1
|
Bajinka O, Ouedraogo SY, Li N, Zhan X. Multiomics as instrument to promote 3P medical approaches for the overall management of respiratory syncytial viral infections. EPMA J 2025; 16:217-238. [PMID: 39991100 PMCID: PMC11842696 DOI: 10.1007/s13167-024-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/29/2024] [Indexed: 02/25/2025]
Abstract
Respiratory syncytial viral (RSV) infection is a leading persisting pulmonary disease-causing agent. It causes loss of lives especially among infants, old ages, and adults immunocompromised individuals. This viral pathogen infects children more especially those under the age of 2 and may lead to death. It causes 3 million hospitalizations and up to 60,000 deaths annually for under the age of 5. The most vulnerable are immunocompromised individuals and asthmatic children with suboptimal antiviral defenses. It is associated with bronchiolitis, pneumonia, and bronchopneumonia. Despite all the current interventions and clinical trials, the only available therapeutic strategies for this viral infection are palliative care. Therefore, it is imperative to understand the pathogenicity of RSV and the corresponding host immune response to depict a sort of a targeted intervention. With the increasingly cutting-edge methods in harnessing the pathogenicity of this viral infection, high throughput systems including omics technological advances are at the spotlight. For instance, the associated genes with RSV complications for the host, the set of microbiome identified as operational taxonomic unit, the upregulated or downregulated metabolites, the protein subtypes, and the small molecules can help explain the viral microenvironment. Moreover, these big data will lead to RSV patients' stratification through individualized patient profiles that will bring in targeted prevention and treatment algorithms tailored to individualized patients' profiles. Through this, the virus and host interactions based on the pathogenicity of infection will provide a strong ground for depicting the prevention, prediction, and personalized medicine (3PM) for RSV. The 3PM approach brought cutting edge functional medicine to the healthcare givers, thus conferring targeted prevention and precision medicine while observing personalized treatment as well as preventive regularities. The viral replication mechanisms against the host defense mechanisms are crucial for the development of safe and effective therapy. Integrative personal omics profiles, whose analysis is based on the combined proteomics, transcriptomics, genomics, proteoformics, metabolomics, and autoantibody profiles, are very robust for predicting the risk of RSV infection. The targeted prevention will emerge from the patient stratification when the diagnosis is accurately predicted. In addition, the personalized medical services will give an effective prognostic assessment for RSV complications.
Collapse
Affiliation(s)
- Ousman Bajinka
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
2
|
Zhang L, Wang X, Wang W, Ning E, Chen L, Li Z, Yu L, Li X, Zong W. Metabolomic analysis reveals the changing trend and differential markers of volatile and nonvolatile components of Artemisiae argyi with different aging years. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1286-1293. [PMID: 38665054 DOI: 10.1002/pca.3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 03/24/2024] [Indexed: 08/03/2024]
Abstract
INTRODUCTION Artemisia argyi Folium (AAF) is a traditional medicinal herb and edible plant. Analyzing the differential metabolites that affect the efficacy of AAF with different aging years is necessary. OBJECTIVE The aim of the study was to investigate the changing trend and differential markers of volatile and nonvolatile metabolites of AAF from different aging years, which are necessary for application in clinical medicine. METHODOLOGY Metabolites were analyzed using a widely targeted metabolomic approach based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS). RESULTS A total of 153 volatile metabolites and 159 nonvolatile metabolites were identified. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) could clearly distinguish AAF aged for 1 year (AF-1), 3 years (AF-3), and 5 years (AF-5). Seven flavonoids and nine terpenoids were identified as biomarkers for tracking the aging years. CONCLUSIONS The metabolomic method provided an effective strategy for tracking and identifying biomarkers of AAF from different aging years. This study laid the foundation for analysis of the biological activity of Artemisia argyi with different aging years.
Collapse
Affiliation(s)
- Lixian Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | | | - Wei Wang
- Henan Academy of Sciences, Zhengzhou, China
| | | | - Ling Chen
- Henan Academy of Sciences, Zhengzhou, China
| | - Zhining Li
- Henan Academy of Sciences, Zhengzhou, China
| | - Liqin Yu
- Henan Academy of Sciences, Zhengzhou, China
| | - Xiao Li
- Henan Academy of Sciences, Zhengzhou, China
| | - Wei Zong
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
3
|
Chen H, Chen J, Feng L, Shao H, Zhou Y, Shan J, Lin L, Ye J, Wang S. Integrated network pharmacology, molecular docking, and lipidomics to reveal the regulatory effect of Qingxuan Zhike granules on lipid metabolism in lipopolysaccharide-induced acute lung injury. Biomed Chromatogr 2024; 38:e5853. [PMID: 38486466 DOI: 10.1002/bmc.5853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/21/2024]
Abstract
Qingxuan Zhike granules (QXZKG), a traditional Chinese patent medication, has shown therapeutic potential against acute lung injury (ALI). However, the precise mechanism underlying its lung-protective effects requires further investigation. In this study, integrated network pharmacology, molecular docking, and lipidomics were used to elucidate QXZKG's regulatory effect on lipid metabolism in lipopolysaccharide-induced ALI. Animal experiments were conducted to substantiate the efficacy of QXZKG in reducing pro-inflammatory cytokines and mitigating pulmonary pathology. Network pharmacology analysis identified 145 active compounds that directly targeted 119 primary targets of QXZKG against ALI. Gene Ontology function analysis emphasized the roles of lipid metabolism and mitogen-activated protein kinase (MAPK) cascade as crucial biological processes. The MAPK1 protein exhibited promising affinities for naringenin, luteolin, and kaempferol. Lipidomic analysis revealed that 12 lipids showed significant restoration following QXZKG treatment (p < 0.05, FC >1.2 or <0.83). Specifically, DG 38:4, DG 40:7, PC O-40:8, TG 18:1_18:3_22:6, PI 18:2_20:4, FA 16:3, FA 20:3, FA 20:4, FA 22:5, and FA 24:5 were downregulated, while Cer 18:0;2O/24:0 and SM 36:1;2O/34:5 were upregulated in the QXZKG versus model groups. This study enhances our understanding of the active compounds and targets of QXZKG, as well as the potential of lipid metabolism in the treatment of ALI.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Shao
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ye
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Chen H, Chen JB, Du LN, Yuan HX, Shan JJ, Wang SC, Ye J, Lin LL. Integration of lipidomics and metabolomics reveals plasma and urinary profiles associated with pediatric Mycoplasma pneumoniae infections and its severity. Biomed Chromatogr 2024; 38:e5817. [PMID: 38131121 DOI: 10.1002/bmc.5817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Mycoplasma pneumoniae is a significant contributor to lower respiratory infections in children. However, the lipidomics and metabolics bases of childhood M. pneumoniae infections remain unclear. In this study, lipidomics and metabolomics analyses were conducted using UHPLC-LTQ-Orbitrap XL mass spectrometry and gas chromatography-triple quadrupole mass spectrometry on plasma (n = 65) and urine (n = 65) samples. MS-DIAL software, in combination with LipidBlast and Fiehn BinBase DB, identified 163 lipids and 104 metabolites in plasma samples, as well as 208 metabolites in urine samples. Perturbed lipid species (adjusted p < 0.05) were observed, including lysophosphatidylethanolamines, phosphatidylinositols, phosphatidylcholines, phosphatidylethanol amines, and triglycerides. Additionally, differential metabolites (adjusted p < 0.05) exhibited associations with amino acid metabolism, nucleotide metabolism, and energy metabolism. Thirteen plasma metabolites, namely l-hydroxyproline, 3-phosphoglycerate, citric acid, creatine, inosine, ribitol, α tocopherol, cholesterol, cystine, serine, uric acid, tagatose, and glycine, showed significant associations with disease severity (p < 0.05) and exhibited distinct separation patterns in M. pneumoniae-infected bronchitis and pneumonia, with an area under the curve of 0.927. Nine of them exhibited either positive or negative correlations with neutrophil or lymphocyte percentages. These findings indicated significant systemic metabolic shifts in childhood M. pneumoniae infections, offering valuable insights into the associated metabolic alterations and their relationship with disease severity.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Bin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li-Na Du
- Department of Chinese Medicine, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hai-Xia Yuan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Jun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shou-Chuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ye
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Ding J, Li J, Zhang Z, Du Y, Liu Y, Wang P, Du H. Network pharmacology combined with metabolomics to explore the mechanism for Lonicerae Japonicae flos against respiratory syncytial virus. BMC Complement Med Ther 2023; 23:449. [PMID: 38087272 PMCID: PMC10714634 DOI: 10.1186/s12906-023-04286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) stands out as a primary contributor to lower respiratory tract infections and hospitalizations, particularly in infants. Lonicerae japonicae flos (LJF), a traditional Chinese medicine renowned for its efficacy against various viral infections, including RSV, has been widely employed. Despite its common use, the precise therapeutic mechanism of LJF against RSV remains elusive. This study aimed to investigate the underlying mechanism of LJF against RSV through network pharmacology and metabolomics. METHODS In this study, based on network pharmacology, potential targets related to LJF and RSV were obtained from PubChem and Swiss Target Prediction. The core targets and pathways were established and verified by enrichment analysis and molecular docking. The anti-RSV efficacy of LJF was determined by in vitro experiments. Additionally, metabolomics analysis was integrated, allowing for the identification of differential metabolites and their correlation with targets following LJF treatment in the context of RSV infection. RESULTS A total of 23 active ingredients and 780 targets were obtained, of which 102 targets were associated with LJF anti-RSV. The construction of the corresponding Protein-Protein Interaction (PPI) network unveiled potential core targets, including STAT3, TNF, and AKT1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that LJF's anti-RSV effects primarily involve key pathways such as the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and FoxO signaling pathway. Molecular docking showed that ZINC03978781, 4,5'-Retro-.beta.,.beta.-Carotene -3,3'-dione, 4',5'-didehydro and 7-epi-Vogeloside had better binding ability. The cellular assay showed that the therapeutic index of LJF against RSV was 4.79. Furthermore, 18 metabolites were screened as potential biomarkers of LJF against RSV, and these metabolites were mainly involved in the pathways of purine metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, and other related pathways. CONCLUSIONS The intergration of network pharmacology and metabolomics can clarify the active targets and related pathways of LJF against RSV, which could provide a valuable reference for further research and clinical application of LJF.
Collapse
Affiliation(s)
- Jie Ding
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jing Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhe Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxuan Du
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 117004, China
| | - Yuhong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China.
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
6
|
An L, Lu M, Xu W, Chen H, Feng L, Xie T, Shan J, Wang S, Lin L. Qingfei oral liquid alleviates RSV-induced lung inflammation by promoting fatty-acid-dependent M1/M2 macrophage polarization via the Akt signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115637. [PMID: 35970312 DOI: 10.1016/j.jep.2022.115637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Respiratory syncytial virus (RSV) is a common pathogen that causes lower respiratory tract disease in infants and the elderly, and no vaccination is presently available. Qingfei oral liquid (QF), a traditional Chinese medicine formula, has been shown in clinic to have anti-inflammatory properties. AIM OF THE STUDY The present study investigated whether QF can suppress RSV-induced lung inflammation in mice models via fatty acid-dependent macrophage polarization. MATERIAL AND METHODS BALB/c mice were given a low, medium, or high dose of QF intragastrically for four consecutive days following RSV infection. The lung inflammatory status was assessed using H&E staining and cytokine assays. The active components of QF and fatty acid metabolism were analyzed using ultra-high-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). A lipid metabolism-related pathway was found through network pharmacology and molecular docking investigations. Western blotting assays were used to determine the levels of ATP-citrate lyase (ACLY), peroxisome proliferation-activated receptor alpha (PPAR), Akt protein kinase B and its phosphorylated form in Akt signaling. Flow cytometry was used to quantify the number of macrophage subtypes (M1/M2), and immunohistochemistry was used to examine the expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1). RESULTS In the lung tissues of RSV-infected mice, QF suppressed the transcription of pro-inflammatory proteins such as interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), while increasing the level of anti-inflammatory factors such as interleukin-10 (IL-10). The alterations in metabolic enzyme activity mediated by Akt signaling were linked to QF's significant reduction in lung fatty acid accumulation. Lower ACLY expression and higher PPAR expression were found after QF treatment, showing that these two enzymes were downstream targets of Akt signaling, controlling fatty acid synthesis (FAS) and fatty acid oxidation (FAO), respectively. The reprogramming of fatty acid metabolism resulted in the polarization of macrophages from M1 to M2, with lower expression of iNOS and higher expression of Arg-1. Additionally, application of an Akt agonist (SC-79) reduced QF's anti-inflammatory effects by increasing FAS and decreasing macrophage polarization. CONCLUSIONS QF inhibited Akt-mediated FAS and polarized M1 to M2 macrophages, resulting in an anti-inflammatory impact.
Collapse
Affiliation(s)
- Li An
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weichen Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Li R, Zhao YL, Qin F, Zhao Y, Xiao XR, Cao WY, Fan MR, Wang SG, Wu Y, Wang B, Fan CZ, Guo ZN, Yang QN, Zhang WT, Li XG, Li F, Luo XD, Gao R. The clinical population pharmacokinetics, metabolomics and therapeutic analysis of alkaloids from Alstonia scholaris leaves in acute bronchitis patients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153979. [PMID: 35176533 DOI: 10.1016/j.phymed.2022.153979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Capsule of alkaloids from leaf of Alstonia scholaris (CALAS) is a new investigational botanical drug (No. 2011L01436) for respiratory disease. Clinical population pharmacokinetics (PK), metabolomics and therapeutic data are essential to guide dosing in patients. Previous research has demonstrated the potential therapeutic effect of CALAS on acute bronchitis. Further clinical trial data are needed to verify its clinical efficacy, pharmacokinetics behavior, and influence of dosage and other factors. PURPOSE To verify the clinical efficacy and explore the potential biomarkers related to CALAS treatment for acute bronchitis. MATERIALS AND METHODS Oral CALAS was assessed in a randomized, double-blind, placebo-controlled trial. Fifty-five eligible patients were randomly assigned to four cohorts to receive 20, 40 or 80 mg, of CALAS three times daily for seven days, or placebo. Each CALAS cohort included 15 subjects, and the placebo group included 10 subjects. A population PK model of CALAS was developed using plasma with four major alkaloid components. Metabolomics analysis was performed to identify biomarkers correlated with the therapeutic effect of CALAS, and efficacy and safety were assessed based on clinical symptoms and adverse events. RESULTS The symptoms of acute bronchitis were alleviated by CALAS treatment without serious adverse events or clinically significant changes in vital signs, electrocardiography or upper abdominal Doppler ultrasonography. Moreover, one compartment model with first-order absorption showed that an increase in aspartate transaminase will reduce the clearance (CL) of scholaricine, and picrinine CL was inversely proportional to body mass index, while 19-epischolaricine and vallesamine CL increased with aging. The serum samples from acute bronchitis patients at different time points were analyzed using UPLC-QTOF in combination with the orthogonal projection to latent structures-discriminant analysis, which indicated higher levels of lysophosphatidylcholines, lysophosphatidylethanolamines and amino acids with CALAS treatment than with placebo. CONCLUSION This is the first study to evaluate the clinical efficacy and explored the potential biomarkers related to CALAS therapeutic mechanism of acute bronchitis by means of clinical trial combined the metabolomics study. This exploratory study provides a basis for further research on clinical efficacy and optimal dosing regimens based on pharmacokinetics behavior. Additional acute bronchitis patients and CALAS PK samples collected in future studies may be used to improve model performance and maximize its clinical value.
Collapse
Affiliation(s)
- Rui Li
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Feng Qin
- Department of Analytical Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yang Zhao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Wei-Yi Cao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Mao-Rong Fan
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Shu-Ge Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Yi Wu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Bing Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Chang-Zheng Fan
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Zhong-Ning Guo
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Qiao-Ning Yang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Wan-Tong Zhang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Xin-Gang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, PR China.
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China.
| |
Collapse
|
8
|
Lin L, An L, Chen H, Feng L, Lu M, Liu Y, Chu C, Shan J, Xie T, Wang X, Wang S. Integrated Network Pharmacology and Lipidomics to Reveal the Inhibitory Effect of Qingfei Oral Liquid on Excessive Autophagy in RSV-Induced Lung Inflammation. Front Pharmacol 2021; 12:777689. [PMID: 34925035 PMCID: PMC8672039 DOI: 10.3389/fphar.2021.777689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Respiratory syncytial virus (RSV) can cause varying degrees of lung inflammation in children. Qingfei Oral Liquid (QF) is effective in treating childhood RSV-induced lung inflammation (RSV-LI) in clinics, but its pharmacological profiles and mechanisms remain unclear. Methods: This study combined network Pharmacology, lipidomics, pharmacodynamics, and pathway validation to evaluate the therapeutic mechanisms of QF. Using Cytoscape (v3.8.2) and enrichment analyses from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), a global view of the putative compound-target-pathway network was created. The corresponding lipidomic profiles were then used to detect differently activated lipids, revealing the metabolic pathway, using ultra-high-performance liquid chromatography linked to hybrid Quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS). Meanwhile, the in vivo efficiency of QF, the enrichment pathway, and the excessive autophagy inhibition mechanisms were validated in RSV-infected mice models. Results: The network pharmacology results demonstrated 117 active compounds acted directly upon 101 core targets of QF against RSV-LI. The most significantly enriched pathway was the PI3K/Akt/mTOR signaling pathway (p < 0.05). In addition, untargeted lipidomics were performed, and it was revealed that higher lung levels of DAG 30:0, DAG 30:5, DAG 32:0, DAG 16:0_18:0, DAG 17:0_17:0, DAG 34:1, DAG 36:0, DAG 36:1 in the RSV-LI group were decreased after QF administration (FDR < 0.05, FC > 1.2). Lipin-1, a key enzyme in DAG synthesis, was increased in the RSV-LI mouse model. Animal experiments further validated that QF inhibited the PI3K/Akt/mTOR signaling pathway, with lower lung levels of phosphorylated PI3K, AKT and mTOR, as well as its related proteins of lipin-1 and VPS34 (p < 0.01). Finally, pharmacodynamic investigations indicated that QF reduced airway inflammation caused by excessive autophagy by decreasing lung levels of RSV F and G proteins, Beclin-1, Atg5, and LC3B II, IL-1 and TNF-α (p < 0.05). Conclusion: Lipidomic-based network pharmacology, along with experimental validation, may be effective approaches for illustrating the therapeutic mechanism of QF in the treatment of RSV-LI.
Collapse
Affiliation(s)
- Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li An
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuling Liu
- Department of Pediatrics, Nanjing Pukou District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Chu Chu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaorong Wang
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
An L, Lin L, Wang S, Xie T, Yang Y, Zhai W, Du L, Li W, Shen C, Zhang Y, Shan J. Plasma characteristic metabolites of pediatric community-acquired pneumonia in traditional Chinese medicine syndrome differentiation. Anat Rec (Hoboken) 2021; 304:2579-2591. [PMID: 34549900 DOI: 10.1002/ar.24767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Community-acquired pneumonia (CAP) is the leading cause of lower respiratory tract infections in children. Heat syndrome (HS) and cold syndrome (CS) are two main syndrome types of pediatric CAP in traditional Chinese medicine (TCM). This study aimed to identify plasma metabolic profiles in pediatric CAP and to further select potential biomarkers to distinguish between HS and CS. An ultra-performance liquid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry method was applied to plasma samples of 296 patients and 55 healthy controls (HC). The samples were divided into the discovery group (n = 213, HS = 160, CS = 23, HC = 30) and the validation group (n = 138, HS = 93, CS = 20, HC = 25). The orthogonal partial least-squares discriminant analysis, the value of fold change, and Kruskal-Wallis test with false discovery rate correction (q-value <0.05) were applied to identify differential plasma metabolites. The area under the ROC curve (AUC) was used to evaluate the diagnostic performance of the screened metabolites. The results showed that the plasma levels of aspartic acid, phenylalanine, arginine, lysoPC20:1, lysoPE16:0, lysoPE18:0, and PE (16:0_22:6) were increased in CS compared with HC. The plasma levels of PC (18:1_18:1), PC (20:4_20:4), PE (16:0_18:2), lysoPE20:4, lysoPE18:2, and lysoPE22:6 were decreased, whereas, the plasma level of ceramide (d18:1_24:1) was increased in HS compared with HC. There were 13 differential metabolites in CS (AUC = 0.995) and 15 differential metabolites in HS (AUC = 0.954), compared with HC. A panel of seven biomarkers, including LysoPC20:1, lysoPE16:0, lysoPE18:2, lysoPE20:4, lysoPE22:6, PC (18:1_18:1), and PC (20:4_20:4) showed good discrimination between HS and CS with an AUC of 0.982. Altered plasma amino acids and lipids may provide an objective basis for TCM syndrome differentiation in pediatric CAP.
Collapse
Affiliation(s)
- Li An
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- Department of Chinese Medicine, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wensheng Zhai
- Department of Pediatrics of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Du
- Department of Chinese Medicine, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Weiwei Li
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Genome Center of UC Davis, NIH West Coast Metabolomics Center, Davis, California, USA
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Sun Z, Wu H, Wu Y, Wang C, Wang Y, Hu S, Du S. Comparative Analysis of Compatibility Influence on Invigorating Blood Circulation for Combined Use of Panax Notoginseng Saponins and Aspirin Using Metabolomics Approach. Front Pharmacol 2021; 12:544002. [PMID: 33995000 PMCID: PMC8120290 DOI: 10.3389/fphar.2021.544002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/24/2021] [Indexed: 01/03/2023] Open
Abstract
The combined use of Panax notoginseng saponins (PNS)-based drugs and aspirin (ASA) to combat vascular diseases has achieved good clinical results. In this study, the superior efficacy was observed via the combined use of PNS and ASA on acute blood stasis rats, and untargeted metabolomics was performed to holistically investigate the therapeutic effects of coupling application and its regulatory mechanisms. The combined use of PNS and ASA exhibited better improvement effects when reducing the evaluated hemorheological indicators (whole blood viscosity, plasma viscosity, platelet aggregation, and fibrinogen content) in the blood stasis rats vs. single use of PNS or ASA at the same dose. The combined use of both drugs was the most effective application method, as shown by the relative distance in partial least-squares discriminant analysis score plots. Twelve metabolites associated with blood stasis were screened as potential biomarkers and were mainly involved in amino acid metabolism, lipid metabolism, and energy metabolism. After coherently treated with PNS and ASA, the altered metabolites could be partially adjusted to be closer to normal levels than single use. The collective results revealed that PNS could cooperate with ASA to treat blood stasis and provided a scientific explanation for the superior efficacy of their combined use.
Collapse
Affiliation(s)
- Zongxi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Guangxi International Zhuang Medicine Hospital, Nanning, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Huichao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chenglong Wang
- Institute of Ethnic Medicine, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
OUYANG Y, CHI L, XU C, ZHAO X, CUI Z. [Liquid chromatography-mass spectrometry-based metabolomics study of the efficacy of Chinese medicine asthma-relieving decoction on respiratory syncytial virus infection]. Se Pu 2021; 39:281-290. [PMID: 34227309 PMCID: PMC9403810 DOI: 10.3724/sp.j.1123.2020.06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause lower respiratory tract infections, such as bronchiolitis in infants. In China, traditional asthma-relieving medicine has numerous clinical applications in the treatment of RSV infections. However, due to the complexity of the traditional Chinese medicine system, its therapeutic mechanism and main pharmacological components remain unclear. Metabolomics can be used to analyze the efficacy of traditional Chinese medicine to provide modern scientific evidence for such treatments. In this study, an animal model experiment was performed with seven groups of three-week-old rats. The model group and five intervention groups were inoculated nasally with RSV for three consecutive days, and the normal group was treated with the same amount of saline for three consecutive days under the same conditions. In parallel, the five intervention groups were treated separately with the following via intragastric administration for seven consecutive days: asthma-relieving traditional Chinese medicine decoction, its three constituent agents (ascending (xuan) therapy, descending (jiang) therapy, pyretic clearing (qing) therapy), and ribavirin. Both normal group and RSV model group were administered with normal saline via intragastric administration as controls for seven consecutive days. The fundus plasma of rats in each group was collected on day 0, day 3, and day 7. Liquid chromatography-mass spectrometry-based untargeted metabolomics analysis was performed to investigate the changes in the metabolome after RSV infection, the effects of the asthma-relieving decoction on the regulation of metabolites related to RSV infection, and the primary source of efficacy. The detected metabolite ions were corrected using internal standards. Multivariate analysis of ions with an RSD value of less than 30% in quality control (QC) samples was used to construct principal component analysis models to monitor the overall metabolic changes of each group. The results showed that, during RSV infection and treatment, the asthma-relieving decoction and the positive control ribavirin had similar effects on the overall metabolic regulation of RSV-infected rats. Among the three asthma-relieving decoction constituent agents, the ascending (xuan) therapy agents which was composed of ephedra and ginkgo had a closer metabolic regulation effect with asthma-relieving decoction, and might be the main source of pharmacological efficacy. Based on the retention time, m/z value and tandem mass spectra in the database established by our laboratory, a total of 150 metabolites were identified. Paired t-tests were performed using data of the identified metabolites before and after RSV infection in each group, and it was found that 83 metabolite levels significantly changed after RSV infection, indicating that RSV infection could lead to disorders of multiple metabolic pathways in rats. The altered pathways included aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine, and tryptophan biosynthesis, primary bile acid biosynthesis, phenylalanine metabolism and sphingomyelin metabolism. On the third day, the asthma-relieving decoction had regulatory effects on several metabolites such as bile acids, amino acids, organic acids, lipids, etc. Among the three asthma-relieving decoction constituent agents, the ascending (xuan) therapy agents had more similar effects on the regulation of metabolites with the asthma-relieving decoction. On the other hand, the descending (jiang) therapy agents and pyretic clearing (qing) therapy agents down-regulated the abnormal increase in acylcarnitine caused by the RSV infection. Additionally, both asthma-relieving decoction and its constituent agents could maintain the stability of the immune system and metabolism of the intestinal flora in rats. This study used metabolomics to evaluate the efficacy of an asthma-relieving decoction and demonstrate the metabolites and the corresponding changes after asthma-relieving decoction-based treatment. It provides theoretical support for research on the therapeutic mechanism and active ingredients of asthma-relieving decoction.
Collapse
|
12
|
Yu XC, Fu Y, Bi YH, Zhang WW, Li J, Ji T, Chao Y, Meng QH, Chen Q, Ma MH, Zhang YH, Shan J, Bian HM. Alisol B 23-acetate activates ABCG5/G8 in the jejunum via the LXRα/ACAT2 pathway to relieve atherosclerosis in ovariectomized ApoE -/- mice. Aging (Albany NY) 2020; 12:25744-25766. [PMID: 33234731 PMCID: PMC7803561 DOI: 10.18632/aging.104185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Phytosterols have been shown to improve blood lipid levels and treat atherosclerosis. This research investigated the effects of phytosterol Alisol B 23-acetate (AB23A) on jejunum lipid metabolism and atherosclerosis. The results show that intragastric administration of AB23A can significantly reduce atherosclerotic plaque area and lipid accumulation in the jejunum of ovariectomized ApoE-/- mice fed a high-fat diet and can also improve the lipid mass spectra of the plasma and jejunum. In vitro studies have shown that AB23A can increase cholesterol outflow in Caco-2 cells exposed to high fat concentrations and increase the expression of ATP-binding cassette transfer proteins G5/G8 (ABCG5/G8), the liver X receptor α (LXRα). Furthermore, inhibition of LXRα can significantly eliminate the active effect of AB23A on decreasing intracellular lipid accumulation. We also confirmed that AB23A has a negative effect on Acyl-CoA cholesterol acyltransferase 2 (ACAT2) in Caco-2 cells cultured in the high concentrations of fat, and we found that AB23A further reduces ACAT2 expression in cells treated with the ACAT2 inhibitor pyripyropene or transfected with ACAT2 siRNA. In conclusion, we confirmed that AB23A can reduce the absorption of dietary lipids in the jejunum by affecting the LXRα-ACAT2-ABCG5/G8 pathway and ultimately exert an anti-atherosclerotic effect.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/drug effects
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/drug effects
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Caco-2 Cells
- Cholestenones/pharmacology
- Cholesterol/metabolism
- Cholesterol Esters/metabolism
- Diet, High-Fat
- Female
- Glycerophospholipids/metabolism
- Humans
- Jejunum/drug effects
- Jejunum/metabolism
- Jejunum/pathology
- Lipid Droplets/drug effects
- Lipid Droplets/metabolism
- Lipid Droplets/pathology
- Lipid Metabolism/drug effects
- Lipoproteins/drug effects
- Lipoproteins/metabolism
- Liver X Receptors/drug effects
- Liver X Receptors/metabolism
- Mice
- Mice, Knockout, ApoE
- Ovariectomy
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Sterol O-Acyltransferase/drug effects
- Sterol O-Acyltransferase/metabolism
- Triglycerides/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Xi-Chao Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Hui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Hai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Hua Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Han Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Min Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- National Standard Laboratory of Pharmacology of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
13
|
Zardini Buzatto A, Sarkar I, van Drunen Littel-van den Hurk S, Li L. Comprehensive Lipidomic and Metabolomic Analysis for Studying Metabolic Changes in Lung Tissue Induced by a Vaccine against Respiratory Syncytial Virus. ACS Infect Dis 2020; 6:2130-2142. [PMID: 32633123 DOI: 10.1021/acsinfecdis.0c00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infections in young children. Although the disease may be severe in immunocompromised, young, and elderly people, there is currently no approved vaccine. We previously reported the development and immunological assessment of a novel intranasal vaccine formulation consisting of a truncated version of the RSV fusion protein (ΔF) combined with a three-component adjuvant (TriAdj). Now, we aim to investigate the mechanism of action of the ΔF/TriAdj formulation by searching for metabolic alterations caused by intranasal immunization and the RSV challenge. We carried out untargeted lipidomics and submetabolome profiling (carboxylic acids and amine/phenol-containing metabolites) of lung tissue from ΔF/TriAdj-immunized and nonimmunized, RSV-challenged mice. We observed significant changes of lipids involved in the lung surfactant layer for the nonimmunized animals compared to healthy controls but not for the immunized mice. Metabolic pathways involving the synthesis and regulation of amino acids and unsaturated fatty acids were also modulated by immunization and the RSV challenge. This study illustrates that lipidomic and metabolomic profiling could provide a more comprehensive understanding of the immunological and metabolic alterations caused by RSV and the modulation effected by the ΔF/TriAdj formulation.
Collapse
Affiliation(s)
| | - Indranil Sarkar
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
- Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
- Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
14
|
Xiao X, Zhang T, Huang J, Zhao Q, Li F. Effect of CYP3A4 on liver injury induced by triptolide. Biomed Chromatogr 2020; 34:e4864. [PMID: 32330997 DOI: 10.1002/bmc.4864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/22/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Triptolide (TP), one of the main bioactive diterpenes of the herbal medicine Tripterygium wilfordii Hook F, is used for the treatment of autoimmune diseases in the clinic and is accompanied by severe hepatotoxicity. CYP3A4 has been reported to be responsible for TP metabolism, but the mechanism remains unclear. The present study applied a UPLC-QTOF-MS-based metabolomics analysis to characterize the effect of CYP3A4 on TP-induced hepatotoxicity. The metabolites carnitines, lysophosphatidylcholines (LPCs) and a serious of amino acids were found to be closely related to liver damage indexes in TP-treated female mice. Metabolomics analysis further revealed that the CYP3A4 inducer dexamethasone improved the level of LPCs and amino acids, and defended against oxidative stress. On the contrary, pretreatment with the CYP3A4 inhibitor ketoconazole increased liver damage with most metabolites being markedly altered, especially carnitines. Among these metabolites, except for LPC18:2, LPC20:1 and arginine, dexamethasone and ketoconazole both affected oxidative stress induced by TP. The current study provides new mechanistic insights into the metabolic alterations, leading to understanding of the role of CYP3A4 in hepatotoxicity induced by TP.
Collapse
Affiliation(s)
- Xuerong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Zhang CH, Xiao Q, Sheng JQ, Liu TT, Cao YQ, Xue YN, Shi M, Cao Z, Zhou LF, Luo XQ, Deng KZ, Chen C. Gegen Qinlian Decoction abates nonalcoholic steatohepatitis associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of toll-like receptor 4 signaling pathways. Biomed Pharmacother 2020; 126:110076. [PMID: 32169759 DOI: 10.1016/j.biopha.2020.110076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Gegen Qilian Decoction (GGQLD) is a well-established classic Chinese medicine prescription in treating nonalcoholic steatohepatitis (NASH). However, the molecular mechanism of GGQLD action on NASH is still not clear. This study aimed to assess the anti-NASH effect of GGQLD, and to explore its molecular mechanisms in vivo and in vitro. In HFD-fed rats, GGQLD decreased significantly serum triglyceride (TG), cholesterol (CHO), total bile acid (TBA), low-density lipoprotein (LDL), free fatty acid (FFA) and lipopolysaccharide (LPS) levels, increased levels of differentially expressed proteins (DEPs) Ahcy, Gpx1, Mat1a, GNMT, and reduced the expression of ALDOB. In RAW264.7 macrophages, GGQLD reduced the expression levels of inflammatory factors TNF-α and IL-6 mRNA, and diminished NASH by increasing differentially expressed genes (DEGs) CBS, Mat1a, Hnf4α and Pparα to reduce oxidative stress or lipid metabolism. The results of DEGs verification also showed that GGQLD up-regulated expressions of Hnf4α, Pparα and Cbs genes. In HepG2 cells, GGQLD decreased IL-6 levels and intracellular TG content, and inhibited FFA-induced expression of toll-like receptor 4 (TLR4). In summary, GGQLD abates NASH associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of TLR4 signal pathways. These findings provide new insights into the anti-NASH therapy by GGQLD.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China.
| | - Tong-Tong Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ying-Qian Cao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ya-Nan Xue
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Min Shi
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Zheng Cao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Li-Fen Zhou
- Large Precise Instruments Shared Services Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Xiao-Quan Luo
- Experimental Animal Science and Technology Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Ke-Zhong Deng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Guo R, Luo X, Liu J, Liu L, Wang X, Lu H. Omics strategies decipher therapeutic discoveries of traditional Chinese medicine against different diseases at multiple layers molecular-level. Pharmacol Res 2020; 152:104627. [PMID: 31904505 DOI: 10.1016/j.phrs.2020.104627] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/25/2022]
Abstract
Traditional Chinese medicine (TCM) has been broadly used for the personalized treatment of many diseases in China for thousands of years. In the past century, TCM was also introduced to other Asian countries and even the Western world. Increasing evidence has shown that TCM has the capacity to treat numerous complex diseases in the clinic, such as cardiovascular diseases (CVDs), infectious diseases, metabolic diseases, and neurodegenerative diseases. However, the earlier lack of analytical strategies to annotate the chemical complexity has severely impeded the modern study and translational application of TCM. This critical review aims to explore and exploit applications of systems biology-driven omics methods in TCM against a diversity of diseases, toward the specific use of TCM to treat patients with different diseases. Such effort shall enhance the applicability of systems biology-driven omics strategies in deciphering the mechanisms by which TCM treats different diseases and may lead to the discovery of new therapeutic directions. In addition, we proposed the possible strategies to innovate the applicable pattern of omics technologies in TCM niches, such as precision-modification metabolomics and chinmedomics methods, allowing to unveil the complexity of TCM, which must enable TCM to serve better for the population-health. Taken together, this review eventually shall highlight the core value of omics technologies in innovating TCM to combat the diseases in a new horizon.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xialin Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjing Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Liu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059, Australia.
| | - Xijun Wang
- National Chinmedomics Center, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Xing QQ, Liu LW, Zhao X, Lu Y, Dong YM, Liang ZQ. Serum proteomics analysis based on label-free revealed the protective effect of Chinese herbal formula Gu-Ben-Fang-Xiao. Biomed Pharmacother 2019; 119:109390. [PMID: 31520916 DOI: 10.1016/j.biopha.2019.109390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023] Open
Abstract
Gubenfangxiao decoction (GBFXD) is a traditional Chinese medicine formula derived from Yupingfengsan, an ancient formula widely used to treat respiratory diseases. In recent years, GBFXD has been applied to efficaciously and safely treat asthma. However, the mechanism of GBFXD is still not fully elucidated. The aim of this study was to employ the label-free proteomic method to explore the protective mechanism of GBFXD in respiratory syncytial virus (RSV)-ovalbumin (OVA) induced chronic persistent asthmatic mice. After RSV-OVA challenge, mice were orally administered GBFXD at a dose of 36 g/kg accompanied with OVA nasal spray once every 3 days for 28 days. The label-free proteomics-based liquid chromatography-tandem mass spectrometry method was used to explore the differentially abundant proteins (DAPs) in the serum from model mice compared with that in control mice (M:C), and in GBFXD-treated mice compared with that in model mice (G:M). The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD013244. A total of 69 significant DAPs were identified including 39 in M:C, 46 in G:M, and 16 common differential proteins. Bioinformatics analysis revealed that the DAPs of M:C were mainly involved in inflammatory response and were related to lipid metabolism. However, the DAPs of G:M mostly participated in stress response, inflammatory response, and epithelial cell proliferation. Serum levels of Apoa-1, Apoc-1, Cfd, and Lrg1, EGFR and Lrg1 in the lungs were consistent with the results of proteomic analysis. Apoa-1 and Apoc-1 were closely related to cholesterol transport, lipid metabolism balance, and airway epithelial integrity; Cfd participated in immune response, affecting the occurrence and development of inflammation; EGFR and Lrg1 were involved in epithelial cell proliferation, influencing the process of airway remodeling. In summary, these results indicated that GBFXD may affect inflammatory and immune response of asthma by regulating cholesterol transport and complement factor activation. Furthermore, it could repair damaged airway epithelium and avoid airway remodeling to prevent and treat asthma.
Collapse
Affiliation(s)
- Qiong-Qiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Li-Wei Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China.
| | - Yuan Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Ying-Mei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Zhong-Qing Liang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| |
Collapse
|
18
|
Lin L, Yan H, Chen J, Xie H, Peng L, Xie T, Zhao X, Wang S, Shan J. Application of metabolomics in viral pneumonia treatment with traditional Chinese medicine. Chin Med 2019; 14:8. [PMID: 30911327 PMCID: PMC6417174 DOI: 10.1186/s13020-019-0229-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Nowadays, traditional Chinese medicines (TCMs) have been reported to provide reliable therapies for viral pneumonia, but the therapeutic mechanism remains unknown. As a systemic approach, metabolomics provides an opportunity to clarify the action mechanism of TCMs, TCM syndromes or after TCM treatment. This review aims to provide the metabolomics evidence available on TCM-based therapeutic measures against viral pneumonia. Metabolomics has been gradually applied to the efficacy evaluation of TCMs in treatment of viral pneumonia and the metabolomics analysis exhibits a systemic metabolic shift in lipid, amino acids, and energy metabolism. Currently, most studies of TCM in treatment of viral pneumonia are untargeted metabolomics and further validations on targeted metabolomics should be carried out together with molecular biology technologies.
Collapse
Affiliation(s)
- Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jiabin Chen
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006 China
| | - Huihui Xie
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006 China
| | - Linxiu Peng
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
19
|
Qian W, Shan J, Shen C, Yang R, Xie T, Di L. Brain Metabolomics Reveal the Antipyretic Effects of Jinxin Oral Liquid in Young Rats by Using Gas Chromatography⁻Mass Spectrometry. Metabolites 2019; 9:E6. [PMID: 30609645 PMCID: PMC6359216 DOI: 10.3390/metabo9010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Pyrexia is considered as a part of host's defense response to the invasion of microorganisms or inanimate matter recognized as pathogenic or alien, which frequently occurs in children. Jinxin oral liquid (JXOL) is a traditional Chinese medicine formula that has been widely used to treat febrile children in China. Experimental fever was induced by injecting yeast into young male Sprague-Dawley rats (80 ± 20 g) and the rectal temperature subsequently changed. Four hours later, the excessive production of interleukin (IL)-1β and prostaglandin (PG) E2 induced by yeast was regulated to normal by JXOL administration. A rat brain metabolomics investigation of pyrexia of yeast and antipyretic effect of JXOL was performed using gas chromatography-mass spectrometry (GC-MS). Clear separation was achieved between the model and normal group. Twenty-two significantly altered metabolites were found in pyretic rats as potential biomarkers of fever. Twelve metabolites, significantly adjusted by JXOL to help relieve pyrexia, were selected out as biomarkers of antipyretic mechanism of JXOL, which were involved in glycolysis, purine metabolism, tryptophan mechanism, etc. In conclusion, the brain metabolomics revealed potential biomarkers in the JXOL antipyretic process and the associated pathways, which may aid in advanced understanding of fever and therapeutic mechanism of JXOL.
Collapse
Affiliation(s)
- Wenjuan Qian
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cunsi Shen
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Rui Yang
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tong Xie
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liuqing Di
- Jiangsu Key Labortory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
Cai FF, Zhou WJ, Wu R, Su SB. Systems biology approaches in the study of Chinese herbal formulae. Chin Med 2018; 13:65. [PMID: 30619503 PMCID: PMC6311004 DOI: 10.1186/s13020-018-0221-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Systems biology is an academic field that attempts to integrate different levels of information to understand how biological systems function. It is the study of the composition of all components of a biological system and their interactions under specific conditions. The core of systems biology is holistic and systematic research, which is different from the manner of thinking and research of all other branches of biology to date. Chinese herbal formulae (CHF) are the main form of Chinese medicine and are composed of single Chinese herbal medicines (CHMs) with pharmacological and pharmacodynamic compatibility. When single CHMs are combined into CHF, the result is different from the original effect of a single drug and can be better adapted to more diseases with complex symptoms. CHF represent a complex system with multiple components, targets and effects. Therefore, the use of systems biology is conducive to revealing the complex characteristics of CHF. With the rapid development of omics technologies, systems biology has been widely and increasingly applied to the study of the basis of the pharmacological substances, action targets and mechanisms of CHF. To meet the challenges of multiomics synthesis-intensive studies and system dynamics research in CHF, this paper reviews the common techniques of genomics, transcriptomics, proteomics, metabolomics, and metagenomics and their applications in research on CHF.
Collapse
Affiliation(s)
- Fei-Fei Cai
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Wen-Jun Zhou
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Rong Wu
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
21
|
Shan J, Xie T, Xu J, Zhou H, Zhao X. Metabolomics of the amniotic fluid: Is it a feasible approach to evaluate the safety of Chinese medicine during pregnancy? J Appl Toxicol 2018; 39:163-171. [PMID: 29931825 DOI: 10.1002/jat.3653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/08/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
The use of Chinese medicines (CMs) during pregnancy has long been a major public health concern. Although CMs have been shown to be effective in treating infertility and preventing miscarriage, their use has been restricted, mainly because of limited knowledge of their potential toxicity. Accurate toxicology data are urgently required to assess whether these CMs are safe for maternal health and fetal development. Amniotic fluid (AF) contains carbohydrates, lipids and phospholipids, urea and proteins, all of which aid in the growth of the fetus and reflect the mother's health status as well. The changes in metabolomic patterns of AF are related to pathophysiological occurrences during the course of pregnancy. In this review, we provide a summary of the research performed in recent years on metabolomic AF samples, and use our previous study as an example to explore the feasibility of metabolomics of AF to evaluate the safety of CMs during pregnancy. We believe that metabolomics of AF play a far more important role than traditional morphology methods in the safety evaluation of CMs for pregnancy, with a higher sensitivity and correlation.
Collapse
Affiliation(s)
- Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huifang Zhou
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
22
|
Zhu B, Cao H, Sun L, Li B, Guo L, Duan J, Zhu H, Zhang Q. Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:147-156. [PMID: 29360497 DOI: 10.1016/j.jep.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian Jie-Du decoction (HLJDD), a traditional formula of Chinese medicine constituted with Rhizoma Coptidis, RadixScutellariae, CortexPhellodendri amurensis and Fructus Gardeniae, exhibits unambiguous therapeutic effect on cerebral ischemia via multi-targets action. Further investigation, however, is still required to explore the relationship between those mechanisms and targets through system approaches. MATERIALS AND METHODS Rats of cerebral ischemia were completed by middle cerebral artery occlusion (MCAO) with reperfusion. Following evaluation of pharmacological actions of HLJDD on MCAO rats, the plasma samples from rats of control, MCAO and HLJDD-treated MCAO groups were prepared strictly and subjected to ultra-performance liquid chromatography quadrupole time of flight mass spectrometry for metabolites analysis. The raw mass data were imported to MassLynx software for peak detection and alignment, and further introduced to EZinfo 2.0 software for orthogonal projection to latent structures analysis, principal component analysis and partial least-squares-discriminant analysis. The metabolic pathways assay of those potential biomarkers were performed with MetaboAnalyst through the online database, HMDB, Metlin, KEGG and SMPD. Those intriguing metabolic pathways were further investigated via biochemical assay. RESULTS HLJDD ameliorated the MCAO-induce cerebral damage and blocked the severe inflammation response. There were nineteen different biomarkers identified among control, MCAO and HLJDD-treated MCAO groups. Ten metabolic pathways were proposed from these significant metabolites. Incorporation with the biochemical assay of cerebral tissue, modulation of metabolic stress, regulation glutamate/GABA-glutamine cycle and enhancement of cholinergic neurons function were explored that involved in the actions of HLJDD on cerebral ischemia. CONCLUSION HLJDD achieves therapeutic action on cerebral ischemia via coordinating the basic pathophysiological network of metabolic stress, glutamate metabolism, and acetylcholine levels and function.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Behavior, Animal/drug effects
- Biomarkers/blood
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Chromatography, Liquid
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Energy Metabolism/drug effects
- Glutamic Acid/metabolism
- Infarction, Middle Cerebral Artery/blood
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- Inflammation Mediators/blood
- Least-Squares Analysis
- Male
- Metabolomics/methods
- Multivariate Analysis
- Neuroprotective Agents/pharmacology
- Principal Component Analysis
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization
- Stress, Physiological/drug effects
- Time Factors
Collapse
Affiliation(s)
- Baojie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huiting Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Limin Sun
- School of Traditional Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
23
|
Zhang X, Li J, Xie B, Wu B, Lei S, Yao Y, He M, Ouyang H, Feng Y, Xu W, Yang S. Comparative Metabolomics Analysis of Cervicitis in Human Patients and a Phenol Mucilage-Induced Rat Model Using Liquid Chromatography Tandem Mass Spectrometry. Front Pharmacol 2018; 9:282. [PMID: 29670527 PMCID: PMC5893906 DOI: 10.3389/fphar.2018.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Cervicitis is an exceedingly common gynecological disorder that puts women at high risk of sexually transmitted infections and induces a series of reproductive system diseases. This condition also has a significant impact on quality of life and is commonly misdiagnosed in clinical practice due to its complicated pathogenesis. In the present study, we performed non-targeted plasma metabolomics analysis of cervicitis in both plasma samples obtained from human patients and plasma samples from a phenol mucilage induced rat model of cervicitis, using ultra-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. In addition to differences in histopathology, we identified differences in the metabolic profile between the cervicitis and control groups using unsupervised principal component analysis and orthogonal projections to latent structures discriminant analysis. These results demonstrated changes in plasma metabolites, with 27 and 22 potential endogenous markers identified in rat and human samples, respectively. The metabolic pathway analysis showed that linoleic acid, arachidonic acid, ether lipid, and glycerophospholipid metabolism are key metabolic pathways involved in cervicitis. This study showed the rat model was successfully created and applied to understand the pathogenesis of cervicitis.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junmao Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - Bin Xie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bei Wu
- Nanchang Institute for Food and Drug Control, Nanchang, China
| | - Shuangxia Lei
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yun Yao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mingzhen He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - Wen Xu
- Second College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shilin Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| |
Collapse
|
24
|
Liu SY, Cai W, Wang F, Liu Y, Shang ZP, Zhang XP, Wang ZJ, Lu JQ, Zhang JY. UHPLC-LTQ-Orbitrap-based metabolomics coupled with metabolomics pathway analysis method for exploring the protection mechanism of Kudiezi injection in a rat anti-ischemic cerebral reperfusion damage model. Chin J Nat Med 2018; 15:955-960. [PMID: 29329654 DOI: 10.1016/s1875-5364(18)30013-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Kudiezi injection has been used extensively in the treatment of cerebrovascular and cardiovascular diseases. However, its therapeutic effects and underlying mechanism of action are not fully understood. The aim of the present study was to clarify the protective mechanisms of Kudiezi injection on cerebral ischemic injury, using metabolomics methods. Middle cerebral artery occlusion (MCAO) was introduced in rats to build the cerebral ischemic damage. UHPLC-LTQ-Orbitrap-based analytical method was established for analysis of the metabolites. The raw mass data of all samples were normalized with Sieve 2.2 software and then introduced to orthogonal partial least squares discriminant analysis (OPLS-DA) model. Finally, 23 metabolites in plasma (15 were tentatively identified) were chosen as potential biomarkers, according to accurate mass measurements (< 5 ppm), MS/MS fragmentation patterns, and diagnostic product ions. Furthermore, on the basis of metabolic pathway analysis via metabolomics pathway analysis (MetPA), we first discovered that the protection mechanism in anti-ischemic cerebral reperfusion damage of Kudiezi injection was possibly related to the biosynthesis of phenylalanine, tyrosine, and tryptophan. The present study provided a useful approach for exploring the mechanism of ischemic stroke and evaluating the efficacy of Kudiezi injection or other traditional medicines.
Collapse
Affiliation(s)
- Si-Yi Liu
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Cai
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Dong Pharmaceutical Research of Hunan Key Laboratory, Hunan University of Medicine, Huaihua 41800, China
| | - Fei Wang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Liu
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhan-Peng Shang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiu-Ping Zhang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zi-Jian Wang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian-Qiu Lu
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jia-Yu Zhang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
25
|
Shan J, Qian W, Shen C, Lin L, Xie T, Peng L, Xu J, Yang R, Ji J, Zhao X. High-resolution lipidomics reveals dysregulation of lipid metabolism in respiratory syncytial virus pneumonia mice. RSC Adv 2018; 8:29368-29377. [PMID: 35548018 PMCID: PMC9084459 DOI: 10.1039/c8ra05640d] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading viral pathogen responsible for lower respiratory tract infections, particularly in children under five years worldwide, often resulting in hospitalization. At present, the molecular-level interactions between RSV and its host and the underlying mechanisms of RSV-induced inflammation are poorly understood. Herein, we describe an untargeted high-resolution lipidomics platform based on UHPLC-Q-Exactive-MS to assess the lipid alterations of lung tissues and plasma from a mouse model of RSV pneumonia. Untargeted lipidomics using LC-MS with multivariate analysis was applied to describe the lipidomic profiling of the lung tissues and plasma in RSV pneumonia mice. Lipid identification was conducted via an in silico MS/MS LipidBlast library using the MS-DIAL software. We observed distinct compartmental lipid signatures in the mice lung tissues and plasma and significant lipid profile changes between the systematic and localized host responses to RSV. A total of 87 and 68 differential lipids were captured in the mice lung tissue and plasma, respectively, including phospholipids, sphingolipids, acylcarnitine, and fatty acids. Some of these lipids belong to pulmonary surfactants, illustrating that RSV pneumonia-induced aberrations of the pulmonary surfactant system may play a vital role in the etiology of respiratory inflammation. Our findings reveal that the host responses to RSV and various lipid metabolic pathways were linked to disease pathology. Furthermore, our findings could provide mechanistic insights into RSV pneumonia. Respiratory syncytial virus (RSV) is a leading viral pathogen responsible for lower respiratory tract infections, particularly in children under five years worldwide, often resulting in hospitalization.![]()
Collapse
|
26
|
Lu Y, Xu JY, Zhang XH, Zhao X. Gu-Ben-Fang-Xiao decoction attenuates sustained airway inflammation by suppressing ER stress response in a murine asthma remission model of respiratory syncytial virus infection. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:496-509. [PMID: 27660012 DOI: 10.1016/j.jep.2016.09.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/11/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, asthma has increased dramatically in prevalence with a considerable economic burden all over the world. Long-term remission should be regarded as the promising and meaningful therapeutic goal in asthma management. However, the precise definition criteria and rational therapies for asthma remission have not been well-established. In academia, there is a consensus that even in those who develop asymptomatic remission of asthma, persistent airway inflammation is ubiquitous. Gubenfangxiao decoction (GBFXD) has been widely used in treating asthma remission stage for decades in the Jiangsu Province Hospital of Chinese Medicine, China. We previously demonstrated that GBFXD could downregulate the asthma susceptibility gene ORMDL3, a trigger of Endoplasmic reticulum (ER) stress and unfolded protein response (UPR). AIM THIS STUDY To investigate the involvement of ER stress and UPR in the anti-inflammatory effects of GBFXD in Respiratory Syncytial Virus (RSV)-OVA-induced asthma remission mice. MATERIALS AND METHODS Mice were orally administered GBFXD at three doses for 30 days after an RSV-OVA challenge. The levels of inflammation mediators in serum were measured using a Luminex assay and the amount of IFN-γ in lung homogenates was detected using ELISA. The splenic CD4+ and CD8+ T lymphocytes were counted using flow cytometric analysis. The mRNA and protein levels of asthma susceptibility gene ORMDL3, ER stress markers (BIP, CHOP), and three canonical UPR branches (PERK-eIF2a-ATF4, IRE1α-XBP1/IRE1α-JNK-AP1 and ATF6-SERCA2b signal pathways) were detected using real-time RT-PCR and western blot. RESULTS Histopathological analysis showed that the model group mice still exhibited a sustained airway inflammation even after suspending the OVA-challenge and RSV infections for 30 days. H&E staining results indicated that GBFXD could attenuate sustained airway inflammation. Decreased serum CXCL1 level and increased IFN-γ level in lung homogenate were observed after GBFXD treatment. Reductions in the number of splenic CD4+/CD8+ T lymphocytes were found after DEX treatment. We further confirmed the previous finding that GBFXD could downregulate the expression of ORMDL3. As a result of suppressed UPR, decreased ER stress markers and inhibited UPR branches (PERK and IRE1α signal pathway) were also observed through the significant reduction of signature mRNA and protein expressions after GBFXD treatment. CONCLUSION GBFXD can significantly attenuate RSV-OVA-induced persistent airway inflammation in murine asthma remission model. These effects may be mediated, at least partially, by inhibiting the activation of ER stress responses.
Collapse
Key Words
- Asthma remission
- ER stress
- GuBenFangXiao decoction
- Hesperidin (PubChem CID, 10621, CAS# 520-26-3)
- Liquiritin (PubChem CID, 503737, CAS# 551-15-5)
- Lobetyolin (PubChem CID, 6369123, CAS# 136085-37-5)
- Magnolin (PubChem CID, 169234, CAS# 31008-18-1)
- Prim-o-glucosylcimifugin (PubChem CID, 14034912, CAS# 80681-45-4)
- Schisandrol A (PubChem CID, 23915, CAS# 7432-28-2)
- Sustained airway inflammation
- Unfolded protein response
Collapse
Affiliation(s)
- Yuan Lu
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China.
| | - Jian-Ya Xu
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China.
| | - Xiao-Hua Zhang
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China.
| | - Xia Zhao
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China.
| |
Collapse
|
27
|
Li W, Jiang H, Ablat N, Wang C, Guo Y, Sun Y, Zhao X, Xu J, Zhang K, Ren R, Pu X. Evaluation of the acute and sub-chronic oral toxicity of the herbal formula Xiaoer Chaigui Tuire Oral Liquid. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:290-299. [PMID: 27224674 DOI: 10.1016/j.jep.2016.05.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/12/2016] [Accepted: 05/21/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoer Chaigui Tuire Oral Liquid (XCTOL) is a popular Chinese herbal formula. It is used to treat exogenous fever in children by inducing diaphoresis and clearing interior heat. AIM OF THE STUDY To evaluate the acute and sub-chronic toxicity of XCTOL in mice and rats, respectively. MATERIALS AND METHODS In the acute toxicity study, mice were orally administered 100g/kg body weight XCTOL three times a day. General behavior, adverse effects and mortality were recorded for 14 days after treatment. In the sub-chronic toxicity study, rats were orally administered 0, 20 or 80g/kg XCTOL for 30 days. The rats were observed daily for clinical signs and mortality. Body weight changes were measured every three days, and relative organ weights, hematological parameters, urinalysis results, biochemical parameters and pathology were monitored at the end of treatment. After treatment, a 30-day withdrawal study was conducted. RESULTS In the acute toxicity study, after the mice were administered with 300g/kg (3×100g/kg) XCTOL in the first day, no adverse effects or death were observed in the following 14 days. In the 30-day sub-chronic toxicity study, daily oral administration of 80g/kg XCTOL resulted in significant body weight loss in both male and female rats. In the male rats, the red blood cell distribution width standard deviation (RDW-SD) and red blood cell distribution width coefficient of variability (RDW-CV) in the hematological test and total bilirubin (T-Bil) in the blood biochemistry test were significantly increased (RDW-SD, p<0.01; RDW-CV and T-Bil, p<0.05 vs. the control group). In the female rats, the specific gravity of the urinalysis was significantly increased (p<0.05 vs. the control group). Pathological damage was not observed in the main organs in the 80g/kg group. In the 20g/kg group, the lymphocyte % (LYM%) was significantly increased (p<0.05 the control group) in the female rats. CONCLUSIONS The maximum-tolerated dose of XCTOL was greater than 300g/kg in mice. The no-observed-adverse-effect-level was between 20 and 80g/kg body weight for 30 days in rats, which is 2.2-8.8 times higher, respectively, than the dose that has already been used in the clinical practice. Therefore, XCTOL at a dose less than 300g/kg in one day or 20g/kg per day for 30 days is considered safe.
Collapse
Affiliation(s)
- Wan Li
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Hanjie Jiang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Nuramatjan Ablat
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Chen Wang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Yongfei Guo
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Jiamin Xu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Ke Zhang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Rutong Ren
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| | - Xiaoping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China.
| |
Collapse
|
28
|
Ghaste M, Mistrik R, Shulaev V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int J Mol Sci 2016; 17:ijms17060816. [PMID: 27231903 PMCID: PMC4926350 DOI: 10.3390/ijms17060816] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/02/2023] Open
Abstract
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Collapse
Affiliation(s)
- Manoj Ghaste
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|