1
|
Ji XY, Feng JT, Zhou ZY, Zhang YY, Ma SZ, Wang XQ, Zhang B. Catalpol alleviates heat stroke-induced liver injury in mice by downregulating the JAK/STAT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155853. [PMID: 38968792 DOI: 10.1016/j.phymed.2024.155853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Heat stroke (HS) generated liver injury is a lethal emergency that occurs when the body is exposed to temperatures up to 40 °C for a few hours. PURPOSE This study aimed to evaluate the therapeutic prospects of Catalpol (CA) from the blood-cooling herb Rehamanniae Radix on liver injury by HS. STUDY DESIGN AND METHODS A murine HS model (41 ± 0.5 °C, 60 ± 5 % relative humidity) and two cell lines (lipopolysaccharide + 42 °C) were used to assess the protective effects of CA on physiological, pathological, and biochemical features in silico, in vivo, and in vitro. RESULTS CA treatment significantly improved survival rates in vivo and cell viability in vitro over those of the untreated group. Additionally, CA treatment reduced core body temperature, enhanced survival time, and mitigated liver tissue damage. Furthermore, CA treatment also reduced the activities of AST and ALT enzymes in the serum samples of HS mice. Molecular docking analysis of the 28 overlapping targets between HS and CA revealed that CA has strong binding affinities for the top 15 targets. These targets are primarily involved in nine major signaling pathways, with the JAK-STAT pathway being highly associated with the other eight pathways. Our findings also indicate that CA treatment significantly downregulated the expression of proinflammatory cytokines both in vivo and in vitro while upregulating the expression of anti-inflammatory cytokines. Moreover, CA treatment reduced the levels of JAK2, phospho-STAT5, and phospho-STAT3 both in vivo and in vitro, which is consistent with its inhibition of the apoptotic markers p53, Bcl2, and Bax. CONCLUSIONS Heat stroke-induced liver injury was inhibited by CA through the downregulation of JAK/STAT signaling.
Collapse
Affiliation(s)
- Xin Ye Ji
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, PR China
| | - Jian Ting Feng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, PR China
| | - Zong Yuan Zhou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Yan Yuan Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, PR China
| | - Shao Zhuang Ma
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, PR China
| | - Xiao Qin Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China.
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Awais M, Zubair HM, Nadeem H, Hill JW, Ali J, Saleem A, Asghar R, Khan S, Maqbool T, Akhtar MF, Naveed M, Asif M. Benzimidazole Derivative (N-{4-[2-(4-Methoxyphenyl)-1H-Benzimidazole-1-Sulfonyl] Phenyl} Acetamide) Ameliorates Methotrexate-Induced Intestinal Mucositis by Suppressing Oxidative Stress and Inflammatory Markers in Mice. Inflammation 2024; 47:1185-1203. [PMID: 38289578 DOI: 10.1007/s10753-024-01969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 08/24/2024]
Abstract
Methotrexate (MTX)-induced intestinal mucositis (IM) is a common side effect in cancer treatment that impairs the immune system and gut microbes, resulting in loss of mucosal integrity and gut barrier dysfunction. The quality of life and outcomes of treatment are compromised by IM. The present study was designed to investigate the mucoprotective potential of the benzimidazole derivative N-{4-[2-(4-methoxyphenyl)-1H-benzimidazole-1-sulfonyl] phenyl} acetamide (B8) on MTX-induced IM in mice. IM was induced by a single dose of MTX in mice and assessed by physical manifestations as well as biochemical, oxidative, histological, and inflammatory parameters. B8 (1, 3, 9 mg/kg) significantly reduced diarrhea score, mitigated weight loss, increased feed intake and, survival rate in a dose-dependent manner. Notably, B8 exhibited a mucoprotective effect evident through the mitigation of villus atrophy, crypt hypoplasia, diminished crypt mitotic figures, mucin depletion, and oxidative stress markers (GSH, SOD, MDA, and catalase concentration). Gene expression analysis revealed that B8 downregulated the mRNA expression of tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and nuclear factor-κB (NF-κB) and concurrently upregulated IL-10 expression in contrast to the MTX group. Further, B8 significantly improved the luminal microflora profile by augmenting the growth of Lactobacillus spp. and reducing the number of pathogenic bacteria (E. coli). Additionally, the enzyme-linked immunoassay showed that B8 decreased the levels of pro-inflammatory cytokines. Our findings suggest that B8 had mucoprotective effects against MTX-induced IM and could be used as an adjunct in chemotherapy to deter this side effect.
Collapse
Affiliation(s)
- Muhammad Awais
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Zubair
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.
- Post-Graduate Medical College, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Jawad Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rabia Asghar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samiullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
3
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
4
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
5
|
Si-Wu Water Extracts Protect against Colonic Mucus Barrier Damage by Regulating Muc2 Mucin Expression in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11162499. [PMID: 36010498 PMCID: PMC9407452 DOI: 10.3390/foods11162499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) could cause gut barrier damage. The herbs in si-wu (SW) include dang gui (Angelica sinensis (Oliv.) Diels), shu di huang (the processed root of Rehmannia glutinosa Libosch.), chuan xiong (rhizome of Ligusticum chuanxiong Hort.), and bai shao (the root of Paeonia lactiflora f. pilosella (Nakai) Kitag.). Si-wu water extracts (SWE) have been used to treat blood deficiency. Components of one herb from SW have been reported to have anti-inflammatory and anti-obesity activities. However, there have been no reports about the effects of SWE on gut barrier damage. Therefore, the aim of the study was to explore the effect of SWE on gut barrier damage. In this study, we found that SWE effectively controlled body weight, liver weight, and feed efficiency, as well as decreased the serum TC level in HFD-fed mice. Moreover, SWE and rosiglitazone (Ros, positive control) increased the colonic alkaline phosphatase (ALP) level, down-regulated serum pro-inflammatory cytokine levels, and reduced intestinal permeability. In addition, SWE increased goblet cell numbers and mucus layer thickness to strengthen the mucus barrier. After supplementation with SWE and rosiglitazone, the protein expression of CHOP and GRP78 displayed a decrease, which improved the endoplasmic reticulum (ER) stress condition. Meanwhile, the increase in Cosmc and C1GALT1 improved the O-glycosylation process for correct protein folding. These results collectively demonstrated that SWE improved the mucus barrier, focusing on Muc2 mucin expression, in a prolonged high-fat diet, and provides evidence for the potential of SWE in the treatment of intestinal disease-associated mucus barrier damage.
Collapse
|
6
|
Chen KJ, Huang YL, Kuo LM, Chen YT, Hung CF, Hsieh PW. Protective role of casuarinin from Melastoma malabathricum against a mouse model of 5-fluorouracil-induced intestinal mucositis: Impact on inflammation and gut microbiota dysbiosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154092. [PMID: 35430483 DOI: 10.1016/j.phymed.2022.154092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND 5-FU-induced intestinal mucositis (FUIIM) is a common gastrointestinal side effect of chemotherapy, leading to gastric pain in clinical cancer patients. In a previous study, we demonstrated that neutrophil elastase (NE) inhibitors could alleviate FUIIM and manipulate the homeostasis of the gut microbiota. The root of Melastoma malabathricum, also called Ye-Mu-Dan, has been used as a traditional Chinese medicine for gastrointestinal disease. Water extract of the roots of M. malabathricum exhibits an inhibitory effect on NE, with an IC50 value of 9.13 μg/ml. PURPOSE In this study, we aimed to isolate an anti-NE compound from the root of M. malabathricum and to determine the protective effect of the bioactive component on a mouse model of FUIIM with respect to tissue damage, inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. METHODS A water extract of the roots of M. malabathricum was prepared and its major bioactive compound, was identified using bioactivity-guided fractionation. The effects of samples on the inhibition of NE activity were evaluated using enzymatic assays. To evaluate the effects of the bioactive compound in an FUIIM animal model, male C57BL/6 mice treated with or without casuarinin (50 and 100 mg/kg/day, p.o.), and then received of 5-fluorouracil (50 mg/kg/day) intraperitoneally for 5 days to induce FUIIM. Histopathological staining was used to monitor the tissue damage, proliferation of intestinal crypts, and expression of tight junction proteins. The inflammation score was estimated by determining the levels of oxidative stress, neutrophil-related proteases, and proinflammatory cytokines in tissue and serum. The ecology of the gut microbiota was evaluated using 16S rRNA gene sequencing. RESULTS Casuarinin had the most potent and selective effect against NE, with an IC50 value of 2.79 ± 0.07 μM. Casuarinin (100 mg/kg/day, p.o.) significantly improved 5-FU-induced body weight loss together with food intake reduction, and it also significantly reversed villus atrophy, restored the proliferative activity of the intestinal crypts, and suppressed inflammation and intestinal barrier dysfunction in the mouse model of FUIIM. Casuarinin also reversed 5-FU-induced gut microbiota dysbiosis, particularly the abundance of Actinobacteria, Candidatus Arthromitus, and Lactobacillus murinus, and the Firmicutes-to-Bacteroidetes ratio. CONCLUSION This study firstly showed that casuarinin isolated from the root part of M. malabathricum could be used as a NE inhibitor, whereas it could improve FUIIM by modulating inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. In summary, exploring anti-NE natural product may provide a way to find candidate for improvement of FUIIM.
Collapse
Affiliation(s)
- Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Yu-Ling Huang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan; Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Kang N, Luan Y, Jiang Y, Cheng W, Liu Y, Su Z, Liu Y, Tan P. Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer’s Disease. Front Pharmacol 2022; 13:878631. [PMID: 35784741 PMCID: PMC9247152 DOI: 10.3389/fphar.2022.878631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Rehmanniae Radix (RR, the dried tuberous roots of Rehmannia glutinosa (Gaertn.) DC.) is an important traditional Chinese medicine distributed in Henan, Hebei, Inner Mongolia, and Northeast in China. RR is frequently used to treat diabetes mellitus, cardiovascular disease, osteoporosis and aging-related diseases in a class of prescriptions. The oligosaccharides and catalpol in RR have been confirmed to have neuroprotective effects. However, there are few studies on the anti-Alzheimer’s disease (AD) effect of oligosaccharides in Rehmanniae Radix (ORR). The chemical components and pharmacological effects of dried Rehmannia Radix (DRR) and prepared Rehmannia Radix (PRR) are different because of the different processing methods. ORR has neuroprotective potential, such as improving learning and memory in rats. Therefore, this study aimed to prove the importance of oligosaccharides in DRR (ODRR) and PRR (OPRR) for AD based on the Caenorhabditis elegans (C. elegans) model and the different roles of ODRR and OPRR in the treatment of AD. In this study, we used paralysis assays, lifespan and stress resistance assays, bacterial growth curve, developmental and behavioral parameters, and ability of learning and memory to explore the effects of ODRR and OPRR on anti-AD and anti-aging. Furthermore, the accumulation of reactive oxygen species (ROS); deposition of Aβ; and expression of amy-1, sir-2.1, daf-16, sod-3, skn-1, and hsp-16.2 were analyzed to confirm the efficacy of ODRR and OPRR. OPRR was more effective than ODRR in delaying the paralysis, improving learning ability, and prolonging the lifespan of C. elegans. Further mechanism studies showed that the accumulation of ROS, aggregation, and toxicity of Aβ were reduced, suggesting that ORR alleviated Aβ-induced toxicity, in part, through antioxidant activity and Aβ aggregation inhibiting. The expression of amy-1 was downregulated, and sir-2.1, daf-16, sod-3, and hsp-16.2 were upregulated. Thus, ORR could have a possible therapeutic effect on AD by modulating the expression of amy-1, sir-2.1, daf-16, sod-3, and hsp-16.2. Furthermore, ORR promoted the nuclear localization of daf-16 and further increased the expression of sod-3 and hsp-16.2, which significantly contributed to inhibiting the Aβ toxicity and enhancing oxidative stress resistance. In summary, the study provided a new idea for the development of ORR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Tan
- *Correspondence: Yonggang Liu, ; Peng Tan,
| |
Collapse
|
8
|
Yu QQ, Zhang H, Guo Y, Han B, Jiang P. The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox "Tai Chi" theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
Affiliation(s)
- Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Heng Zhang
- Department of Laboratory, Shandong Daizhuang Hospital, Jining 272051, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| |
Collapse
|
9
|
Wei L, Wen XS, Xian CJ. Chemotherapy-Induced Intestinal Microbiota Dysbiosis Impairs Mucosal Homeostasis by Modulating Toll-like Receptor Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179474. [PMID: 34502383 PMCID: PMC8431669 DOI: 10.3390/ijms22179474] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced intestinal mucositis, a painful debilitating condition affecting up to 40–100% of patients undergoing chemotherapy, can reduce the patients’ quality of life, add health care costs and even postpone cancer treatment. In recent years, the relationships between intestinal microbiota dysbiosis and mucositis have drawn much attention in mucositis research. Chemotherapy can shape intestinal microbiota, which, in turn, can aggravate the mucositis through toll-like receptor (TLR) signaling pathways, leading to an increased expression of inflammatory mediators and elevated epithelial cell apoptosis but decreased epithelial cell differentiation and mucosal regeneration. This review summarizes relevant studies related to the relationships of mucositis with chemotherapy regimens, microbiota, TLRs, inflammatory mediators, and intestinal homeostasis, aiming to explore how gut microbiota affects the pathogenesis of mucositis and provides potential new strategies for mucositis alleviation and treatment and development of new therapies.
Collapse
Affiliation(s)
- Ling Wei
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Xue-Sen Wen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| | - Cory J. Xian
- UniSA Clinical & Health Science, City West Campus, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| |
Collapse
|
10
|
Zheng W, Wang G, Zhang Z, Wang Z, Ma K. Research progress on classical traditional Chinese medicine formula Liuwei Dihuang pills in the treatment of type 2 diabetes. Biomed Pharmacother 2020; 121:109564. [PMID: 31683180 DOI: 10.1016/j.biopha.2019.109564] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/20/2019] [Indexed: 01/02/2023] Open
Abstract
In traditional Chinese medicine (TCM), type 2 diabetes mellitus (T2DM) is regarded as Xiao Ke disease. Liuwei Dihuang pills (LWP), a classical TCM formula, with the function of nourishing kidney yin, has been used for treating Xiao Ke disease in clinic. In this review, we systematically highlighted recent evidence on LWP and T2DM data from clinical and animal studies, summarized the clinical application, pharmacological mechanism and the active compounds of LWP for the treatment of T2DM. This systematic review will provide an insightful understanding of TCM formulas, pharmacological mechanisms, medicinal-disease interactions, and will lay a foundation for the development of new drug therapy for T2DM.
Collapse
Affiliation(s)
- Wenjie Zheng
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Gaofeng Wang
- Department of Traditional Chinese Medicine Internal Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinn 25001, PR China
| | - Zhe Zhang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhenguo Wang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ke Ma
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
11
|
The pathogenesis of mucositis: updated perspectives and emerging targets. Support Care Cancer 2019; 27:4023-4033. [PMID: 31286231 DOI: 10.1007/s00520-019-04893-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Mucositis research and treatment are a rapidly evolving field providing constant new avenues of research and potential therapies. The MASCC/ISOO Mucositis Study Group regularly assesses available literature relating to pathogenesis, mechanisms, and novel therapeutic approaches and distils this to summary perspectives and recommendations. Reviewers assessed 164 articles published between January 2011 and June 2016 to identify progress made since the last review and highlight new targets for further investigation. Findings were organized into sections including established and emerging mediators of toxicity, potential insights from technological advances in mucositis research, and perspective. Research momentum is accelerating for mucositis pathogenesis, and with this has come utilization of new models and interventions that target specific mechanisms of injury. Technological advances have the potential to revolutionize the field of mucositis research, although focused effort is needed to move rationally targeted interventions to the clinical setting.
Collapse
|
12
|
Wenqin D, Yaodong Z, Wanji S, Fengli Z, Li S, Haili J, Ping L, Mei Z. Armillariella Oral Solution Ameliorates Small Intestinal Damage in a Mouse Model of Chemotherapy-Induced Mucositis. Nutr Cancer 2019; 71:1142-1152. [PMID: 31210536 DOI: 10.1080/01635581.2019.1599029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Armillariella oral solution (AOS) shows therapeutic effect on gastrointestinal disorders. We aimed to investigate the potential efficacy of AOS on chemotherapy-induced intestinal mucositis in mice. Methods: Intestinal mucositis was induced in C57BL/6 mice by daily intraperitoneal injection of 5-FU (50 mg/kg) for 7 days. Effects of AOS (at 1, 5, and 10 mL/kg), or combined Bifidobacterium and Lactobacillus (CBL, 450 mg/kg) on the accompanying morphometry and histology, expression of Ki-67, caspase-3, Lgr5 and apoptosis of intestinal crypt cells were assessed. Results: Continuous administration of 5-FU to mice caused severe intestinal mucositis, which was histologically characterized by the destruction of intestinal crypts and shortening of villi, accompanied by diarrhea and body weight loss. Daily AOS administration dose-dependently reduced the severity of intestinal mucositis, diarrhea and body weight loss. Similar beneficial effects were observed with CBL. The expression of Ki-67 and Lgr5 decreased and the expression of caspase-3, and the number of apoptotic cells increased 24 h after the first 5-FU administration (P < 0.05), and these responses were significantly reduced by AOS treatment (P < 0.05, at 5 or 10 mL/kg). Conclusions: AOS can alleviate 5-FU-induced mucositis in mice via increasing Lgr5 expression and suppressing apoptotic responses in the intestinal crypt cells.
Collapse
Affiliation(s)
- Dong Wenqin
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhu Yaodong
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Song Wanji
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhang Fengli
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Su Li
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Jiang Haili
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Li Ping
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhang Mei
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| |
Collapse
|
13
|
Wu C, Shan J, Feng J, Wang J, Qin C, Nie G, Ding C. Effects of dietary Radix Rehmanniae Preparata polysaccharides on the growth performance, immune response and disease resistance of Luciobarbus capito. FISH & SHELLFISH IMMUNOLOGY 2019; 89:641-646. [PMID: 30991149 DOI: 10.1016/j.fsi.2019.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
This work explores the effects of dietary Radix Rehmanniae Preparata polysaccharide (RRPP) supplementation on the growth performance, nonspecific immune responses, immune- and growth-related gene expression and disease resistance to Aeromonas hydrophila in Luciobarbus capito. Diets containing five concentrations of 0%, 0.05%, 0.1%, 0.2% and 0.4% RRPP were fed to fish for 60 d. The results indicated that the growth performance significantly increased in the 0.1%, 0.2% and 0.4% RRPP groups compared with that in the control (P < 0.05). The activities of serum lysozyme (LAZ), acid phosphatase (ACP), superoxide dismutase (SOD), alkaline phosphatase (AKP) and total protein (TP) were significantly increased in the appropriate RRPP supplemented groups (P < 0.05). With respect to immune- and growth-related genes, such as interleukin (IL)-1β, IL-8, tumor-necrosis factor (TNF)-α, interferon (IFN)-γ, growth hormone (GH), insulin-like growth factor (IGF)-I and IGF-II, up-regulation were observed in the three organs (kidney, spleen, gut) of the fish fed with RRPP, compared with the control. In contrast, the mRNA expression of IL-10 and transforming-growth factor (TGF)-β were downregulated. After challenge with A. hydrophila, the final survival rate was significantly higher in fish fed the RRPP supplement than that in the control group (P < 0.05). In conclusion, RRPP enhanced the growth performance, immune response and disease resistance of Luciobarbus capito, with the greatest effects at 0.2% RRPP.
Collapse
Affiliation(s)
- Chun Wu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China
| | - Jinfeng Shan
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China
| | - Junchang Feng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Junli Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Chenlong Ding
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China.
| |
Collapse
|
14
|
Chi X, Wang S, Baloch Z, Zhang H, Li X, Zhang Z, Zhang H, Dong Z, Lu Y, Yu H, Ma K. Research progress on classical traditional Chinese medicine formula Lily Bulb and Rehmannia Decoction in the treatment of depression. Biomed Pharmacother 2019; 112:108616. [PMID: 30780102 DOI: 10.1016/j.biopha.2019.108616] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
Depression pertains to the category of "Emotional Diseases" in traditional Chinese medicine (TCM). Its clinical symptoms are similar to the manifestations of "lily disease" from the TCM classics Synopsis of the Golden Chamber written by Zhang Zhongjing in the Han Dynasty. Also in this book, Lily Bulb and Rehmannia Decoction (LBRD) is the formula for the treatment of "lily disease". The classical herbal formula LBRD is composed of two herbs lily bulb and fresh rehmannia juice, with the function of nourishing yin and replenishing heart and lung. It has been clinically applied to treat "lily disease" for two thousand years. In this review, we focused on recent evidence linking LBRD and depression extracting data from animal and clinical studies, summarizing the primitive dosage and producing area of genuine medicinal materials of LBRD, clinical application, pharmacological mechanism and the effective substance basis for the treatment of depression. In conclusion, we discussed existing problems and future perspective. This systematic review will seek to enhance our understanding about pharmacology mechanism, herb-prescribing and recipe-constructing, and the development of novel formula for depression treatments.
Collapse
Affiliation(s)
- Xiansu Chi
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shijun Wang
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Hongxiu Zhang
- Institute of Virology, Jinan Center for Disease Control and Prevention, Jinan 250021, PR China
| | - Xiuyang Li
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhe Zhang
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Huiling Zhang
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhenfei Dong
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yan Lu
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Huayun Yu
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
15
|
A Novel Integrative Processing Technology for the Preparation of Rehmanniae Radix Slices. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2018:4524797. [PMID: 30671128 PMCID: PMC6317129 DOI: 10.1155/2018/4524797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022]
Abstract
The traditional processing method for the slices preparation of Rehmanniae roots is time- and energy-consuming and is prone to result in loss of active components during twice water-treatment (once for wash and the other for softening) and drying steps. In this study, we firstly explored an integrative processing technique for Rehmanniae Radix by 2x3 factorial experiment based on the contents of catalpol and verbascoside as measured by HPLC. The potential differences between the traditional stepwise processing technique and the integrative processing technique for catalpol and verbascoside in the prepared slices were investigated. To further confirm the effectiveness of drugs using the integrative processing technique, some pharmacological variables, such as rectal temperature, hematologic parameters (RBC, HGB, HCT, and blood viscosity), and coagulation parameters (TT, APTT, PT and FIB), were detected in a blood-heat and hemorrhage syndrome rat model. Two-way ANOVA analysis showed that drying for 18 h at 50°C was considered as the best combination of process conditions. The mean catalpol and verbascoside contents in the integrative method-processed samples (4.30% and 0.33%, respectively) were higher than those in the traditional method-processed samples (2.61% and 0.21%, respectively). Significant increases in rectal temperature, and hematologic parameters, TT, APTT, and FIB, were observed in the model group rats, compared to the blank group animals (P<0.01). Both in the integrative groups and traditional groups, the extracts caused significant decreases in rectal temperature, RBC, HGB, and HCT with increased concentration compared to the model group animals. All coagulation parameters tested were shortened in model rats received two kind prepared slices. There were no significant therapeutic differences between the integrative and the traditional method-processed slices on the hemostasis and hemorheological parameters in this blood-heat and hemorrhage syndrome rat model, indicating that our integrative method may be a feasible technique for processing Rehmanniae Radix slices.
Collapse
|
16
|
Kim HJ, Kim B, Mun EG, Jeong SY, Cha YS. The antioxidant activity of steamed ginger and its protective effects on obesity induced by high-fat diet in C57BL/6J mice. Nutr Res Pract 2018; 12:503-511. [PMID: 30515278 PMCID: PMC6277311 DOI: 10.4162/nrp.2018.12.6.503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/24/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/OBJECTIVES Ginger, a root vegetable, is known to have antioxidant and antiobesity effects. Preparation, such as by steaming, can affect the chemical composition of prepared root vegetables or herbs and can change their functional activities. In the present study, we investigated the protective effects of steamed ginger against oxidative stress and steatosis in C57BL/6J mice fed a high-fat diet. MATERIALS/METHODS The levels of polyphenols and flavonoids in two different extracts of steamed ginger, i.e., water extract (SGW) and ethanolic extract (SGE); as well, their antioxidant activities were examined. Forty male C57BL/6J mice were fed a normal diet (ND, n = 10), high-fat diet (HFD, 60% fat, w/w, n = 10), HFD supplemented with 200 mg/kg of SGE or garcinia (GAR) by weight (SGED or GARD, respectively, n = 10) for 12 weeks. Serum chemistry was examined, and the expressions of genes involved in lipid metabolism were determined in the liver. Histological analysis was performed to identify lipid accumulations in epididymal fat pads and liver. RESULTS The SGE had higher contents of polyphenols and flavonoids and higher DPPH and ABTS+ free radical scavenging activities compared to those of SGW. Treatment with SGE or GAR significantly decreased the HFD-induced weight gain. Both SGE and GAR significantly reduced the high serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein levels induced by HFD. Compared to ND, HFD significantly increased hepatic TC and TG levels. SGE or GAR supplementation significantly decreased the increase of hepatic lipids by HFD. Interestingly, SGE had a more significant effect in reducing hepatic TC and TG levels than GAR. Furthermore, hepatic genes involved in lipogenesis and lipolysis were altered in both the SGED and GARD groups. CONCLUSIONS The present study indicates that steamed ginger supplementation can decrease plasma TC and TG and can inhibit liver steatosis by regulating the expressions of hepatic genes.
Collapse
Affiliation(s)
- Hee-Jeong Kim
- Department of Food Science and Human Nutrition, Chonbuk National University and Obesity Research Center, 567 Baekje-daero, Dukjin-gu, Jeonju, Jeonbuk 54896, Korea
| | - Bohkyung Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Eun-Gyung Mun
- Department of Food Science and Human Nutrition, Chonbuk National University and Obesity Research Center, 567 Baekje-daero, Dukjin-gu, Jeonju, Jeonbuk 54896, Korea
| | | | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Chonbuk National University and Obesity Research Center, 567 Baekje-daero, Dukjin-gu, Jeonju, Jeonbuk 54896, Korea
| |
Collapse
|
17
|
Zhang QY, Wang FX, Jia KK, Kong LD. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front Pharmacol 2018; 9:1253. [PMID: 30459615 PMCID: PMC6232953 DOI: 10.3389/fphar.2018.01253] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy are the common cancer treatments. However, the development of adverse effects resulting from chemotherapy and radiotherapy hinders the clinical use, and negatively reduces the quality of life in cancer patients. Natural products including crude extracts, bioactive components-enriched fractions and pure compounds prepared from herbs as well as herbal formulas have been proved to prevent and treat cancer. Of significant interest, some natural products can reduce chemotherapy and radiotherapy-induced oral mucositis, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, hematopoietic system injury, cardiotoxicity, and neurotoxicity. This review focuses in detail on the effectiveness of these natural products, and describes the possible mechanisms of the actions in reducing chemotherapy and radiotherapy-induced side effects. Recent advances in the efficacy of natural dietary supplements to counteract these side effects are highlighted. In addition, we draw particular attention to gut microbiotan in the context of prebiotic potential of natural products for the protection against cancer therapy-induced toxicities. We conclude that some natural products are potential therapeutic perspective for the prevention and treatment of chemotherapy and radiotherapy-induced side effects. Further studies are required to validate the efficacy of natural products in cancer patients, and elucidate potential underlying mechanisms.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei-Xuan Wang
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Cechinel‐Zanchett CC, Boeing T, Somensi LB, Steimbach VMB, Campos A, Krueger CDMA, Schultz C, Sant'ana DDMG, Cechinel‐Filho V, Mota da Silva L, Faloni de Andrade S. Flavonoid‐rich fraction of
Bauhinia forficata
Link leaves prevents the intestinal toxic effects of irinotecan chemotherapy in IEC‐6 cells and in mice. Phytother Res 2018; 33:90-106. [PMID: 30281176 DOI: 10.1002/ptr.6202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Camile Cecconi Cechinel‐Zanchett
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Thaise Boeing
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Lincon Bordignon Somensi
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Viviane Miranda Bispo Steimbach
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Adriana Campos
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Clarissa de Medeiros Amorm Krueger
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Cristiany Schultz
- Department of Morphological Sciences State University of Maringá Maringá Paraná Brazil
| | | | - Valdir Cechinel‐Filho
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Luísa Mota da Silva
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós‐graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico‐Farmacêuticas (NIQFAR) Universidade do Vale do Itajaí—UNIVALI Itajaí Santa Catarina Brazil
| |
Collapse
|