body in recent years. The aim is to provide theoretical research and reference for the in-depth and systematic exploration and development of the applications of Codonopsis Radix in the fields of food and medicine. MATERIALS AND METHODS This study employs "Codonopsis Radix," "Codonopsis," and "Dangshen" as keywords to gather pertinent information on Codonopsis Radix medicine through electronic searches of classical literature and databases such as PubMed, Elsevier, Google Scholar, Wiley, EMBASE, Cochrane Library, Web of Science, CNKI, Wanfang, VIP, and Baidu Scholar. RESULTS From previous studies, activities such as immune system modulation, gastrointestinal motility regulation, cardiac function revitalization, lung function improvement, blood circulation enhancement, aging process deceleration, learning and memory augmentation, fatigue resistance enhancement, and liver and kidney damage protection of Codonopsis Radix have been reported. Recognized as an important medicine and food homologous traditional Chinese herbal remedy for supplementing deficiencies, its mode of action is multi-elemental, multi-systemic, multi-organ, multi-mechanistic, and multi-targeted. Furthermore, the benefits of its tonic surpass its therapeutic value, establishing it as an extraordinary preventive and therapeutic medicine. CONCLUSIONS With its long history of traditional applications and the revelations of contemporary pharmacological research, Codonopsis Radix exhibits great potential as both a therapeutic agent and a dietary supplement for further research in medicine, nutrition, and healthcare.
Collapse
Affiliation(s)
- Qi Shi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Zhengjun Chen
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuxia Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuanjin Su
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Miao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jiayu Xi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Fude Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Fang Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
4
|
Zhang Y, Kang Q, He L, Chan KI, Gu H, Xue W, Zhong Z, Tan W. Exploring the immunometabolic potential of Danggui Buxue Decoction for the treatment of IBD-related colorectal cancer. Chin Med 2024; 19:117. [PMID: 39210410 PMCID: PMC11360867 DOI: 10.1186/s13020-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Danggui Buxue (DGBX) decoction is a classical prescription composed of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), used to enrich blood, and nourish Qi in Chinese medicine, with the potential to recover energy and stimulate metabolism. Chronic inflammation is a risk factor in the development of inflammatory bowel disease (IBD)-related colorectal cancer (CRC). More importantly, AR and ASR have anti-inflammatory and anti-cancer activities, as well as prefiguring a potential effect on inflammation-cancer transformation. We, therefore, aimed to review the immunometabolism potential of DGBX decoction and its components in this malignant transformation, to provide a helpful complement to manage the risk of IBD-CRC. The present study investigates the multifaceted roles of DGBX decoction and its entire components AR and ASR, including anti-inflammation effects, anti-cancer properties, immune regulation, and metabolic regulation. This assessment is informed by a synthesis of scholarly literature, with more than two hundred articles retrieved from PubMed, Web of Science, and Scopus databases within the past two decades. The search strategy employed utilized keywords such as "Danggui Buxue", "Astragali Radix", "Angelicae Sinensis Radix", "Inflammation", and "Metabolism", alongside the related synonyms, with a particular emphasis on high-quality research and studies yielding significant findings. The potential of DGBX decoction in modulating immunometabolism holds promise for the treatment of IBD-related CRC. It is particularly relevant given the heterogeneity of CRC and the growing trend towards personalized medicine, but the precise and detailed mechanism necessitate further in vivo validation and extensive clinical studies to substantiate the immunometabolic modulation and delineate the pathways involved.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - Hui Gu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Xue
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Xia F, Li M, Liu Q, Liu H, Yang Y, Liu M, Chen G, Luo L, Liu Y, Liu G. Allergenicity and Linear Epitope Analysis of Scy p 8, an Allergen from Mud Crab. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13402-13414. [PMID: 38821040 DOI: 10.1021/acs.jafc.4c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Scy p 8 (triosephosphate isomerase) as a crab allergen in inducing distinct T-helper (Th) cell differentiation and a linear epitope associated with allergenicity remain elusive. In this study, mice sensitized with Scy p 8 exhibited significantly upregulated levels of IgE, IgG1, and IL-4 release, inducing a Th2 immune response. Moreover, the release of IFN-γ (Th1) and the levels of Treg cells were downregulated, while IL-17A (Th17) was upregulated, indicating that Scy p 8 disrupted the Th1/Th2 balance and Th17/Treg balance in mice. Furthermore, bioinformatics prediction and serum samples from crab-allergic patients and mice enabled the discovery of 8 linear epitopes of Scy p 8. Meanwhile, the analysis of peptide similarity and tertiary superposition revealed that 8 epitopes of Scy p 8 exhibited conservation across various species, potentially resulting in cross-reactivity. These findings possess the potential to enhance the comprehension of crab allergens, thereby establishing a foundation for investigating cross-reactivity.
Collapse
Affiliation(s)
- Fei Xia
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Mengsi Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
- Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| |
Collapse
|
6
|
Li X, Wang Y, Chen Y, Lu Z, Sun Y, Zhong C, Lv Z, Pan H, Chen J, Yao D, Huang X, Yu C. Icariside II alleviates lipopolysaccharide-induced acute lung injury by inhibiting lung epithelial inflammatory and immune responses mediated by neutrophil extracellular traps. Life Sci 2024; 346:122648. [PMID: 38631668 DOI: 10.1016/j.lfs.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
AIMS Acute lung injury (ALI) is a life-threatening lung disease characterized by inflammatory cell infiltration and lung epithelial injury. Icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exhibits anti-inflammatory and immunomodulatory effects. However, the effect and mechanism of ICS II in ALI remain unclear. The purpose of the current study was to investigate the pharmacological effect and underlying mechanism of ICS II in ALI. MAIN METHODS Models of neutrophil-like cells, human peripheral blood neutrophils, and lipopolysaccharide (LPS)-induced ALI mouse model were utilized. RT-qPCR and Western blotting determined the gene and protein expression levels. Protein distribution and quantification were analyzed by immunofluorescence. KEY FINDINGS ICS II significantly reduced lung histopathological damage, edema, and inflammatory cell infiltration, and it reduced pro-inflammatory cytokines in ALI. There is an excessive activation of neutrophils leading to a significant production of NETs in ALI mice, a process mitigated by the administration of ICS II. In vivo and in vitro studies found that ICS II could decrease NET formation by targeting neutrophil C-X-C chemokine receptor type 4 (CXCR4). Further data showed that ICS II reduces the overproduction of dsDNA, a NETs-related component, thereby suppressing cGAS/STING/NF-κB signalling pathway activation and inflammatory mediators release in lung epithelial cells. SIGNIFICANCE This study suggested that ICS II may alleviate LPS-induced ALI by modulating the inflammatory response, indicating its potential as a therapeutic agent for ALI treatment.
Collapse
Affiliation(s)
- Xiuchun Li
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yangyue Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yuxin Chen
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ziyi Lu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yihan Sun
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chuyue Zhong
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhanghang Lv
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Haofeng Pan
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Jun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dan Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| | - Chang Yu
- Intervention Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
8
|
Liu A, Sun J, Tiwari S, Wong J, Wang H, Tang D, Han Z. Effect of Chinese herbal formulae (BU-SHEN-YI-QI granule) treatment on thrombin expression after ischemia/reperfusion. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Aihua Liu
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, P.R. People’s Republic of China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, P.R. People’s Republic of China
| | - Sagun Tiwari
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
- International Education College, Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| | - John Wong
- School of Nursing and Department of Occupational Therapy, MGH Institute of Health Professions, Boston, MA, USA
| | - Honglin Wang
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| | - Dongxu Tang
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| |
Collapse
|
9
|
Zhong Y, Wang B, Chen W, Zhang H, Sun J, Dong J. Exploring the Mechanisms of Modified Bu-Shen-Yi-Qi Decoction for COPD-Related Osteoporosis Therapy via Transcriptomics and Network Pharmacology Approach. Drug Des Devel Ther 2023; 17:2727-2745. [PMID: 37701046 PMCID: PMC10493229 DOI: 10.2147/dddt.s413532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose To investigate the effectiveness of modified Bu-Shen-Yi-Qi decoction (MBSYQ) in the treatment of osteoporosis associated with chronic obstructive pulmonary disease (COPD) and its underlying mechanisms of action. Methods Disease targets, active ingredients and targets were predicted by TTD, CTD, DisGeNET, HERB (BenCaoZuJian as its Chinese name), and multiple-TCM databases; In addition, the screened targets were performed via the online platforms DAVID 6.8 and Metascape for GO and KEGG pathway enrichment analysis; The relationship between the MBSYQ and core targets were verified by molecular docking technique. Then we established a COPD-associated osteoporosis rat model by passive 24-week cigarette exposure. We assessed the efficacy of MBSYQ by lung histopathology assessment and distal femur/the first lumbar vertebra (L1) microstructural assay. In addition, we performed tibial RNA sequencing, which was validated by RT-PCR and Western blot. Results Screening revealed that the 350 active compounds of MBSYQ anchored 228 therapeutic targets for COPD-related osteoporosis; KEGG pathway enrichment analysis showed that the key targets mainly regulated MAPK and PI3K/AKT signaling pathways. In vivo studies showed that MBSYQ treatment alleviated pathological alterations in lung tissue, and reversed the bone loss and microstructure damage in the femur/L1 of model rats. The RNA seq indicated that MBSYQ could upregulate genes associated with anti-oxidative stress and aerobic respiration. The GSEA analysis displayed that MAPK and PI3K/AKT pathways were inhibited by CS exposure and activated by MBSYQ. Conclusion MBSYQ is effective in the prevention and treatment of COPD-related osteoporosis, partially achieved by improving oxygen metabolism and activating MAPK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bin Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Dai Q, Zhang G, Wang Y, Ye L, Shi R, Peng L, Guo S, He J, Yang H, Zhang Y, Jiang Y. Cytokine network imbalance in children with B-cell acute lymphoblastic leukemia at diagnosis. Cytokine 2023; 169:156267. [PMID: 37320964 DOI: 10.1016/j.cyto.2023.156267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Immune imbalance has been proved to be involved in the pathogenesis of hematologic neoplasm. However, little research has been reported altered cytokine network in childhood B-cell acute lymphoblastic leukemia (B-ALL) at diagnosis. Our study aimed to evaluate the cytokine network in peripheral blood of newly diagnosed pediatric patients with B-ALL. Serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), interferon (IFN)-γ, and IL-17A in 45 children with B-ALL and 37 healthy control children were measured by cytometric bead array, while the level of transforming growth factor-β1 (TGF-β1) in the serum was measured by enzyme-linked immunosorbent assay. Patients showed a significant increase in IL-6 (p < 0.001), IL-10 (p < 0.001), IFN-γ (p = 0.023) and a significant reduction in TGF-β1 (p = 0.001). The levels of IL-2, IL-4, TNF and IL-17A were similar in the two groups. Higher concentrations of pro-inflammatory cytokines were associated with febrile in patients without apparent infection by using unsupervised machine learning algorithms. In conclusion, our results indicated a critical role for aberrant cytokine expression profiles in the progression of childhood B-ALL. Distinct cytokine subgroups with different clinical features and immune response have been identified in patients with B-ALL at the time of diagnosis.
Collapse
Affiliation(s)
- Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Hao Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yingjun Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China.
| |
Collapse
|
11
|
Zhou Y, Huang X, Yu H, Shi H, Chen M, Song J, Tang W, Teng F, Li C, Yi L, Zhu X, Wang N, Wei Y, Wuniqiemu T, Dong J. TMT-based quantitative proteomics revealed protective efficacy of Icariside II against airway inflammation and remodeling via inhibiting LAMP2, CTSD and CTSS expression in OVA-induced chronic asthma mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154941. [PMID: 37451150 DOI: 10.1016/j.phymed.2023.154941] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-β and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.
Collapse
Affiliation(s)
- Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingrong Song
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Congcong Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Na Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Liu Y, Cai J, Wang Y, Zhao X, Qiao Y, Liu CJ. YQBS Improves Cognitive Dysfunction in Diabetic Rats: Possible Association with Tyrosine and Tryptophan Metabolism. Diabetes Metab Syndr Obes 2023; 16:901-912. [PMID: 37021127 PMCID: PMC10069430 DOI: 10.2147/dmso.s401863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE This study is aimed to determine the metabolomic effects of the hybrid medicine formula Yi-Qi-Bu-Shen (YQBS) on the neurotransmitter aspects of cognitive impairment in diabetic rats. METHODS In the current study, streptozotocin (STZ) was used to induce diabetic animal model in male Sprague Dawley (SD) rats. After successful establishment of diabetic SD rats' model, age-matched healthy SD rats and diabetic SD rats were treated with low and high doses of YQBS, and then tested for learning memory ability and analyzed for pathological changes. In addition, neurotransmitter metabolic changes in hippocampal subdivisions of rats from different treated groups were analyzed using liquid chromatography-mass spectrometry (LC-MS) technique. RESULTS YQBS could significantly improve memory-cognitive impairment in diabetic rats as evidenced by the shortening of latency to target and the reduction of latency first entrance to target. Moreover, YQBS also improved the pathological alterations in the hippocampal region in the brains of diabetic rats. Metabolomic analysis showed that the expression of noradrenaline hydrochloride was down-regulated and the expressions of levodopa and 5-hydroxytryptophan were up-regulated in the hippocampal tissues of diabetic rats treated with YQBS. CONCLUSION These findings demonstrate that YQBS has protective effects against diabetic cognitive dysfunction, which might act through alteration in tyrosine and tryptophan metabolism.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jingru Cai
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yangang Wang
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Yun Qiao; Chuan-Ju Liu, Email ;
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Zhong Y, Hu L, Chen W, Wang B, Sun J, Dong J. Exploring the comorbidity mechanisms between asthma and idiopathic pulmonary fibrosis and the pharmacological mechanisms of Bu-Shen-Yi-Qi decoction therapy via network pharmacology. BMC Complement Med Ther 2022; 22:151. [PMID: 35672815 PMCID: PMC9175349 DOI: 10.1186/s12906-022-03637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Backgrounds Asthma and idiopathic pulmonary fibrosis (IPF) are common chronic diseases of the respiratory system in clinical practice. However, the relationship and molecular links remain unclear, and the current treatment’s efficacy is disappointing. Bu-Shen-Yi-Qi (BSYQ) decoction has proven effective in treating various chronic airway inflammatory diseases, including asthma and IPF. But the underlying pharmacological mechanisms are still to be elucidated. Methods This study searched the proteins related to asthma and IPF via TTD, CTD, and DisGeNET databases and then submitted to the STRING to establish the protein–protein interaction (PPI) network. The co-bioinformatics analysis was conducted by Metascape. The active ingredients of BSYQ decoction were screened from TCMSP, ETCM, BATMAN-TCM databases, and HPLC/MS experiment. The corresponding targets were predicted based on TCMSP, ETCM, and BATMAN-TCM databases. The shared targets for asthma and IPF treatment were recognized, and further GO and KEGG analyses were conducted with the DAVID platform. Finally, molecule docking via Autodock Vina was employed to predict the potential binding mode between core potential compounds and targets. Results Finally, 1333 asthma-related targets and 404 IPF-related proteins were retrieved, 120 were overlapped between them, and many of the asthma-related proteins fall into the same statistically significant GO terms with IPF. Moreover, 116 active ingredients of BSYQ decoction were acquired, and 1535 corresponding targets were retrieved. Eighty-three potential compounds and 56 potential targets were recognized for both asthma and IPF treatment. GO and KEGG analysis indicated that the inflammation response, cytokine production, leukocyte differentiation, oxygen level response, etc., were the common pathological processes in asthma and IPF, which were regulated by BSYQ decoction. Molecule docking further predicted the potential binding modes between the core potential compounds and targets. Conclusion The current study successfully clarified the complex molecule links between asthma and IPF and found the potential common targets. Then we demonstrated the efficacy of BSYQ decoction for asthma and IPF treatment from the angle of network pharmacology, which may provide valuable references for further studies and clinical use. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03637-7.
Collapse
|
14
|
Efficacy and safety of modified Bushen Yiqi formulas (MBYF) as an add-on to formoterol and budesonide in the management of COPD: study protocol for a multicentre, double-blind, placebo-controlled, parallel-group, randomized clinical trial: FB-MBYF Trial. Trials 2022; 23:143. [PMID: 35164853 PMCID: PMC8842909 DOI: 10.1186/s13063-022-06057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Inhaled glucocorticoid corticosteroid (ICS), long-acting β2-adrenoceptor agonist (LABA), and other drugs have limited therapeutic effects on COPD with significant individual differences. Traditional Chinese medicine (TCM)-modified Bushen Yiqi formula (MBYF) demonstrates advantages in COPD management in China. This study aims to evaluate the efficacy and safety of MBYF as an add-on to budesonide/formoterol in COPD patients and confirm the related genes affecting the therapeutic effect in the treatment of COPD. Methods In this multicentre, randomised, double-blind, placebo-controlled, parallel-group study, eligible patients with COPD will randomly receive a 360-day placebo or MBYF as an adjuvant to budesonide/formoterol in a 1:1 ratio and be followed up with every 2 months. The primary outcomes will be the frequency, times, and severity of acute exacerbation of COPD (AECOPD), COPD assessment test (CAT) score, and pulmonary function tests (PFTs). The secondary outcomes will include the modified Medical Research Council (mMRC) dyspnoea scale, 6-min walking test (6MWT), BODE index, quantitative scores of syndromes classified in TCM, inflammation indices, and hypothalamic-pituitary-adrenaline (HPA) axis function. We will also test the genotype to determine the relationship between drugs and efficacy. All the data will be recorded in case report forms (CRFs) and analysed by SPSS V.20.0. Discussion A randomized clinical trial design to evaluate the efficacy and safety of MBYF in COPD is described. The results will provide evidence for the combination therapy of modern medicine and TCM medicine, and individual therapy for COPD.Trial registration. Trial registration ID: ChiCTR1900026124, Prospective registration. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06057-7.
Collapse
|
15
|
Qin J, Wuniqiemu T, Wei Y, Teng F, Cui J, Sun J, Yi L, Tang W, Zhu X, Xu W, Dong J. Proteomics analysis reveals suppression of IL-17 signaling pathways contributed to the therapeutic effects of Jia-Wei Bu-Shen-Yi-Qi formula in a murine asthma model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153803. [PMID: 34785105 DOI: 10.1016/j.phymed.2021.153803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Jia-Wei Bu-Shen-Yi-Qi formula (JWBSYQF), a Chinese herbal formula, is a commonly used prescription for treating asthma patients. However, the targeted proteins associated with JWBSYQF treatment remain unknown. PURPOSE Present study aims to evaluate the therapeutic efficacy of JWBSYQF and identify the targeted proteins in addition to functional pathways. STUDY DESIGN The ovalbumin (OVA)-induced murine asthma model was established to explore the therapeutic effect of JWBSYQF treatment. Proteomic profiling and quantifications were performed using data-independent acquisition (DIA) methods. Differentially expressed proteins (DEPs) were validated via western blot (WB) and immunohistochemistry (IHC). METHODS A murine asthma model was made by OVA sensitization and challenge, and JWBSYQF (2.25, 4.50, 9,00 g/kg body weight) or dexamethasone (1 mg/ kg body weight) were administered orally. Airway hyperresponsiveness (AHR) to methacholine (Mch), inflammatory cell counts and classification in bronchoalveolar lavage fluid (BALF), lung histopathology, and cytokine levels were measured. Furthermore, DIA proteomic analyses were performed to explore the DEPs targeted by JWBSYQF and were further validated by WB and IHC. RESULTS Our results exhibited that JWBSYQF attenuated AHR which was mirrored by decreased airway resistance and increased lung compliance. In addition, JWBSYQF-treated mice showed reduced inflammatory score, mucus hypersecretion, as well as reduced the number of BALF leukocytes along with decreased content of BALF Th2 inflammatory cytokines (IL-4, IL-5, IL-13) and serum IgE. Proteomics analysis identified 704 DEPs between the asthmatic mice and control group (MOD vs CON), and 120 DEPs between the JWBSYQF-treatment and the asthmatic mice (JWB-M vs MOD). A total of 33 overlapped DEPs were identified among the three groups. Pathway enrichment analysis showed that DEPs were significantly enriched in IL-17 signaling pathway, in which DEPs, Lcn2, TGF-β1, Gngt2, and Ppp2r5e were common DEPs between three experimental groups. WB and IHC results further validated expressional levels and tendency of these proteins. Our results also showed that JWBSYQF affects mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, that are activated by IL-17 signaling. CONCLUSION The present study suggested that JWBSYQF could attenuate AHR and airway inflammation in OVA-induced asthmatic mice. In addition, proteomics analysis revealed that suppression of IL-17 signaling pathways contributes to the therapeutic effects of JWBSYQF.
Collapse
Affiliation(s)
- Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Lu L, Huang J, Deng X, Sun X, Dong J. Application of glucocorticoids in patients with novel coronavirus infection: From bench to bedside. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s257590002030009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) have potential anti-inflammatory and immunosuppressive effects. There is plenty of controversy about the application of glucocorticoids in the treatment of coronavirus disease 2019 (COVID-19). This paper briefly summarizes the mechanism of glucocorticoids and their receptors and clinical applications in COVID-19. Through reviewing the current literature, our aim is to have a deeper understanding of the mechanism of GCs and their clinical applications, so as to find possible ways to enhance their efficacy and reduce drug resistance or side effects.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
17
|
Liu JX, Zhang Y, Yuan HY, Liang J. The treatment of asthma using the Chinese Materia Medica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113558. [PMID: 33186702 DOI: 10.1016/j.jep.2020.113558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a costly global health problem that negatively influences the quality of life of patients. The Chinese Materia Medica (CMM) contains remedies that have been used for the treatment of asthma for millennia. This article strives to systematically summarize the current research progress so that more comprehensive examinations of various databases related to CMM anti-asthma drugs, can be performed, so as to sequentially provide effective basic data for development and application of anti-asthma drugs based on the CMM. MATERIALS AND METHODS The research data published over the past 20 years for asthma treatment based on traditional CMM remedies were retrieved and collected from libraries and online databases (PubMed, ScienceDirect, Elsevier, Spring Link, Web of Science, PubChem Compound, Wan Fang, CNKI, Baidu, and Google Scholar). Information was also added from classic CMM, literature, conference papers on classic herbal formulae, and dissertations (PhD or Masters) based on traditional Chinese medicine. RESULTS This review systematically summarizes the experimental studies on the treatment of asthma with CMM, covering the effective chemical components, typical asthma models, important mechanisms and traditional anti-asthma CMM formulae. The therapy value of the CMM for anti-asthma is clarified, and the original data and theoretical research foundation are provided for the development of new anti-asthmatic data and research for the CMM. CONCLUSIONS Substantial progress against asthma has been made through relevant experimental research based on the CMM. These advances improved the theoretical basis of anti-asthma drugs for CMM and provided a theoretical basis for the application of a asthma treatment that is unique. By compiling these data, it is expected that the CMM will now contain a clearer mechanism of action and a greater amount of practical data that can be used for future anti-asthma drug research.
Collapse
Affiliation(s)
- Jun-Xi Liu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China; Department of Pharmacy, Heilongjiang Nursing College, 209 Academy Road, Harbin, 150086, PR China
| | - Yang Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hong-Yu Yuan
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
18
|
Huang M, Wei Y, Dong J. Epimedin C modulates the balance between Th9 cells and Treg cells through negative regulation of noncanonical NF-κB pathway and MAPKs activation to inhibit airway inflammation in the ovalbumin-induced murine asthma model. Pulm Pharmacol Ther 2021; 65:102005. [PMID: 33636365 DOI: 10.1016/j.pupt.2021.102005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a common airway inflammatory disease and mainly caused by abnormal immune responses to allergens and viruses. The precise mechanisms of airway inflammation and airway hyper-responsiveness (AHR) are still not completely understood. CD4+ helper T cells (Th cells) serve as critical regulators of allergic immunity. The imbalance between T helper 9 (Th9) cells and forkhead box protein 3 (Foxp3)+ regulatory T (Treg) cells may contribute to airway inflammation in asthma. Epimedin C, a dominant compound isolated from Herba Epimedii, has shown anti-inflammatory effects and the immunoregulatory activity, such as increase of lymphocyte proliferation. However, the protective role of epimedin C in an experimental model of ovalbumin (OVA)-induced allergic airway inflammation and the underlying mechanism remain unknown. Female BALB/c mice were sensitized by intraperitoneal injection (i.p.) of OVA plus aluminum hydroxide (Alum) and subsequently challenged with an aerosol of 3% OVA in saline. Mice were treated with different concentrations of epimedin C (20 mg/kg/d, 40 mg/kg/d, 80 mg/kg/d) for 4 weeks. Experimental endpoints were evaluated via the analysis of AHR to acetyl-β-methacholine (Mch), differential inflammatory cell counts, concentrations of cytokines interleukin-9 (IL-9), IL-4 and IL-10 in bronchoalveolar lavage fluid (BALF), serum OVA-specific IgE level, as well as airway inflammation, mucus secretion and collagen deposition in mice. Mechanistically, we investigated the percentages of Th9 cells and Treg cells, as well as mRNA levels of IL-9 and transcription factor Foxp3 in lungs. Furthermore, the proteins expression of nuclear factor-κB (NF-κB) family members p105/p50, RelA, p100/p52 and RelB, as well as mitogen-activated protein kinase (MAPK) family members extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK was detected. Epimedin C dose-dependently attenuated AHR, airway inflammation, mucus hypersecretion and collagen deposition in OVA-induced murine asthma model. The expression levels of IL-9, IL-4 and OVA-specific IgE were significantly decreased while IL-10 was increased by epimedin C. We further confirmed that epimedin C decreased the percentage of lung Th9 cells with lower mRNA expression of IL-9 and increased the percentage of lung Treg cells with higher mRNA expression of Foxp3. In addition, epimedin C dose-dependently decreased the protein levels of p52, RelB, phosphorylation of ERK1/2 and p38 MAPK which are pivotal to the development of Th9 cells and Treg cells. Collectively, epimedin C could inhibit pathophysiological features of asthma by reconstruction of the balance between Th9 cells and Treg cells through regulation of the noncanonical NF-κB p52/RelB pathway and MAPKs activation. These findings suggest epimedin C as a potential remedy for inflammatory airway diseases.
Collapse
Affiliation(s)
- Muhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
19
|
Wang L, Jia X, Yu Q, Shen S, Gao Y, Lin X, Zhang W. Piper nigrum extract attenuates food allergy by decreasing Th2 cell response and regulating the Th17/Treg balance. Phytother Res 2021; 35:3214-3225. [PMID: 33595153 DOI: 10.1002/ptr.7034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 11/06/2022]
Abstract
Piper nigrum is extensively utilized because of its antioxidation, antiallergic, antitumor, antiinflammatory, antidiarrhea, and gastrointestinal protection. We attempted to indicate whether the Piper nigrum extract (PNE) could alleviate ovalbumin (OVA)-induced food allergy, and to explore its potential mechanism. An OVA-induced food allergy mouse model was established, and different concentrations of PNE were administrated. Symptoms of food allergy, levels of immunoglobulin E (IgE), mucosal mast cell protease-1 (mMCP-1), and intestine pathological changes were assessed. Additionally, the expressions of T helper (Th) 2, Th17 and regulatory T (Treg)-associated cytokines and the proportion of Th17 and Treg cells in CD4+ T cells were measured. We found PNE attenuated symptoms of food allergy and decreased the levels of IgE and mMCP-1. In PNE group, the infiltration degree of inflammatory cells was ameliorated and the villi of small intestine were more complete. Moreover, the expressions of Th2 and Th17 cell-associated cytokines were down-regulated by PNE pretreatment, while the levels of Treg cell-associated cytokines were up-regulated. PNE decreased the number of Th17 cells, while increased the Tregs cells. PNE treatment dose-dependently improved the Th17/Treg balance. PNE plays a protective role in OVA-induced food allergy through inhibiting Th2 cell response and regulating the Th17/Treg balance.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sijia Shen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuyan Gao
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
RNA-Seq Expression Analysis of Chronic Asthmatic Mice with Bu-Shen-Yi-Qi Formula Treatment and Prediction of Regulated Gene Targets of Anti-Airway Remodeling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3524571. [PMID: 33531915 PMCID: PMC7834776 DOI: 10.1155/2021/3524571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Airway remodeling is one of the typical pathological characteristics of asthma, while the structural changes of the airways in asthma are complex, which impedes the development of novel asthma targeted therapy. Our previous study had shown that Bu-Shen-Yi-Qi formula (BSYQF) could ameliorate airway remodeling in chronic asthmatic mice by modulating airway inflammation and oxidative stress in the lung. In this study, we analysed the lung transcriptome of control mice and asthmatic mouse model with/without BSYQF treatment. Using RNA-sequencing (RNA-seq) analysis, we found that 264/1746 (15.1%) of transcripts showing abnormal expression in asthmatic mice were reverted back to completely or partially normal levels by BSYQF treatment. Additionally, based on previous results, we identified 21 differential expression genes (DEGs) with fold changes (FC) > (±) 2.0 related to inflammatory, oxidative stress, mitochondria, PI3K/AKT, and MAPK signal pathways which may play important roles in the mechanism of the anti-remodeling effect of BSYQF treatment. Through inputting 21 DEGs into the IPA database to construct a gene network, we inferred Adipoq, SPP1, and TNC which were located at critical nodes in the network may be key regulators of BSYQF's anti-remodeling effect. In addition, the quantitative real-time polymerase chain reaction (qRT-PCR) result for the selected four DEGs matched those of the RNA-seq analysis. Our results provide a preliminary clue to the molecular mechanism of the anti-remodeling effect of BSYQF in asthma.
Collapse
|
21
|
Kong Q, Li M, Qin X, Lv Y, Tang Z. Real-world evidence study for distribution of traditional Chinese medicine syndrome and its elements on chronic bronchitis in China. TRADITIONAL MEDICINE AND MODERN MEDICINE 2020. [DOI: 10.1142/s2575900019500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: To investigate the distribution and characteristics of traditional Chinese medicine (TCM) syndromes and its elements on chronic bronchitis (CB) based on real-world data (RWD) so as to optimize the treatment strategies. Methods: A real-world study based on 2207 medical records collected from five hospitals in China, to explore the relationship between TCM syndrome and CB using the big data methods. Factor analyses were used to reduce the dimensions of TCM syndrome elements and found common factors. Additionally, cluster analyses were performed to value combinations of TCM syndrome element. Finally, association rule analyses were employed to assess the structures of TCM syndromes elements and estimate the patterns of TCM syndrome. Results: A total of 21 TCM syndromes were extracted from RWD in this work. There were four TCM syndromes consisting of Tan_Zhuo_Zu_Fei, Tan_Re_Yong_Fei, Feng_Han_Xi_Fei, and Feng_Re_Fan_Fei with [Formula: see text]% frequency based on the distribution frequency. The two top Xu TCM syndromes of Fei_Yin_Xu and Fei_Shen_Qi_Xu were identified. The top six pathogenesis TCM syndrome elements were Tan, Huo, Feng, Han, Qi_Xu, and Yin_Xu. Factor analyses, cluster analyses, and association rule analyses demonstrated that Tan, Huo, Feng, Han, Qi-Xu, Yin-Xu, Fei, and Shen were the core TCM syndrome elements. Conclusion: The four common Shi TCM syndromes of Tan_Zhuo_Zu_Fei, Tan_Re_Yong_Fei, Feng_Han_Xi_Fei, and Feng_Re_Fan_Fei for CB were detected in the real world study, and the two Xu TCM syndromes of Fei_Yin_Xu and Fei_Shen_Qi_Xu were identified. The Mix TCM syndrome of Fei_Pi_Qi_Xu_Tan_Shi_Yun_Fei was the main syndrome. The core TCM syndrome elements of Tan, Huo, Feng, Han, Qi_Xu, and Yin_Xu, Fei, and Shen were determined in the entire sample.
Collapse
Affiliation(s)
- Qing Kong
- Department of Integrative Medicine, Huashan Hospital of Fudan University, No. 12 Urumqi Middle Road, Shanghai 200040, P. R. China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital of Fudan University, No. 12 Urumqi Middle Road, Shanghai 200040, P. R. China
| | - Xuanfeng Qin
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, P. R. China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital of Fudan University, No. 12 Urumqi Middle Road, Shanghai 200040, P. R. China
| | - Zihui Tang
- Department of Integrative Medicine, Huashan Hospital of Fudan University, No. 12 Urumqi Middle Road, Shanghai 200040, P. R. China
- Department of Biomedical Informatics and Statistics, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
22
|
Li Q, Sun J, Cao Y, Liu B, Li L, Mohammadtursun N, Zhang H, Dong J, Wu J. Bu-Shen-Fang-Chuan formula attenuates T-lymphocytes recruitment in the lung of rats with COPD through suppressing CXCL9/CXCL10/CXCL11-CXCR3 axis. Biomed Pharmacother 2019; 123:109735. [PMID: 31864210 DOI: 10.1016/j.biopha.2019.109735] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by irreversible airflow limitation. The current medications show limited effects on the decline of pulmonary function in COPD. Our multicenter clinical trial found that Bu-Shen-Fang-Chuan fomula (BSFCF), a Chinese herbal formula, markedly reduced the frequencies of acute exacerbation of COPD and delayed lung function decline. However, the underlying mechanisms are still unclear. In this study, we established a COPD rat model through a 6-month exposure to cigarette smoke (CS) and found that BSFCF (7.2 g/kg) effectively improved CS-induced reduction in pulmonary function and remarkably decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid (BALF). Importantly, BSFCF treatment notably prevented the accumulation of T-lymphocytes (especially CD8+ T-cells) in the lung of COPD rats. RNA sequencing analysis of lung tissue demonstrated that CXCL9/CXCL10/CXCL11-CXCR3 chemokine axis in the lung of CS-exposed rats was significantly suppressed by BSFCF. Moreover, our Real-time PCR data verified that BSFCF evidently inhibited the mRNA expressions of CXCL9, CXCL10, CXCL11 and CXCR3. Conclusively, BSFCF markedly improved pulmonary function and attenuated CD8+ T-cells recruitment in the lung of CS-exposed rats, which were partially through inhibition of CXCL9/CXCL10/CXCL11-CXCR3 axis.
Collapse
Affiliation(s)
- Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Hu Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Jinfeng Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
23
|
Wang W, Liu QB, Jing W. Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells. Chin J Nat Med 2019; 17:252-263. [PMID: 31076129 DOI: 10.1016/s1875-5364(19)30029-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China.
| | - Qing-Bin Liu
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Wei Jing
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| |
Collapse
|
24
|
Wang Z, Yao N, Fu X, Wei L, Ding M, Pang Y, Liu D, Ren Y, Guo M. Butylphthalide ameliorates airway inflammation and mucus hypersecretion via NF-κB in a murine asthma model. Int Immunopharmacol 2019; 76:105873. [PMID: 31493665 DOI: 10.1016/j.intimp.2019.105873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023]
Abstract
Butylphthalide (NBP) is a phthalide compound contained in Angelicae Sinensis Radix which is one of the most widely used traditional Chinese medicines. This study aims to explore the therapeutic effect of NBP on airway inflammation, mucus hypersecretion and their possible mechanism in asthma mice. BALB/c mice were sensitized and challenged with ovalbumin (OVA) for establishment of asthma model and then treated with NBP during day 22-77. The pulmonary function of the mice was determined, and the pathology of lung tissue and goblet cell hyperplasia were observed through analyzing inflammation scores and goblet cell percentage, respectively. Cytokine IL-4, IL-8, IL-13 and tumor necrosis factor-alpha (TNF-α) in bronchoalveolar lavage fluid (BALF) and total immunogloblin E (T-IgE) and OVA-specific IgE in serum were examined by enzyme-linked immunosorbent assay (ELISA). The expressions of Mucin 5AC (Muc5ac) and nuclear transcription factor-kappa B (NF-κB) in lung tissues were evaluated by immunohistochemistry, western blot and real-time polymerase chain reaction (RT-PCR). The results show that 50 mg/kg NBP significantly reduced OVA-induced increase in inflammation scoring, goblet cell percentage and mucus secretion of airway tissue, and improved the pulmonary function. NBP could also decrease IL-4, IL-8 IL-13, and TNF-α in BALF and T-IgE and OVA-specific IgE in serum. The expression of Muc5ac and NF-κB in lung tissue was significantly down-regulated after NBP treatment. This study suggested that NBP may effectively inhibit airway inflammation and mucus hypersecretion in asthma by modulating NF-κB activation.
Collapse
Affiliation(s)
- Zhiwang Wang
- Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Nan Yao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoyan Fu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lingxia Wei
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Maopeng Ding
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yarong Pang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Ren
- Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mei Guo
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
25
|
Shi Q, Si D, Bao H, Yan Y, Kong Y, Li C, He W, Damchaaperenlei D, Yu M, Li Y. Efficacy and safety of Chinese medicines for asthma: A systematic review protocol. Medicine (Baltimore) 2019; 98:e16958. [PMID: 31441897 PMCID: PMC6716730 DOI: 10.1097/md.0000000000016958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Asthma is a complex disease associated with many factors such as immunologic, environmental, genetic, and other factors. Common medicines used to treat asthma include β-agonist and glucocorticoid. However, in the long-term treatment, the effect of the above-mentioned drugs is not satisfactory, so many patients choose oral Chinese medicines instead of western medicines. The introduction of Chinese medicines therapies, a rapid proliferation of the literature on management of asthma in general, call for novel ways of evidence synthesis in this area. This systematic review is to systematically summarize and evaluate a large number of evidences for Chinese herbal interventions for asthma. Evaluate the efficacy and safety of Chinese medicines in the treatment of asthma and inform a decision aid for the clinical encounter between patients and clinicians. In addition, it helps to establish a future research agenda. METHODS Five English databases (PubMed, Web of science, EBASE, Springer Cochrane Library, and WHO International Clinical Trials Registry Platform) and 4 Chinese databases (Wanfang Database, Chinese Scientific Journal Database, China National Knowledge Infrastructure Database, and Chinese Biomedical Literature Database) will be searched normatively according to the rule of each database from the inception to the present. The literature screening, data extraction, and quality assessment will be conducted by 2 researchers independently. Data will be synthesized by either the fixed-effects or random-effects model according to a heterogeneity test. Asthma control test symptom score will be assessed as the primary outcome. The curative effect of single symptom and sign; Withdrawal and reduction of western medicines in a course of treatment, including: time, type, and quantity; Maintenance of western medicines after the course of treatment, including: type, quantity; Asthma Quality of Life Questionnaire; laboratory efficacy indexes as the secondary outcome. General physical examination; routine examination of blood, urine, and stool; electrocardiogram; liver and kidney function examination; possible adverse reactions and related detection indicators as the security indexes. Meta-analysis will be performed using RevMan5.3.5 software provided by the Cochrane Collaboration. RESULTS This study will provide high-quality synthesis based on current evidence of Chinese medicines treatment for asthma in several aspects, including asthma control score, side effects and laboratory examination such as lung-function test, serum total immunoglobulin, and so on. CONCLUSION The results of this study will provide updated evidence for whether Chinese medicines is an effective and safe intervention for asthma. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019136074.
Collapse
Affiliation(s)
- Qi Shi
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Dongxu Si
- Beijing University of Chinese Medicine, Beijing
| | - Haipeng Bao
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Yue Yan
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Yanhua Kong
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Chunlei Li
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Wenfeng He
- Beijing University of Chinese Medicine, Beijing
| | | | - Mingxia Yu
- Beijing University of Chinese Medicine, Beijing
| | - Youlin Li
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| |
Collapse
|
26
|
Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells 2019; 8:cells8070685. [PMID: 31284537 PMCID: PMC6678278 DOI: 10.3390/cells8070685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in the immune system and the inflammatory response to asthma. Abnormal cytokine expression may lead to the development of asthma, which may contribute to pathologies of this disease. As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according to their biologic activity in asthma development. We classified cytokines in three stages as follows: Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs (pure compounds, single herb, or natural formula) have been discussed in this review. Studies of the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can be applied for patients who did not respond to standard treatments. For traditional medicinal herbs, anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes: alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive strategies may provide appropriate treatment for patients with asthma in the future.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan.
| |
Collapse
|
27
|
Jin H, Cai C, Li B, Jin W, Xia J, Wang L, Ma S. Modified Si-Jun-Zi-Tang Attenuates Airway Inflammation in a Murine Model of Chronic Asthma by Inhibiting Teff Cells via the mTORC1 Pathway. Front Pharmacol 2019; 10:161. [PMID: 30873032 PMCID: PMC6400882 DOI: 10.3389/fphar.2019.00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Modified Si–Jun–Zi–Tang (MSJZT), a multi-herb formulation, is frequently used in traditional Chinese medicine for patients during the remission stage of asthma. However, the pharmacological basis underlying the effects of MSJZT on asthma has yet to be elucidated. This study aims at evaluating the anti-asthmatic effects of MSJZT and investigating its possible mechanism. Methods: A chronic murine model of asthma was established by sensitization and repeated challenge with ovalbumin (OVA) in female BALB/c mice, followed with oral administration of MSJZT during remission, and then mouse were re-challenged by OVA. The chemical profile of MSJZT was analyzed by high-performance liquid chromatography. The characteristic features of allergic asthma, including airway hyperreactivity, histopathology, cytokine levels (IL-4, -5, -13, -17, and INF-γ), T regulatory (Treg) lymphocytes (Foxp3+CD4+CD25+), and T effector (Teff) lymphocytes (Foxp3-CD25+CD4+) in bronchoalveolar lavage fluid (BALF), and downstream proteins of mTORC1/2 signaling pathway were examined. Results: MSJZT markedly suppressed airway hyper-responsiveness to aerosolized methacholine, and reduced levels of IL-4, IL-5, and IL-13 in the BALF. Histological studies showed that MSJZT significantly reduced inflammatory infiltration in lung tissues. The percentage and absolute number of Teff cells were suppressed to a remarkable level by MSJZT without affecting Treg cells. Furthermore, MSJZT effectively inhibited the mTORC1 activity, but exerted limited effects on mTORC2, as assessed by the phosphorylation of the mTORC1 and mTORC2 substrates, S6 ribosomal protein, p70 S6 kinase, mTOR S2481, and Akt, respectively. Conclusion: MSJZT attenuated chronic airway inflammation in a mouse model of asthma by inhibiting Teff cells, which occurred, at least in part, via modulation of the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Hualiang Jin
- Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cui Cai
- Department of Geriatric Medicine, Red Cross Hospital, Hangzhou, China
| | - Bei Li
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weizhong Jin
- Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbo Xia
- Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Limin Wang
- Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglin Ma
- Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,Department of Oncology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
28
|
Cui J, Xu F, Tang Z, Wang W, Hu LL, Yan C, Luo Q, Gao H, Wei Y, Dong J. Bu-Shen-Yi-Qi formula ameliorates airway remodeling in murine chronic asthma by modulating airway inflammation and oxidative stress in the lung. Biomed Pharmacother 2019; 112:108694. [PMID: 30798140 DOI: 10.1016/j.biopha.2019.108694] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Bu-Shen-Yi-Qi formula (BSYQF) could suppress chronic airway inflammation according to previous studies. However, there is relatively little direct experimental evidence to evaluate the effects of BSYQF treatment on airway remodeling in chronic asthma. Recent evidence suggests that oxidative stress is involved in airway inflammation and airway remodeling in chronic asthma. BSYQF which includes various of chemical components having antioxidant effects, could be beneficial in attenuating airway remodeling in chronic asthma. The purpose of this study was to elucidate the effect of BSYQF treatment on airway remodeling and investigate its potential mechanisms in chronic asthma. To develop the murine models of chronic asthma, BALB/c mice were sensitized and challenged to ovalbumin for 8 weeks. BSYQF (5, 10, 20 g raw herbs/kg body weight) or tiotropium bromide (0.1 mM) were administered orally and intranasal instillation, respectively. The effect of BSYQF on pulmonary inflammation and remodeling was evaluated. The parameters of oxidative stress in the lung were analyzed. BSYQF treatment reduced airway hyperresponsiveness (AHR), Th2 response including IL-4, IL-13, and OVA-specific IgE and IgG1, transforming growth factor-β (TGF-β), vascular endothelium growth factor (VEGF), airway inflammation and airway remodeling including smooth muscle thickening and peribronchial collagen deposition. As for oxidative stress, BSYQF treatment reduced reactive oxygen species (ROS), Malondialdehyde (MDA), NO, and the expression of inducible nitric oxide synthase (iNOS), but increased significantly glutathione (GSH) /Oxidized glutathione(GSSH) ratios in the lung, restored mitochondrial ultrastructural changes of bronchial epithelia and ATP levels in the lung. In summary, this study suggested that BSYQF treatment ameliorated airway remodeling and alleviated asthmatic features in chronic asthma models. Anti-inflammatory and antioxidant effect of BSYQF may explain why BSYQF has effects on preventing airway remodeling.
Collapse
Affiliation(s)
- Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhao Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ling Li Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hongjian Gao
- Electron Microscope Room, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Luo J, Zhang L, Zhang X, Long Y, Zou F, Yan C, Zou W. Protective effects and active ingredients of Salvia miltiorrhiza Bunge extracts on airway responsiveness, inflammation and remodeling in mice with ovalbumin-induced allergic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:168-177. [PMID: 30599896 DOI: 10.1016/j.phymed.2018.09.170] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/24/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salvia miltiorrhiza Bunge (S. miltiorrhiza), a traditional Chinese medicine, has demonstrated antioxidant, anti-inflammatory, and antibacterial activities. However, its effects against asthma that shows chronic inflammation and oxidative damage remain unknown. PURPOSE To assess the effects of S. miltiorrhiza extracts on airway responsiveness, inflammation, and remodeling in ovalbumin (OVA)-induced asthmatic mice. METHODS Mice with ovalbumin (OVA)-induced allergic asthma were treated with S. miltiorrhiza extracts, and airway resistance (RL) to methacholine, inflammatory cell infiltration, Th1/Th2 cytokine levels, and airway remodeling were assessed. TGF-β1-induced BEAS-2B and MRC-5 cells were used to evaluate the effects of five S. miltiorrhiza compounds on epithelial-mesenchymal transition and fibrosis. RESULTS OVA-challenge resulted in remarkably increased RL, inflammatory cell infiltration, Th1/Th2 cytokine levels in BALF, goblet cell hyperplasia, collagen deposition, and airway wall thickening. Daily treatment with S. miltiorrhiza ethanolic (EE, 246 mg/kg) or water (WE, 156 mg/kg) extract significantly reduced OVA-induced airway inflammatory cell infiltration, Th1/Th2 cytokine amounts, and goblet cells hyperplasia. However, only WE remarkably decreased RL, collagen deposition, and airway wall thickening. Moreover, Chromatography showed that salvianic acid A and caffeic acid levels were much higher in WE than EE, while rosmarinic acid was slightly lower; salvianolic acid B and tanshinone IIA levels were much higher in EE than WE. Interestingly, caffeic acid and rosmarinic acid were more potent in reducing E-cadherin and vimentin levels in TGF-β1-induced BEAS-2B cells, and α-SMA and COL1A1 amounts in TGF-β1-induced MRC-5 cells. CONCLUSIONS Both S. miltiorrhiza WE and EE alleviate airway inflammation in mice with OVA-sensitized allergic asthma. S. miltiorrhiza WE is more potent in reducing responsiveness and airway remodeling.
Collapse
Affiliation(s)
- Junming Luo
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Li Zhang
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China
| | - Xinyi Zhang
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Yingying Long
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Fang Zou
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Chunsong Yan
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China..
| | - Wei Zou
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China.
| |
Collapse
|
30
|
A Real-World Evidence Study for Distribution of Traditional Chinese Medicine Syndrome and Its Elements on Respiratory Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8305892. [PMID: 30643538 PMCID: PMC6311270 DOI: 10.1155/2018/8305892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
Background This study aimed to investigate the distribution and characteristics of traditional Chinese medicine (TCM) syndrome and its elements on respiratory diseases (RDs) based on real-world data (RWD). Methods A real-world study was performed to explore the relationships among TCM syndrome and RDs based on electronic medical information. A total of 26,074 medical records with complete data were available for data analysis. Factor analyses were used to reduce dimensions of TCM syndrome elements and detect common factors. Additionally, cluster analyses were employed to assess combinations of TCM syndrome elements. Finally, association rule analyses were performed to investigate the structures of TCM syndrome elements to estimate the patterns of TCM syndrome. Results A total of 27 TCM syndromes were extracted from RWD in this work. There were four TCM syndromes with >5.0% frequency based on the distribution frequency. The top five pathogenesis TCM syndrome elements were Tan, Huo, Feng, Qi_Xu, and Han. Factor analysis, cluster analysis, and association rule analysis demonstrated that Tan, Huo, Feng, Qi_Xu, Shen, and Fei were the core TCM syndrome elements. Conclusion Four common Shi TCM syndromes on RDs were identified: Tan_Re_Yong_Fei, Tan_Zhuo_Zu_Fei, Feng_Re_Fan_Fei, and Feng_Han_Xi_Fei; two core common Xu TCM syndromes (Fei_Shen_Qi_Xu and Fei_Yin_Xu) and two core common Mix TCM syndromes (Fei_Pi_Qi_Xu-Tan_Shi_Yun_Fei and Fei_Shen_Qi_Xu-Tan_Yu_Zu_Fei) were also determined. The core TCM syndrome elements of Tan, Huo, Feng, Qi_Xu, Shen, and Fei were identified in this work.
Collapse
|
31
|
Li Y, Wang H, Yang X. Effects of catalpol on bronchial asthma and its relationship with cytokines. J Cell Biochem 2018; 120:8992-8998. [PMID: 30536454 DOI: 10.1002/jcb.28170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 01/16/2023]
Abstract
An animal (BALB/c mice) model of catalpol associated with bronchial asthma in vivo was established, and the effects of catalpol and its relationship with cytokines were investigated. A total of 30 adult BALB/c mice were randomly divided into a positive control group, a model group, and a catalpol group, with 10 mice in each group. The lung function of mice, the cell count, and the cytokine concentrations in bronchoalveolar lavage fluid (BALF) were detected. The levels of cytokines [interleukin 4 (IL-4), interleukin 5 (IL5), and interferon gamma (IFN-γ)] in BALF were measured with enzyme-linked immunosorbent assay methods. The total number of cells in the BALF of the group treated with catalpol was significantly lower than the model group. After treatment with catalpol, the eosinophils and neutrophils of the mice were remarkably reduced compared with the model group. The malondialdehyde content in the lung tissue homogenate of the mice was also decreased in the catalpol group. The cytokines IL-5 and IL-4 exhibited a similar tendency: the concentrations of IL-4 and IL-5 for the catalpol group were dramatically decreased compared with the model group. However, the IFN-γ concentration for the catalpol group was higher than the model group. The results indicated that IL-5 may involve in the pathologic process of asthma-like IL-4, and an inflammatory reaction may still exist in the airway during the remission stage of asthma. The imbalances of the cytokine network might be an important molecular basis in the asthma pathogenesis. It is suggested that catalpol may be a potential drug for the clinical treatment of asthma.
Collapse
Affiliation(s)
- Yanlin Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hai Wang
- Department of Pediatrics, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xu Yang
- Department of Pediatrics, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
32
|
Gan L, Li X, Zhu M, Chen C, Luo H, Zhou Q. Acteoside relieves mesangial cell injury by regulating Th22 cell chemotaxis and proliferation in IgA nephropathy. Ren Fail 2018; 40:364-370. [PMID: 29708439 PMCID: PMC6014492 DOI: 10.1080/0886022x.2018.1450762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The existing therapies of IgA nephropathy are unsatisfying. Acteoside, the main component of Rehmannia glutinosa with anti-inflammatory and anti-immune effects, can improve urinary protein excretion and immune disorder. Th22 cell is involved in IgA nephropathy progression. This study was determined to explore the effect of acteoside on mesangial injury underlying Th22 cell disorder in IgA nephropathy. Serum Th22 cells and urine total protein of patients with IgA nephropathy were measured before and after six months treatment of Rehmannia glutinosa acteoside or valsartan. Chemotactic assay and co-culture assay were performed to investigate the effect of acteoside on Th22 cell chemotaxis and differentiation. The expression of CCL20, CCL22 and CCL27 were analyzed. To explore the effect of acteoside on mesangial cell injury induced by inflammation, IL-1, IL-6, TNF-α and TGF-β1 were tested. Results showed that the proteinuria and Th22 lymphocytosis of patients with IgA nephropathy significantly improved after combination treatment of Rehmannia glutinosa acteoside and valsartan, compared with valsartan monotherapy. In vitro study further demonstrated that acteoside inhibit Th22 cell chemotaxis by suppressing the production of Th22 cell attractive chemokines, i.e., CCL20, CCL22 and CCL27. In addition, acteoside inhibited the Th22 cell proliferation. Co-culture assay proved that acteoside could relieve the overexpression of pro-inflammatory cytokines, and prevent the synthesis of TGF-β1. TGF-β1 level in mesangial cells was positively correlated with the Th22 cell. This research demonstrated that acteoside can alleviate mesangial cell inflammatory injury by modulating Th22 lymphocytes chemotaxis and proliferation.
Collapse
Affiliation(s)
- Lu Gan
- Department of Nephrology, First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengyuan Zhu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huimin Luo
- Department of Nephrology, First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Lv Y, Wei Y, Abduwaki M, Jurat T, Li F, Wang H, Wu Y, Li Z, Liu B, Yin H, Cao Y, Nurahmat M, Tang Z, Dong J. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study of the Effects of Loki zupa in Patients With Chronic Asthma. Front Pharmacol 2018; 9:351. [PMID: 29755346 PMCID: PMC5932389 DOI: 10.3389/fphar.2018.00351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to evaluate the efficacy and safety of Uyghur medical formula Loki zupa in patients with chronic asthma. Adult patients with chronic asthma randomly received placebo or Loki zupa as add-on to inhaled corticosteroids (ICS) maintenance treatment. Loki zupa or mimics was administered orally 10 ml per time, three times a day for 8 weeks. The primary endpoints were asthma control test (ACT) score and peak expiratory flow (PEF). The secondary endpoints were acute exacerbation rate, lung function, night waking days, and symptom-free days in the near 2 weeks, Asthma Quality of Life Questionnaire (AQLQ) score and some inflammatory cytokines in peripheral blood. A total of 240 adult patients with chronic asthma were enrolled, and 218 patients were randomized to placebo (n = 109) or Loki zupa (n = 109) in addition to ICS for 8 weeks. Treatment with Loki zupa resulted in significant improvement in ACT score compared to the placebo group (p = 0.002). Furthermore, oral taken of Loki zupa increased the PEF obviously (p = 0.026). Loki zupa treatment did not improve the forced expiratory volume in 1 s (FEV1, p = 0.131) and FEV1/FVC compared to the placebo treatment (p = 0.805). The placebo group had higher rates of acute exacerbations than the Loki zupa group (6.3% vs. 0, p = 0.027). Subjects randomized to Loki zupa had increased daytime symptom-free days within 2 weeks than placebo (p = 0.016). However, Loki zupa had no effect on night waking days in the near 2 weeks (p = 0.369) and AQLQ score (p = 0.113). No significant effect was found on inflammatory cytokines (IL-2, IL-4, IL-5, IL-10, IL-13, IL-17, IL-33, IFN-γ, and TGF-β) between the two groups (p > 0.05). No adverse events and severe asthma exacerbations were recorded in the two groups (p > 0.05). Loki zupa add-on to standard ICS produced clinically significant improvements in ACT score, PEF, daytime symptom-free days and acute exacerbation in patients with chronic asthma. Clinical trial: This study is registered at http://www.chictr.org.cn/ with identifier number ChiCTR-IPR-16008106.
Collapse
Affiliation(s)
- Yubao Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | | | - Tohti Jurat
- Xinjiang Uygur Medical College, Hotan, China
| | - Fengsen Li
- The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Ürümqi, China
| | - Huaizhen Wang
- Department of Respiratory Medicine, First People's Hospital of Kashi, Kashi, China
| | - Yuhua Wu
- Department of Respiratory Medicine, Second People's Hospital of Kashi, Kashi, China
| | - Zheng Li
- The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Ürümqi, China
| | - Bo Liu
- Department of Respiratory Medicine, Xinjiang Production and Construction Corps Seventh Division Hospital, Kuytun, China
| | - Hongjun Yin
- Department of Respiratory Medicine, Xinjiang Production and Construction Corps Seventh Division Hospital, Kuytun, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | | | - Zihui Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Dong J, Lu L, Le J, Yan C, Zhang H, Li L. Philosophical thinking of Chinese Traditional Medicine. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018100018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Traditional medicine is often an integration of ancient philosophy, clinical experiences, primitive knowledge of medicine, regional cultures and religious beliefs. Chinese Traditional Medicine (CTM) is the general appellation of all the traditional medicines of different ethnicities in China, which share great similarities of basic concept and philosophical basis, and conform to the development of empirical medicine, among which the medicine of Han ethnicity (Han medicine) is the most mature. The development of CTM is totally different from that of modern medicine, always revolving around the center of disease diagnosis and treatment, establishing the core theoretical system of Yin and Yang, Five Elements, Zang and Fu and Humoralism with the theoretical foundation of ancient Chinese philosophy, which represents the highest achievement of worldwide empirical medicine and philosophy form at that time. In general, the basic structure of CTM mainly consists of three parts as follows: the part that has already reached consensus with modern medicine, the part that is unconsciously ahead of modern medicine, and the part that needs to be reconsidered or abandoned.
Collapse
Affiliation(s)
- Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Jingjing Le
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
35
|
Effects of icariin on asthma mouse model are associated with regulation of prostaglandin D2 level. Allergol Immunopathol (Madr) 2017; 45:567-572. [PMID: 28669561 DOI: 10.1016/j.aller.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/18/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND We aimed to observe the effect of icariin on an asthma mouse model and explore the potential underlying mechanisms. METHODS The asthma mouse model was established by ovalbumin (OVA) sensitisation and respiratory syncytial virus (RSV) infection and then treated with icariin. Airway resistance was assessed by whole body plethysmograph. In addition, pathological slides were stained with haematoxylin-eosin, and the peribronchial inflammation was observed microscopically. The concentration of prostaglandin D2 (PGD2) in serum and bronchoalveolar lavage fluid (BALF) was detected by enzyme-linked immuno sorbent assay (ELISA). The relative level of prostaglandin D2 receptor 2 (CRTH2) mRNA was assessed by real-time quantitative PCR. RESULTS Compared with the icariin-untreated group, there was a significant reduction of Penh in the treated group. Total leucocyte amount and all sorts of leukocytes were lower in the treated group than in the untreated group. HE staining results revealed that a large number of inflammatory cells infiltrated into the peribronchial tissues of untreated group, and the degree of airway inflammation decreased significantly in the treated group. PGD2 in serum and BALF, as well as CRTH2 mRNA level in lung tissues were lower in the treated group than in the untreated group. CONCLUSION Icariin is a promising therapeutic strategy for asthma, and PGD2 might be a new target for asthma therapy in OVA-induced and RSV-infected asthma model.
Collapse
|
36
|
Liu XM, Wang YB, Wu Q, Bian ZR, Che XW. Effects of Ligustrazine on Airway Inflammation in A Mouse Model of Neutrophilic Asthma. Chin J Integr Med 2017; 24:353-358. [PMID: 29086220 DOI: 10.1007/s11655-017-2830-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the effects of ligustrazine (LTZ) on airway inflammation in a mouse model of neutrophilic asthma (NA). METHODS Forty healthy C57BL/6 female mice were randomly divided into 4 groups using a random number table, including the normal control, NA, LTZ and dexamethasone (DXM) groups, with 10 rats in each group. The NA mice model was established by the method of ovalbumin combined with lipopolysaccharide sensitization. At 0.5 h before each challenge, LTZ and DXM groups were intraperitoneally injected with LTZ (80 mg/kg) or DXM (0.5 mg/kg) for 14 d, respectively, while the other two groups were given the equal volume of normal saline. After last challenge for 24 h, the aerosol inhalation of methacholine was performed and the airway reactivity was measured. The bronchoalveolar lavage fluid (BALF) was collected. The Wright-Giemsa staining was used for total white blood cells and differential counts. The levels of cytokines interleukin (IL)-17 and IL-10 were detected by enzyme-linked immunosorbent assay. The pathological change of lung tissue was observed by hematoxylin eosin staining. RESULTS The airway responsiveness of the NA group was signifificantly higher than the normal control group (P<0.05), while those in the LTZ and DXM groups were signifificantly lower than the NA group (P<0.05). The neutrophil and eosinophil counts in the LTZ and DXM groups were signifificantly lower than the NA group (P<0.05), and those in the LTZ group were signifificantly lower than the DXM group (P<0.05). There were a large number of peribronchiolar and perivascular inflammatory cells in fifiltration in the NA group. The airway inflflammation in the LTZ and DXM groups were signifificantly alleviated than the NA group. The infifiltration in the LTZ group was signifificantly reduced than the DXM group. Compared with the normal control group, the IL-17 level in BALF was signifificantly increased and the IL-10 level in BALF was signifificantly decreased in the NA group (P<0.05). LTZ and DXM treatment signifificantly decreased IL-17 levels and increased IL-10 levels compared with the NA group (P<0.05), and the changes in the above indices were more signifificant in the LTZ group (P<0.05). CONCLUSION LTZ could alleviate the airway inflflammation in the NA mice model through increasing the IL-10 level and decreasing the IL-17 level.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Geriatric Medicine, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, 250011, China
| | - Yong-Bin Wang
- Department of Respiratory Medicine, the Second Hospital of Shandong University, Ji'nan, 250033, China
| | - Qian Wu
- Department of Respiratory Medicine, the Second Hospital of Shandong University, Ji'nan, 250033, China
| | - Zhong-Rui Bian
- Department of Respiratory Medicine, the Second Hospital of Shandong University, Ji'nan, 250033, China
| | - Xiao-Wen Che
- Department of Respiratory Medicine, the Second Hospital of Shandong University, Ji'nan, 250033, China.
| |
Collapse
|
37
|
Huang P, Xin W, Zheng X, Luo F, Li Q, Lv G. Screening of Sceptridium ternatum for antitussive and antiasthmatic activity and associated mechanisms. J Int Med Res 2017; 45:1985-2000. [PMID: 29251256 PMCID: PMC5805222 DOI: 10.1177/0300060517722876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives Sceptridium ternatum is an expectorant in traditional
Chinese medicine and is prescribed for the treatment of asthma. The study
aim was to screen Sceptridium ternatum for ingredients with
antitussive and antiasthmatic effects and to study their associated
mechanisms. Methods Cough in mice was induced using ammonia. Cough latency and the number of
coughs within 3 minutes were determined. Airway responsiveness was assessed
using ovalbumin as a sensitizer and characteristic asthma indicators were
measured. Results Chloroform and ethyl acetate extracts significantly reduced the number of
coughs within 3 minutes, tidal volume, and the percentage of eosinophilic
granulocytes, lymphocytes and neutrophils. All extracts decreased airway
responsiveness in asthmatic mice compared with the untreated group.
Petroleum ether, chloroform and n-butanol extracts lowered the Penh values
of asthmatic mice. Petroleum ether and ethyl acetate extracts greatly
reduced interleukin-4 expression and the interleukin-4/interferon gamma
ratio. Compared with the model group, all extracts reduced mRNA expression
of the cysteinyl leukotriene receptor-1 (CysLT1). Conclusions Chloroform extract and ethyl acetate extract displayed obvious antitussive
effects and reduced airway inflammation. Thus, these two extracts contain
the effective ingredients of Sceptridium ternatum. The
active mechanism was ascribed to inhibition of mRNA expression of the
CysLT1 receptor in mice with bronchial asthma.
Collapse
Affiliation(s)
- Ping Huang
- 1 College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.,2 Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Wenxiu Xin
- 2 Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Xiaowei Zheng
- 2 Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Fang Luo
- 2 Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Qinglin Li
- 2 Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Guiyuan Lv
- 1 College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
38
|
Kong L, Zhang H, Cao Y, Le J, Wu J, Liu B, Chen M, Du Y, Wang J, Wang G, Yi T, Zhou X, Wang G, Miao Q, Li S, Zhao N, Dong J. The Anti-Inflammatory Effects of Invigorating Kidney and Supplementing Qi Chinese Herbal Formulae in Asthma Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:3754145. [PMID: 28740537 PMCID: PMC5504930 DOI: 10.1155/2017/3754145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/27/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The theories of Shen-reinforcement and Qi-supplementation are important in asthma treatment based on traditional Chinese medicine theories. Early studies suggested that Invigorating Kidney and Supplementing Qi herbal formulae, Bu Shen Fang Chuan (BSFC) and Bu Shen Yi Qi (BSYQ), conveyed promising results in asthma treatment. However, the efficacy and safety of the formulae need to be further investigated by a randomized double-blind clinical trial. METHODS 328 eligible patients were randomly sent to BSFC, BSYQ, and placebo group. The two formulae were received as add-on therapy. The primary endpoints were rate of asthma exacerbation and Hamilton Rating Scale for Depression (HAM-D) score. The secondary endpoints included HPA axis function and inflammatory cytokine production profile. All indexes were measured before and after treatment. RESULTS The primary endpoints were not improved in both groups; however, the depression levels of subgroup patients with HAM-D score > 5 were improved in BSFC group. HPA axis functions and inflammatory cytokines level were also improved by two formulae. The incidences of adverse events were similar among groups. CONCLUSIONS The two formulae had multiple advantage effects on neuroendocrine-immune system. They are worth used as a replacement therapy in asthma. TRIAL REGISTRATION This trial is registered with clinical trial number ChiCTR-PRC-09000529.
Collapse
Affiliation(s)
- Lingwen Kong
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Hongying Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuxue Cao
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jingjing Le
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jinfeng Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Baojun Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Meixia Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yijie Du
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Genfa Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Tao Yi
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xianmei Zhou
- Pneumology Department, Jiangsu Provincial Hospital of TCM, Nanjing 210029, China
| | - Gang Wang
- Pneumology Department, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Miao
- Pneumology Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Suyun Li
- Pneumology Department, The First Affiliated Hospital of Henan University of TCM, Zhengzhou City, Henan Province 450008, China
| | - Naiqing Zhao
- Department of Statistics, Fudan University, Shanghai 200032, China
| | - Jingcheng Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
39
|
Asadi-Samani M, Bagheri N, Rafieian-Kopaei M, Shirzad H. Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review. Phytother Res 2017; 31:1128-1139. [DOI: 10.1002/ptr.5837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/24/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Majid Asadi-Samani
- Students Research Committee; Shahrekord University of Medical Sciences; Shahrekord Iran
| | - Nader Bagheri
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute; Shahrekord University of Medical Sciences; Shahrekord Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute; Shahrekord University of Medical Sciences; Shahrekord Iran
| |
Collapse
|
40
|
Chen Y, Zhang Y, Xu M, Luan J, Piao S, Chi S, Wang H. Catalpol alleviates ovalbumin-induced asthma in mice: Reduced eosinophil infiltration in the lung. Int Immunopharmacol 2016; 43:140-146. [PMID: 27992791 DOI: 10.1016/j.intimp.2016.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Radix Rehmanniae Preparata is a traditional Chinese herbal medicine used to treat asthma, and catalpol is one of the main active ingredients in this herb. In the present study, the effects of catalpol on asthma and the underlying mechanism were explored. METHODS Mice with ovalbumin (OVA)-induced asthma were given 5 or 10mg/kg catalpol from Day 15 to Day 28 (intraperitoneal injection). Histopathologic changes were detected by Hematoxylin and Eosin staining and Periodic Acid Schiff staining. The levels of IgE, interleukin (IL)-4, IL-5 and eotaxin were measured by ELISA. The numbers of lymphocytes, monocytes, basophils and eosinophils in the bronchoalveolar lavage fluid were determined by Wright-Giemsa staining. The expression and distribution of eotaxin and C-C chemokine receptor 3 (CCR3) were detected by immunohistochemistry and immunofluorescence. The expression of interleukin-5 receptor α (IL-5Rα) was detected by Western blot assay. RESULTS Catalpol inhibited OVA-induced inflammation and IgE secretion in the lung. OVA-induced type 2 inflammation was suppressed by catalpol as evidenced by decreased levels of IL-4 and IL-5. Moreover, catalpol inhibited the aberrant eosinophil infiltration in the lungs, and also suppressed OVA-induced elevation of eosinophil chemokine eotaxin and its receptor CCR3. In addition, IL-5Rα expression in the bone marrow cells derived from catalpol-treated asthmatic mice was lower than that from the untreated asthmatic mice. CONCLUSION Our study demonstrated that catalpol attenuated OVA-induced asthma and inhibit the infiltration of inflammatory cells, especially eosinophils, into the lung. This study suggests that catalpol may become a promising drug for the treatment of asthma.
Collapse
Affiliation(s)
- Yanyan Chen
- The Second Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yongzheng Zhang
- The Second Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Mingyuan Xu
- Department of Pharmacy, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Junqi Luan
- The First Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shengai Piao
- The First Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shuang Chi
- Department of Endemic Disease, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Hai Wang
- The Second Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
41
|
Liu J, Wei Y, Luo Q, Xu F, Zhao Z, Zhang H, Lu L, Sun J, Liu F, Du X, Li M, Wei K, Dong J. Baicalin attenuates inflammation in mice with OVA-induced asthma by inhibiting NF-κB and suppressing CCR7/CCL19/CCL21. Int J Mol Med 2016; 38:1541-1548. [PMID: 27666000 DOI: 10.3892/ijmm.2016.2743] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 09/09/2016] [Indexed: 11/06/2022] Open
Abstract
Baicalin, extracted and purified from the Chinese medicinal plant, Scutellaria baicalensis Georgi (Huang qin in Chinese), exhibits potent anti-inflammatory activity against asthma. However, it remains unknown whether baicalin inhibits the activity of CC chemokine receptor 7 (CCR7) and its ligands, which are crucial for the initiation of airway inflammation. In the present study, we investigated the effects of baicalin on CCR7 and its ligands, CCL19 and CCL21, as well as on the nuclear factor-κB (NF-κB) pathway in a mouse model of asthma. A mouse model of acute asthma was established by exposing the mice to ovalbumin (OVA) (by intraperitoneal injection and inhalational challenge). Within 24 h of the final OVA challenge, lung function was detected by direct airway resistance analysis. Lung tissues were examined for pathological changes. Inflammatory cell counts in bronchoalveolar lavage fluid (BALF) were assessed. ELISA was utilized to evaluate the OVA-IgE, CCL19 and CCL21 levels in BALF. The interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels in serum were also detected by ELISA. The protein expression levels of CCR7, as well as that of phosphorylated IκBα (p-IκBα) and phosphorylated p65 (p-p65) were determined by western blot analysis and RT-qPCR was used to determine the CCR7 mRNA levels. Our data demonstrated that the oral administration of baicalin significantly improved pulmonary function and attenuated inflammatory cell infiltration into the lungs. Baicalin also decreased the levels of OVA-IgE, IL-6, TNF-α and CCR7, as well as those of its ligand, CCL19; the levels of NF-κB were also markedly suppressed by baicalin. The CCR7 mRNA level was substantially decreased. Our results thus suggest that baicalin exerts an inhibitory effect on airway inflammation, and this effect may be associated with the inhibition of CCR7 and CCL19/CCL21, which may provide new mechanistic insight into the anti‑inflammatory effects of baicalin.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fei Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xin Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Kai Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
42
|
Zhou T, Ding JW, Wang XA, Zheng XX. Long noncoding RNAs and atherosclerosis. Atherosclerosis 2016; 248:51-61. [PMID: 26987066 DOI: 10.1016/j.atherosclerosis.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is universally recognized as a chronic lipid-induced inflammation of the vessel wall in response to dyslipidemia and haemodynamic stress involving dysfunction and activation of resident vascular cells as well as infiltration of leukocytes. As members of nonprotein-coding RNAs, the long noncoding RNAs (lncRNAs) are implicated in various biological processes. Accumulating evidences suggest that lncRNAs regulate the function of vascular wall, activation of macrophages, lipid metabolism and immune response. Here, we review the effects of lncRNAs on the progress of atherosclerosis.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jia-wang Ding
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China.
| | - Xin-an Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xia-xia Zheng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
43
|
Lee JW, Shin NR, Park JW, Park SY, Kwon OK, Lee HS, Hee Kim J, Lee HJ, Lee J, Zhang ZY, Oh SR, Ahn KS. Callicarpa japonica Thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:1-8. [PMID: 26342519 DOI: 10.1016/j.jep.2015.08.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/23/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa japonica Thunb. (CJT) is traditionally used as an herbal remedy for the treatment of inflammatory diseases in Korea, China, and Japan. In this study, we evaluated the effects of C. japonica Thunb. (CJT) on the development of COPD using a Cigarette smoke (CS)-induced murine model and cigarette smoke condensate (CSC)-stimulated H292 cells, human pulmonary mucoepidermoid cell line. MATERIAL AND METHODS C. japonica Thunb. was isolated from the leaves and stem of C. japonica. The methanol extract profile was obtained by UPLC Q-TOF-MS analysis. In in vivo experiment, the mice received 1h of cigarette smoke for 10 days. C. japonica Thunb. was administered to mice by oral gavage 1h before cigarette smoke exposure for 10 days. In in vitro experiment, we evaluated the effect of C. japonica Thunb. on the expression of MUC5AC and proinflammatory cytokines in H292 cells stimulated with CSC. RESULTS CJT treatment effectively suppressed the infiltration of neutrophils, and decreased the production of ROS and the activity of neutrophil elastase in the bronchoalveolar lavage fluid (BALF) induced by CS. CJT also significantly attenuated production of proinflammatory cytokines such as IL-6 and TNF-α in the BALF, and reduced the infiltration of inflammatory cells and the production of mucus in lung tissue induced by CS. In in vitro experiments, CJT decreased the expression of MUC5AC and proinflammatory cytokines in CSC-stimulated H292 cells. Furthermore, CJT attenuated the phosphorylation of ERK induced by CSC in H292 cells. Taken together, CJT effectively reduced the neutrophil airway inflammation and mucus secretion induced by CS in murine model, and inhibited the expression of MUC5AC in CSC-stimulated H292 human lung cell line. These findings suggest that CJT has a therapeutic potential for the treatment of COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Na-Rae Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - So-Yeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Han-Sol Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Joongku Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Zhi-yun Zhang
- State Key Labtoratory of Systematic and Evolutionary Botany (LSEB) Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea; Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea; International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; State Key Labtoratory of Systematic and Evolutionary Botany (LSEB) Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China.
| |
Collapse
|