1
|
Aboulwafa MM, Mostafa NM, Youssef FS, Eldahshan OA, Singab ANB. Lavandula dentata leaves as potential natural antibiofilm agents against Pseudomonas aeruginosa. Sci Rep 2025; 15:8540. [PMID: 40074746 PMCID: PMC11903892 DOI: 10.1038/s41598-025-88824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
Biofilm formation is responsible for persistent diseases related to chronic infections. Mostly it is triggered by many bacteria, mainly Pseudomonas aeruginosa (P. aeruginosa). In this study, plants that have been used traditionally in skin infections Viz; Liquorice, Carrot, Red Cabbage, Beetroot, Turmeric, Neem, and French Lavender were selected to evaluate their antibiofilm activity against P. aeruginosa. The microtiter plate assay was used to evaluate their antibiofilm activity against P. aeruginosa as well as ability to reduce the activity of P. aeruginosa. To investigate the phytocompounds responsible for bioactivity of the superior extract and to explore potential interactions between its bioactive components and one of quorum-sensing (QS) regulatory proteins of P. aeruginosa involved in biofilm formation, liquid chromatography-mass spectrometric (LC-MS) and molecular docking studies were done. The study showed that all tested plant extracts could significantly (p-value < 0.05) reduce the formation of P. aeruginosa biofilm. The methanol extract of Lavandula dentata (L. dentata) leaves is superior at 0.625 mg/mL. In conclusion, the study revealed the presence of phenolic acids, flavonoids, and their glycosides also, the anti-P. aeruginosa biofilm activity of L. dentata leaves was reported herein for the first time and could be a good source of leads for antibiofilm medicine.
Collapse
Affiliation(s)
- Maram M Aboulwafa
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Nada M Mostafa
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Fadia S Youssef
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Omayma A Eldahshan
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Abdel Nasser B Singab
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Baek SW, Noh JH, Lee D. Outcomes of Aromatherapy in Nausea and Vomiting After Total Knee Arthroplasty. J Perianesth Nurs 2025; 40:62-68. [PMID: 39066774 DOI: 10.1016/j.jopan.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE The purpose of this study is to assess the effectiveness of aromatherapy for postoperative nausea and vomiting (PONV) after total knee arthroplasty (TKA) under spinal anesthesia. DESIGN Prospective randomized four-arm placebo-controlled trials METHODS: One hundred and twenty subjects were allocated to each of the four groups based on the application of aromatic oil in subjects manifesting PONV: group 1 (lavender), group 2 (lemon), group 3 (peppermint), and group 4 (normal saline placebo). Aromatherapy was administered to all subjects immediately after surgery. Antiemetics were provided to subjects with significant nausea or vomiting. The severity of nausea and vomiting in subjects post-TKA was evaluated using the Halpin nausea and vomiting scale (HNV). The HNV and the concentration of antiemetic drug use were evaluated. Subjects' satisfaction with treatment for PONV was evaluated at discharge. FINDINGS HNV scores did not differ significantly between groups immediately after surgery until the third postoperative day (P > .05). The amount of antiemetic drug used in group 3 was significantly lower among the groups (P = .030). The subject satisfaction scale did not differ significantly among groups (P = .837). CONCLUSIONS Aromatherapy using peppermint oil reduced the amount of antiemetics used to treat PONV after TKA under spinal anesthesia with comparable subject satisfaction. Lavender and lemon oils did not reduce the use of antiemetics after TKA.
Collapse
Affiliation(s)
- So Won Baek
- Nursing Department, Kangwon National University Hospital, Chuncheon-si, Gangwon-do, South Korea
| | - Jung Ho Noh
- Department of Orthopaedic Surgery, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea.
| | - Dongyun Lee
- Department of Orthopaedic Surgery, Kangwon National University Hospital, Chuncheon-si, Gangwon-do, South Korea
| |
Collapse
|
3
|
Stoyanova Y, Lazarova-Zdravkova N, Peshev D. Is Membrane Filtration Applicable for the Recovery of Biologically Active Substances from Spent Lavender? MEMBRANES 2025; 15:21. [PMID: 39852262 PMCID: PMC11767990 DOI: 10.3390/membranes15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
This study explored the batch membrane filtration of 40% ethanol extracts from spent lavender, containing valuable compounds like rosmarinic acid, caffeic acid, and luteolin, using a polyamide-urea thin film composite X201 membrane. Conducted at room temperature and 20 bar transmembrane pressure, the process demonstrated high efficiency, with rejection rates exceeding 98% for global antioxidant activity and 93-100% for absolute concentrations of the target components. During concentration, the permeate flux declined from 2.43 to 1.24 L·m-2·h-1 as the permeate-to-retentate-volume ratio increased from 0 to 1. The process resistance, driven by osmotic pressure and concentration polarization, followed a power-law relationship with a power value of 1.20, consistent with prior nanofiltration studies of rosmarinic acid solutions. Notably, no membrane fouling occurred, confirming the method's scalability without compromising biological activity. The antioxidant activity, assessed via the DPPH method, revealed that the retentate exhibited double the activity of the feed. Antibacterial assays using broth microdilution showed that the retentate inhibited Escherichia coli by 73-96% and Bacillus subtilis by 97-98%, making it the most active fraction. These findings validate the effectiveness of the X201 membrane for concentrating natural antioxidants and antibacterial agents from lavender extract under sustainable operating conditions.
Collapse
Affiliation(s)
- Yoana Stoyanova
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1576 Sofia, Bulgaria; (Y.S.); (N.L.-Z.)
| | - Nevena Lazarova-Zdravkova
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1576 Sofia, Bulgaria; (Y.S.); (N.L.-Z.)
| | - Dimitar Peshev
- Department of Chemical Engineering, University of Chemical Technology and Metallurgy, 1576 Sofia, Bulgaria
| |
Collapse
|
4
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
5
|
Araruna MEC, Alves Júnior EB, de Lima Serafim CA, Pessoa MMB, de Souza Pessôa ML, Alves VP, Sobral MV, da Silva MS, Alves AF, de Paiva Sousa MC, Araújo AA, Batista LM. (-)-Fenchone Ameliorates TNBS-Induced Colitis in Rats via Antioxidant, Immunomodulatory, and Cytoprotective Mechanisms. Pharmaceuticals (Basel) 2024; 18:18. [PMID: 39861081 PMCID: PMC11769309 DOI: 10.3390/ph18010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND (-)-Fenchone is a bicyclic monoterpene present in the plant species Foeniculum vulgare Mill, Thuja occidentalis L. (tuja), and Lavandula stoechas (lavender). These plants have therapeutic value in the treatment of intestinal disorders. AIM To evaluate intestinal anti-inflammatory activity in an acute and chronic trinitrobenzene sulphonic acid (TNBS)-induced colitis model in rats. METHODS Intestinal anti-inflammatory effects were assessed using the acute and chronic TNBS-induced colitis model in rats. The mechanisms were evaluated from colonic tissue fragments of the acute and chronic models. RESULTS Oral administration of the (-)-fenchone (37.5-300 mg/kg) acute phase or (150 mg/kg) (p < 0.001) chronic phase reduced the macroscopic lesion score, ulcerative area, intestinal weight/length ratio, and diarrheal index in TNBS-treated animals. At a dose of 150 mg/kg, the acute and chronic phase decreased malondialdehyde (MDA) and myeloperoxidase (MPO) (p < 0.001), restored glutathione (GSH) levels and superoxide dismutase (SOD) (p < 0.001), decreased immunomarking for factor nuclear kappa B (NF-κB) and levels of interleukin (IL)-1 and tumor necrosis factor α (TNF-α), and maintained IL-10 and TGF-β basal levels. Furthermore, increased immunostaining for zonula occludens 1 (ZO-1) was observed. CONCLUSIONS (-)-fenchone has intestinal anti-inflammatory activity related to cytoprotection of the intestinal barrier, as well as antioxidant and immunomodulatory effects.
Collapse
Affiliation(s)
- Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Matheus Marley Bezerra Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Michelle Liz de Souza Pessôa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Vitória Pereira Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| | - Adriano Francisco Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil;
| | - Maria Carolina de Paiva Sousa
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil;
| | - Aurigena Antunes Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal CEP 59078-970, RN, Brazil;
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa CEP 58051-970, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.V.S.); (M.S.d.S.); (A.F.A.)
| |
Collapse
|
6
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
7
|
Hendel N, Sarri M, Sarri D, Seghiour S, Napoli E, Selloum M, Ruberto G. Phytochemical analysis, antibacterial and antifungal effect of Lavandula dentata L. essential oil and methanol extract. Nat Prod Res 2024; 38:3498-3507. [PMID: 37655612 DOI: 10.1080/14786419.2023.2252973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
The aim of this study was to analyse the essential oil of Lavandula dentata from Algeria and to test the antioxidant and antimicrobial properties of this plant. The essential oil (EO) (57 constituents) included mainly α-pinene, β-pinene, nopinone, linalool, cryptone, and limonene. The plant polyphenolic contents and the antioxidant activity were determined. The antimicrobial effect of the EO and the methanolic extract (ME) was assessed against referenced and clinical bacterial strains, and also foodborne fungal isolates. The EO minimal inhibitory concentration (MIC) values varied from 0.25 to 4 mg/mL and minimal bactericidal concentrations (MBCs) were less than 8 mg/mL except for S. aureus, clinical Klebsiella, S. epidermidis, and B. subtilis. The mould strains were significantly inhibited by the EO (87.50% to 88.33%). The MIC values were 3.60-15.62 mg/mL and 0.5-4 mg/mL for ME and EO, respectively. The minimal fungicidal concentration (MFC) values ranged from 31 to 125 mg/mL and from 2 to 8 mg/mL for ME and EO, respectively.
Collapse
Affiliation(s)
- Noui Hendel
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'sila, M'sila, Algeria
- Laboratory of Biology: Applications in Health and Environment (LBAHE), University of M'sila, M'sila, Algeria
| | - Madani Sarri
- Department of Nature and Life Sciences, Faculty of Sciences, University Mohamed Boudiaf of M'sila, M'sila, Algeria
| | - Djamel Sarri
- Department of Nature and Life Sciences, Faculty of Sciences, University Mohamed Boudiaf of M'sila, M'sila, Algeria
| | - Soumia Seghiour
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'sila, M'sila, Algeria
| | - Edoardo Napoli
- Istituto del CNR di Chimica Biomolecolare, Catania, Italy
| | - Mounir Selloum
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'sila, M'sila, Algeria
| | | |
Collapse
|
8
|
Silva BN, Cadavez V, Caleja C, Pereira E, Calhelha RC, Molina AK, Finimundy T, Kostić M, Soković M, Teixeira JA, Barros L, Gonzales-Barron U. Chemical profiles and bioactivities of polyphenolic extracts of Lavandula stoechas L., Artemisia dracunculus L. and Ocimum basilicum L. Food Chem 2024; 451:139308. [PMID: 38688095 DOI: 10.1016/j.foodchem.2024.139308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
This study assessed the chemical profiles and bioactivities of the infusions, decoctions and hydroethanolic extracts of tarragon, basil and French lavender. The extracts were chemically characterised (HPLC-DAD-ESI/MS) and their bioactivities were evaluated in vitro. All extracts revealed antimicrobial, antifungal and antioxidant properties. French lavender extracts showed higher total phenolic content, regardless of the extraction method used, and antioxidant and antitumour capacities, but no anti-inflammatory action. All basil and two of the tarragon extracts revealed anti-inflammatory power. Thus, tarragon, basil and French lavender extracts may be considered for inclusion in foods, as preservatives or functional ingredients. Nonetheless, further studies must be conducted to evaluate the pharmacokinetic parameters of the bioactive compounds.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Adriana K Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Tiane Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Marina Kostić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
9
|
Araruna MEC, Júnior EBA, Serafim CADL, Pessoa MMB, Pessôa MLDS, Alves VP, da Silva MS, Sobral MV, Alves AF, Nunes MKDS, Araújo AA, Batista LM. (-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms. Pharmaceuticals (Basel) 2024; 17:641. [PMID: 38794211 PMCID: PMC11124074 DOI: 10.3390/ph17050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND (-)-Fenchone is a naturally occurring monoterpene found in the essential oils of Foeniculum vulgare Mill., Thuja occidentalis L., and Peumus boldus Molina. Pharmacological studies have reported its antinociceptive, antimicrobial, anti-inflammatory, antidiarrheal, and antioxidant activities. METHODS The preventive antiulcer effects of (-)-Fenchone were assessed through oral pretreatment in cysteamine-induced duodenal lesion models. Gastric healing, the underlying mechanisms, and toxicity after repeated doses were evaluated using the acetic acid-induced gastric ulcer rat model with oral treatment administered for 14 days. RESULTS In the cysteamine-induced duodenal ulcer model, fenchone (37.5-300 mg/kg) significantly decreased the ulcer area and prevented lesion formation. In the acetic acid-induced ulcer model, fenchone (150 mg/kg) reduced (p < 0.001) ulcerative injury. These effects were associated with increased levels of reduced glutathione (GSH), superoxide dismutase (SOD), interleukin (IL)-10, and transforming growth factor-beta (TGF-β). Furthermore, treatment with (-)-Fenchone (150 mg/kg) significantly reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and nuclear transcription factor kappa B (NF-κB). A 14-day oral toxicity investigation revealed no alterations in heart, liver, spleen, or kidney weight, nor in the biochemical and hematological parameters assessed. (-)-Fenchone protected animals from body weight loss while maintaining feed and water intake. CONCLUSION (-)-Fenchone exhibits low toxicity, prevents duodenal ulcers, and enhances gastric healing activities. Antioxidant and immunomodulatory properties appear to be involved in its therapeutic effects.
Collapse
Affiliation(s)
- Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Matheus Marley Bezerra Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Michelle Liz de Souza Pessôa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Vitória Pereira Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| | - Adriano Francisco Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (A.F.A.); (M.K.d.S.N.)
| | - Mayara Karla dos Santos Nunes
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (A.F.A.); (M.K.d.S.N.)
| | - Aurigena Antunes Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
10
|
Ibrahim A. An overview of headache treatments during the tenth century. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2024; 33:204-219. [PMID: 38175038 DOI: 10.1080/0964704x.2023.2288208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Although the history of treating headaches spans thousands of years, scientists during the tenth century made unique and significant contributions to understanding, treating, and preventing the development of headaches. In fact, the tenth century saw the ability to differentiate between types of headache and treatments for the first time. This article looks at the contributions of Persian, Anglo-Saxon, and Chinese medicine to the diagnosis and treatment of different types of headaches in the tenth century. It does so with reference to a range of herbal, surgical, and pharmacological methods of treating this ailment. The article also uncovers how tenth-century herbal remedies were effective at explaining the properties of their ingredients in modern terms and concepts including analgesia, anti-inflammation, and antinociception, and explores the way tenth-century treatments relieved painful headaches and prevented their recurrence.
Collapse
Affiliation(s)
- Arwa Ibrahim
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Terfi S, Djerrad Z, Krimat S, Sadi F. Phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of Lavandula dentata L. grown under different levels of heavy metals stress condition. Drug Chem Toxicol 2023; 46:864-878. [PMID: 35892144 DOI: 10.1080/01480545.2022.2104868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
In order to know if the heavy metals stress condition is boon or bane for the plants growth, Lavandula dentata species was planted in pots under different levels of heavy metals stress condition and the phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of their leaf ethanolic extracts toward this stress condition were investigated compared to the control samples. Our findings showed significant differences in heavy metals bioaccumulation, photosynthetic pigments and total phenolic/flavonoids contents among L. dentata leafs ethanolic extracts, grown under different levels of heavy metals stress condition. The L. dentata leafs extracts, grown under Zn and Cu stress condition, showed the highest antioxidant and antimicrobial activities than those grown under Cd and Pb stress condition. Comparatively, the L. dentata leafs extracts, grown under Zn stress condition, showed higher antioxidant activity, and those, grown under Cu stress condition, showed higher antimicrobial activity. The highest cytotoxicity was showed by L. dentata leaf extracts, grown under Cd and Pb stress condition, which lead to conclude that these extracts could be served as a novel scaffold in search for new drugs against cancer. In conclusion, the highlighted variability reflects the high impact of heavy metals stress condition on phytochemical composition and consequently on the biological activities of medicinal plants. Such impact led to conclude that we should select medicinal plants extracts to be investigated carefully depending on this stress condition, in order to isolate the bioactive components or to have the best quality of extracts in terms of biological activities.
Collapse
Affiliation(s)
- Souhila Terfi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Department of Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| | - Zineb Djerrad
- Laboratory of Vegetal Ecology and Environment, Department of Ecology and Environment, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| | - Soumeya Krimat
- Laboratory of Bioactive Products and Biomass Valorization Research, ENS Kouba, Algiers, Algeria
| | - Fatma Sadi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Department of Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| |
Collapse
|
12
|
Demir D, Toygar I, Soylu E, Aksu AT, Türeyen A, Yıldırım I, Çetinkalp Ş. The Effect of Lavandula stoechas on Wound Healing in an Experimental Diabetes Model. Cureus 2023; 15:e45001. [PMID: 37829966 PMCID: PMC10565121 DOI: 10.7759/cureus.45001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Diabetic foot is a consequential and dangerous complication of diabetes, contributing to decreased quality of life, escalated hospitalizations, and increased mortality rates. Using an experimental model of diabetes, this study aims to investigate the effect of Lavandula stoechas on wound healing. METHODS A total of 35 albino Wistar rats, 250-350 grams in weight, were used. The rats were divided into five groups, seven rats in each group. Of these, 21 rats were induced with 50 mg/kg streptozotocin (STZ) to mimic the diabetic condition. Additionally, 14 rats remained non-diabetic and served as the control group. The diabetic rats were further divided into three subgroups. The non-diabetic group was split into two subgroups based on the dressing materials used (allicin, physiological serum, and control). Wound dimensions were assessed on Days 0, 7, 14, and 21. Biopsies were taken from the wound sites at the same time. RESULTS There were significant differences between groups on Days 7, 14, and 21. The percentage of healing was highest in the Lavandula Stoechas group on Days 7, 14, and 21. Microscopic examination of the biopsies supported accelerated wound healing on Days 7 and 14. Reduced mononuclear cell density and increased hair follicle and adipose tissue development were observed in the DM (diabetes mellitus)-Lavandula Stoechas group on Day 7. On Day 14, the DM-Lavandula Stoechas group increased collagen levels and hair follicles. Similarly, the non-DM-Lavandula Stoechas group showed reduced bullae, dermal edema, and intraepithelial edema on Day 7. This was followed by increased fibroblast levels on Day 14. CONCLUSIONS In conclusion, this study provides compelling evidence for the potential of Lavandula stoechas extract in the enhancement of diabetic wound healing. The multiple interactions revealed here highlight the need for further investigation into the underlying mechanisms. A cost-effective use of Lavandula stoechas opens up promising prospects in managing diabetic foot healing. This warrants additional research and clinical translation.
Collapse
Affiliation(s)
- Derya Demir
- Pathology, Ege University, Faculty of Medicine, İzmir, TUR
| | - Ismail Toygar
- Nursing, Muğla Sıtkı Koçman University, Fethiye Faculty of Health Sciences, Muğla, TUR
| | - Emrah Soylu
- Miscellaneous, Ege University, Center for Research on Laboratory Animals, İzmir, TUR
| | | | - Aynur Türeyen
- Miscellaneous, Ege University, Faculty of Nursing, İzmir, TUR
| | - Ilgın Yıldırım
- Diabetes and Endocrinology, Ege University, Faculty of Medicine, İzmir, TUR
| | - Şevki Çetinkalp
- Diabetes and Endocrinology, Ege University, Faculty of Medicine, İzmir, TUR
| |
Collapse
|
13
|
Chianese A, Gravina C, Morone MV, Ambrosino A, Formato M, Palma F, Foglia F, Nastri BM, Zannella C, Esposito A, De Filippis A, Piccolella S, Galdiero M, Pacifico S. Lavandula austroapennina: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs. Viruses 2023; 15:1648. [PMID: 37631991 PMCID: PMC10457779 DOI: 10.3390/v15081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In a framework aimed at the recovery and enhancement of medicinal plants endemic to the territory of the Cilento and Vallo di Diano National Park, Lavandula austroapennina N.G. Passal., Tundis and Upson has aroused interest. An insight into the chemical composition of the corolla, calyx, leaf, stem, and root organs was carried out following ultrasound-assisted maceration in n-hexane. The obtained lipophilic extracts were explored using ultra-high-performance chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-QqTOF-MS/MS). The extracts from the different organs varied in their relative content of fatty acids, ursanes, and oleanane-type triterpenes. In particular, the oleanolic acid content appeared to increase in the order of corolla < leaf < stem. An MTT assay was performed to verify the possible cytotoxicity of the organ extracts of L. austroapennina at a concentration ranging from 12.5 to 400 µg/mL on the Vero CCL-81 cell line. Antiviral activity against herpes simplex virus type 1 (HSV-1), alpha human coronavirus 229E (HCoV-229E), and poliovirus type 1 (PV-1) was evaluated via a plaque reduction assay in the same cellular model. All the extracts did not show cytotoxic effects after 2 and 24 h exposure times, and the antiviral efficacy was particularly important for the stem extract, capable of completely inhibiting the tested viruses at low doses. The antiviral activity in a non-enveloped virus PV-1 allowed the assertion that the extracts from the organs of L. austroapennina, and especially the stem extract, interfered directly with the viral envelope. This study underlines how much knowledge of a territory's medicinal plant heritage is a harbinger of promising discoveries in the health field.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Francesca Palma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Francesco Foglia
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Bianca Maria Nastri
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| |
Collapse
|
14
|
Vladić J, Jakovljević Kovač M, Pavić V, Jokić S, Simić S, Paiva A, Jerković I, Duarte AR. Towards a Greener Approach for Biomass Valorization: Integration of Supercritical Fluid and Deep Eutectic Solvents. Antibiotics (Basel) 2023; 12:1031. [PMID: 37370350 PMCID: PMC10295627 DOI: 10.3390/antibiotics12061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A green and sustainable procedure for obtaining Lavandula stoechas extracts with antioxidant and antimicrobial properties was investigated. Green solvents, supercritical CO2, and natural deep eutectic solvents (NADES) together with ultrasound-assisted extraction were used for the sequential extraction of terpene and polyphenols fractions. After the CO2 extraction of the terpene fraction, the residue material was used in an extraction with different NADES (betaine-ethylene glycol (Bet:EG), betaine-glycerol (Bet:Gly), and glycerol-glucose (Gly:Glu)), intensified with an ultrasound-assisted method (at 30 and 60 °C). In the CO2 extract, the major group of components belonged to oxygenated monoterpenes, while the highest polyphenol content with the dominant rutin (438.93 ± 4.60 µg/mL) was determined in Bet:EG extracts (60 °C). Bet:EG extracts also exhibited the most potent antioxidant activity according to DPPH, ABTS, and FRAP assays. Moreover, Bet:EG extracts showed significant inhibitory activity against Gram-positive and Gram-negative bacteria, with minimum inhibitory activity of 0.781-3.125 and 1.563-6.250 mg·mL-1, respectively. By comparing the polyphenolic content and antioxidant and antimicrobial activities of Bet:EG extracts with extracts obtained with conventional solvents (water and ethanol), the superiority of NADES was determined. The established environmentally friendly procedure unifies the requirements of green and sustainable development and modern pharmacognosy because it combines the use of safe alternative solvents, the absence of solvent waste generation, more rational use of resources, and the attainment of safe and quality extracts.
Collapse
Affiliation(s)
- Jelena Vladić
- LAQV/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Martina Jakovljević Kovač
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University Osijek, 31000 Osijek, Croatia;
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Siniša Simić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Alexandre Paiva
- LAQV/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Ana Rita Duarte
- LAQV/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
15
|
Gravina C, Formato M, Piccolella S, Fiorentino M, Stinca A, Pacifico S, Esposito A. Lavandula austroapennina (Lamiaceae): Getting Insights into Bioactive Polyphenols of a Rare Italian Endemic Vascular Plant. Int J Mol Sci 2023; 24:ijms24098038. [PMID: 37175744 PMCID: PMC10178519 DOI: 10.3390/ijms24098038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lavandula austroapennina N.G. Passal., Tundis and Upon has recently been described as a new species endemic to the southern Apennines (Italy). Locally, this species has a long ethnobotanical tradition of use for curative and decoration purposes and has been the protagonist of a flourishing essential oil production chain. Currently, while this tradition has long since ended, attention to the species is necessary, with a view to enhancing marginal and rural areas, as a recovery of a precious resource to (i) get insights into its (poly)phenolic fraction and (ii) address new and innovative uses of all its organs in various application fields (e.g., cosmeceutical sector). Therefore, after field sampling and dissection of its organs (i.e., corolla, calyx, leaf, stem and root), the latter, previously deterpenated and defatted, were subjected to accelerated ultrasound extraction and the related alcoholic extracts were obtained. Chemical composition, explored by UHPLC-QqTOF-MS/MS, and the following multivariate data analysis showed that the hydroxycinnamoyl derivatives are abundant in the leaf, stem and root, while flavonoids are more present in corolla and calyx. In particular, coumaroyl flavonoids with glyconic portion containing also hexuronyl moieties differentiated corolla organ, while yunnaneic acid D isomers and esculin distinguished root. When antiradical and reducing properties were evaluated (by means of ABTS, DPPH and PFRAP tests), a similar clustering of organs was achieved and the marked antioxidant efficacy of leaf, stem and root extracts was found. Thus, following cytotoxicity screening by MTT test on HaCaT keratinocytes, the protective effects of the organ extracts were assessed by wound closure observed after the scratch test. In addition, the extracts from corolla, leaf and stem were particularly active at low doses inducing rapid wound closure on HaCaT cells at a concentration of 1 μg/mL. The diversity in (poly)phenols of each organ and the promising bioactivity preliminarily assessed suggest further investigation to be carried out to fully recover and valorize this precious endemic vascular plant.
Collapse
Affiliation(s)
- Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marika Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Stinca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
16
|
Molina-Tijeras JA, Ruiz-Malagón AJ, Hidalgo-García L, Diez-Echave P, Rodríguez-Sojo MJ, Cádiz-Gurrea MDLL, Segura-Carretero A, del Palacio JP, González-Tejero MR, Rodríguez-Cabezas ME, Gálvez J, Rodríguez-Nogales A, Vezza T, Algieri F. The Antioxidant Properties of Lavandula multifida Extract Contribute to Its Beneficial Effects in High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040832. [PMID: 37107207 PMCID: PMC10135096 DOI: 10.3390/antiox12040832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity is a worldwide public health problem whose prevalence rate has increased steadily over the last few years. Therefore, it is urgent to improve the management of obesity and its comorbidities, and plant-based treatments are receiving increasing attention worldwide. In this regard, the present study aimed to investigate a well-characterized extract of Lavandula multifida (LME) in an experimental model of obesity in mice and explore the underlying mechanisms. Interestingly, the daily administration of LME reduced weight gain as well as improved insulin sensitivity and glucose tolerance. Additionally, LME ameliorated the inflammatory state in both liver and adipose tissue by decreasing the expression of various proinflammatory mediators (Il-6, Tnf-α, Il-1β, Jnk-1, Pparα, Pparγ, and Ampk) and prevented increased gut permeability by regulating the expression of mucins (Muc-1, Muc-2, and Muc-3) and proteins implicated in epithelial barrier integrity maintenance (Ocln, Tjp1, and Tff-3). In addition, LME showed the ability to reduce oxidative stress by inhibiting nitrite production on macrophages and lipid peroxidation. These results suggest that LME may represent a promising complementary approach for the management of obesity and its comorbidities.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | | | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain
| | | | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
17
|
Domingues J, Delgado F, Gonçalves JC, Zuzarte M, Duarte AP. Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites 2023; 13:metabo13030337. [PMID: 36984777 PMCID: PMC10054607 DOI: 10.3390/metabo13030337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Globally, climate change and wildfires are disrupting natural ecosystems, thus setting several endemic species at risk. The genus Lavandula is widely present in the Mediterranean region and its species, namely, those included in the section Stoechas, are valuable resources of active compounds with several biological assets. Since ancient times lavenders have been used in traditional medicine and for domestic purposes. These species are melliferous, decorative, and essential oil-producing plants with a high economic interest in the pharmaceutical, flavor, fragrance, and food industries. The essential oils of Lavandula section Stoechas are characterized by high amounts of 1,8-cineole, camphor, fenchone, and specifically for L. stoechas subsp. luisieri one of the major compounds is trans-α-necrodyl acetate. On the other hand, the diversity of non-volatile components like phenolic compounds, such as phenolic acids and flavonoids, make these species an important source of phytochemicals with pharmacological interest. Rosmarinic, caffeic, and salvianolic B acids are the major phenolic acids, and luteolin and eriodictyol-O-glucuronide are the main reported flavonoids. However, the concentration of these secondary metabolites is strongly affected by the plant’s phenological phase and varies in Lavandula sp. from different areas of origin. Indeed, lavender extracts have shown promising antioxidant, antimicrobial, anti-inflammatory, and anticancer properties as well as several other beneficial actions with potential for commercial applications. Despite several studies on the bioactive potential of lavenders from the section Stoechas, a systematized and updated review of their chemical profile is lacking. Therefore, we carried out the present review that gathers relevant information on the different types of secondary metabolites found in these species as well as their bioactive potential.
Collapse
Affiliation(s)
- Joana Domingues
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Fernanda Delgado
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - José Carlos Gonçalves
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Ana Paula Duarte
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
18
|
Dobros N, Zawada KD, Paradowska K. Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules 2022; 28:molecules28010256. [PMID: 36615453 PMCID: PMC9821988 DOI: 10.3390/molecules28010256] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Lavender is a valuable medicinal plant belonging to the Lamiaceae family. Currently 39 species are known, but only Lavandula angustifolia is a pharmacopoeial raw material. Lavender has a long history of medicinal use and mainly exhibits antioxidant, anti-inflammatory, sedative, antidepressant, spasmolytic, anticholinesterases, antifungal and antibacterial properties. Used internally, it relieves symptoms of mental stress and insomnia and supports digestion. Topical use of lavender in aromatherapy, neuralgia and antiseptics is also known. The constant interest in lavender, and in particular in Lavandula angustifolia, in the field of medicine and pharmacy is evidenced by the growing number of publications. In view of so many studies, it seems important to review traditional and modern extraction techniques that determine the chemical composition responsible for the antioxidant and anti-inflammatory effects of various extracts from the species of the Lavandula genus.
Collapse
|
19
|
Lama-Muñoz A, Contreras MDM. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022; 11:3671. [PMID: 36429261 PMCID: PMC9689915 DOI: 10.3390/foods11223671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are highly valuable food components due to their potential utilisation as natural bioactive and antioxidant molecules for the food, cosmetic, chemical, and pharmaceutical industries. For this purpose, the development and optimisation of efficient extraction methods is crucial to obtain phenolic-rich extracts and, for some applications, free of interfering compounds. It should be accompanied with robust analytical tools that enable the standardisation of phenolic-rich extracts for industrial applications. New methodologies based on both novel extraction and/or analysis are also implemented to characterise and elucidate novel chemical structures and to face safety, pharmacology, and toxicity issues related to phenolic compounds at the molecular level. Moreover, in combination with multivariate analysis, the extraction and analysis of phenolic compounds offer tools for plant chemotyping, food traceability and marker selection in omics studies. Therefore, this study reviews extraction techniques applied to recover phenolic compounds from foods and agri-food by-products, including liquid-liquid extraction, solid-liquid extraction assisted by intensification technologies, solid-phase extraction, and combined methods. It also provides an overview of the characterisation techniques, including UV-Vis, infra-red, nuclear magnetic resonance, mass spectrometry and others used in minor applications such as Raman spectroscopy and ion mobility spectrometry, coupled or not to chromatography. Overall, a wide range of methodologies are now available, which can be applied individually and combined to provide complementary results in the roadmap around the study of phenolic compounds.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
| |
Collapse
|
20
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
21
|
ŞAHİNLER SŞ, SEVER YILMAZ B, SARIKÜRKCÜ C, TEPE B. The importance of Lavandula stoechas L. in pharmacognosy and phytotherapy. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1098975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lavandula stoechas is distributed in Africa, Europe, and Asia continents, especially in the countries of Southern Europe and North Africa neighboring the Mediterranean. The use of L. stoechas, which has a cosmopolitan distribution, mainly in the Mediterranean region, in the treatment of rheumatic diseases and reduction of inflammatory problems in folk medicine dates back to ancient times. It has been determined that L. stoechas contains various bioactive phytochemicals such as flavonoids, catechic tannins, sterols, coumarins, leucoanthocyanins, and mucilages. The essential oil obtained from the leaves and flowers is widely used in pharmacy. There are ethnobotanical and phytopharmacological studies on the antimicrobial, insecticidal, antileishmanial, antioxidant, and anti-inflammatory effects of the essential oil and extracts of the plant. There are intensive studies and clinical data on its anti-inflammatory, antimicrobial, antioxidant, and anticonvulsant effects. It has been determined that L. stoechas has anti-inflammatory, antioxidant, antimicrobial, insecticide, larvicide, anticonvulsant, antispasmodic, sedative, hepatoprotective, nephroprotective, antidiabetic, and anticancer effects with scientific studies based on the traditional use of L. stoechas. This review supports that the aforementioned plant can be used as a medicine in the light of its traditional use and the data obtained as a result of scientific studies. In this review, it was emphasized that some regulations should be made on the cultivation, formulation, and marketing of L. stoechas.
Collapse
|
22
|
Fadil M, Lebrazi S, Aboulghazi A, Guaouguaou FE, Rais C, Slimani C, Es-safi NE. Multi-response optimization of extraction yield, total phenols-flavonoids contents, and antioxidant activity of extracts from moroccan Lavandula stoechas leaves: Predictive modeling using simplex-centroid design. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Li J, Wang X, Xun S, Guo Q, Wang Y, Jia Y, Wang W, Wang Y, Li T, Tang T, Zou J, Wang M, Yang M, Wang F, Zhang X, Wang C. Study of the Mechanism of Antiemetic Effect of Lavandula angustifolia Mill. Essential Oil Based on Ca 2+/CaMKII/ERK1/2 Pathway. Drug Des Devel Ther 2022; 16:2407-2422. [PMID: 35923932 PMCID: PMC9341382 DOI: 10.2147/dddt.s366597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the effective components and possible mechanism of action of Lavandula angustifolia Mill. essential oil (LEO) in preventing vomiting through the olfactory pathway. Materials and Methods A new network pharmacology-based method was established to analyze main components and pathways of LEO involved in antiemetic effects by introducing component content; biological activities of key proteins of the olfactory pathway and their corresponding compounds were verified by molecular docking technique; and finally pica in a rat model was established to verify the molecular mechanism of antiemetic effects of LEO by enzyme-linked immunosorbent assay (ELISA) to determine the serum 5-HT, substance P, and DA levels in each group and by immunohistochemistry to determine the contents of 5-HT3R, CaMKII and ERK1/2 proteins in the medulla oblongata tissue. Results Network pharmacology combined with molecular docking analysis showed that the mechanism of the antiemetic effect of LEO may be related to (2Z)-3,7-dimethyl-2,6-octadienyl acetate, linalyl acetate, butanoic acid, hexyl ester, 4-hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, acetate, .tau.-cadinol and other active ingredients, which regulate the cyclic adenosine monophosphate (cAMP) signaling pathway and the expression of BRAF, PDE and other targets on the pathway. An ELISA revealed that LEO reduced the levels of 5-hydroxytryptamine (5-HT), substance P, and dopamine in serum compared with the model group (P <0.05). Immunohistochemical analysis showed that LEO decreased the expression of 5-HT3R, CaMKII, and ERK1/2 proteins in the medulla oblongata of rats compared with the model group (P <0.01). Conclusion LEO may achieve the antiemetic effect by reducing the content of 5-HT and inhibiting its related receptors, thereby regulating downstream Ca2+/CaMKII/ERK1/2 pathway of the cAMP signaling pathway.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Xiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Shining Xun
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, People’s Republic of China
| | - Yao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yanzuo Jia
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Wenfei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yujiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Taotao Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Tiantian Tang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Junbo Zou
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Mei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Ming Yang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Fang Wang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Xiaofei Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Changli Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| |
Collapse
|
24
|
Zhang J, Dong L, Pan Y. Detection of the Content of Two Coumarins, IM and ISOIM, and Their Mechanism of Action on Colitis Rats in Angelica albicans. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5475559. [PMID: 35880089 PMCID: PMC9308527 DOI: 10.1155/2022/5475559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Angelica albicans is being used in the cure of different, respiratory, neuromuscular, and cutaneous diseases in traditional eastern medicine. The pharmacokinetic (PK) characteristics of imperatorin (IM) and isoimperatorin (ISOIM), the main effective components in Angelica albicans, were investigated. The rapid, subtle, and measuring the PKs of a drug, a validated UPLC/MS/MS methodology was designed for a total of 2 furanocoumarins in 2,4,6-trinitrobenzene sulfonic acid-stimulated and untreated mice. After that, blood samples were obtained. Angelica albicans (0.5 and 1.0 g/kg) was given orally, taken regularly from the tail vein. The time it takes for colitis rats to achieve their maximal concentration (T max) imperatorin and isoimperatorin was considerably postponed. In comparison to normal rats, all furanocoumarins had lesser peak plasma concentrations (C max) and higher represent residence durations. The area below the C max time-curve or clearance half-life did not differ significantly. In normal rats, all two furanocoumarins attained maximal plasma levels between 40 and 75 minutes, demonstrating fast oral absorption. The periods to attain T max of the two furanocoumarins, on the other hand, were shorter than in earlier studies. Therefore, colitis-linked alterations in the drug-absorption stage may result in a late T max and lowered C max, which have no effect on its clearance in half-life. Hence, conclusively, as a result, more consideration should be given to the prescription and administration of Angelica albicans in colitis individuals, and more research is needed to determine whether the changed PK profile was clinically meaningful for medicinal dose.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Leilei Dong
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Ying Pan
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| |
Collapse
|
25
|
Lavender Improves Fatigue Symptoms in Multiple Sclerosis Patients: A Double-blind, Randomized Controlled Trial. Mult Scler Relat Disord 2022; 65:104000. [DOI: 10.1016/j.msard.2022.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
|
26
|
Phytochemical Profile and Antioxidant Activity of Lavandula angustifolia and Lavandula x intermedia Cultivars Extracted with Different Methods. Antioxidants (Basel) 2022; 11:antiox11040711. [PMID: 35453396 PMCID: PMC9027103 DOI: 10.3390/antiox11040711] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
Lavender is a valuable perennial plant from the Lamiaceae family. It is grown mainly for its essential oil, but it also contains polar bioactive compounds such as polyphenols and coumarins. Their level depends on the species, cultivars, geographical origin, climatic conditions, harvest time and extraction method. The authors investigated the effect of several extraction procedures (maceration, decoction and ultrasound-assisted extraction) applied to three cultivars of Lavandula angustifolia (Betty’s Blue, Elizabeth, Hidcote) and two cultivars of Lavandula x intermedia (Grosso, Gros Bleu) on the yield of the polyphenolic compounds and antioxidant activity. HPLC analysis showed the presence of rosmarinic acid (2.52–10.82 mg/g), ferulic acid glucoside (2.94–8.67 mg/g), caffeic acid (1.70–3.10 mg/g), morin (1.02–13.63 mg/g), coumarin (1.01–5.97 mg/g) and herniarin (1.05–8.02 mg/g). The content of phenolic acids and flavonoids was higher in lavender, while the content of coumarins was higher in lavandin in all types of extracts. The antioxidant activity was determined by DPPH-EPR assay for antiradical properties (104.58–206.77 μmol Trolox/g) and FRAP assay for reducing properties (79.21–203.06 μmol Trolox/g). The obtained results showed that the cultivar is the dominant factor differentiating the samples. Still, the extraction method plays an important role in the final bioactive substances content and antioxidant properties of obtained extracts.
Collapse
|
27
|
Hasanin MS, Emam M, Soliman MM, Abdel Latif RR, Salem MM, El Raey MA, Eisa WH. Green silver nanoparticles based on Lavandula coronopifolia aerial parts extract against mycotic mastitis in cattle. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Characterization and Valorization of the Agricultural Waste Obtained from Lavandula Steam Distillation for Its Reuse in the Food and Pharmaceutical Fields. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051613. [PMID: 35268713 PMCID: PMC8911589 DOI: 10.3390/molecules27051613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The main focus of the current research was the characterization of the by-products from the steam distillation of Lavandula angustifolia Mill. (LA) and Lavandula x intermedia Emeric ex Loisel (LI) aerial parts, as they are important sources of bioactive compounds suitable for several applications in the food, cosmetic, and pharmaceutical industries. The oil-exhausted biomasses were extracted and the total polyphenol and flavonoid contents were, respectively, 19.22 ± 4.16 and 1.56 ± 0.21 mg/g for LA extract and 17.06 ± 3.31 and 1.41 ± 0.10 mg/g for LI extract. The qualitative analysis by liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS) revealed that both the extracts were rich in phenolic acids and glycosylated flavonoids. The extracts exhibited radical scavenging, chelating, reducing activities, and inhibitory capacities on acetylcholinesterase and tyrosinase. The IC50 values against acetylcholinesterase and tyrosinase were, respectively, 5.35 ± 0.47 and 5.26 ± 0.02 mg/mL for LA, and 6.67 ± 0.12 and 6.56 ± 0.16 mg/mL for LI extracts. In conclusion, the oil-exhausted biomasses demonstrated to represent important sources of bioactive compounds, suitable for several applications in the food, cosmetic, and pharmaceutical industries.
Collapse
|
29
|
Rehman NU, Ansari MN, Samad A, Ahmad W. In Silico and Ex Vivo Studies on the Spasmolytic Activities of Fenchone Using Isolated Guinea Pig Trachea. Molecules 2022; 27:molecules27041360. [PMID: 35209147 PMCID: PMC8876211 DOI: 10.3390/molecules27041360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Fenchone is a bicyclic monoterpene found in a variety of aromatic plants, including Foeniculum vulgare and Peumus boldus, and is used in the management of airways disorders. This study aimed to explore the bronchodilator effect of fenchone using guinea pig tracheal muscles as an ex vivo model and in silico studies. A concentration-mediated tracheal relaxant effect of fenchone was evaluated using isolated guinea pig trachea mounted in an organ bath provided with physiological conditions. Sustained contractions were achieved using low K+ (25 mM), high K+ (80 mM), and carbamylcholine (CCh; 1 µM), and fenchone inhibitory concentration–response curves (CRCs) were obtained against these contractions. Fenchone selectively inhibited with higher potency contractions evoked by low K+ compared to high K+ with resultant EC50 values of 0.62 mg/mL (0.58–0.72; n = 5) and 6.44 mg/mL (5.86–7.32; n = 5), respectively. Verapamil (VRP) inhibited both low and high K+ contractions at similar concentrations. Pre-incubation of the tracheal tissues with K+ channel blockers such as glibenclamide (Gb), 4-aminopyridine (4-AP), and tetraethylammonium (TEA) significantly shifted the inhibitory CRCs of fenchone to the right towards higher doses. Fenchone also inhibited CCh-mediated contractions at comparable potency to its effect against high K+ [6.28 mg/mL (5.88–6.42, n = 4); CCh] and [6.44 mg/mL (5.86–7.32; n = 5); high K+]. A similar pattern was obtained with papaverine (PPV), a phosphodiesterase (PDE), and Ca2+ inhibitor which inhibited both CCh and high K+ at similar concentrations [10.46 µM (9.82–11.22, n = 4); CCh] and [10.28 µM (9.18–11.36; n = 5); high K+]. However, verapamil, a standard Ca2+ channel blocker, showed selectively higher potency against high K+ compared to CCh-mediated contractions with respective EC50 values of 0.84 mg/mL (0.82–0.96; n = 5) 14.46 mg/mL (12.24–16.38, n = 4). The PDE-inhibitory action of fenchone was further confirmed when its pre-incubation at 3 and 5 mg/mL potentiated and shifted the isoprenaline inhibitory CRCs towards the left, similar to papaverine, whereas the Ca2+ inhibitory-like action of fenchone pretreated tracheal tissues were authenticated by the rightward shift of Ca2+ CRCs with suppression of maximum response, similar to verapamil, a standard Ca2+ channel blocker. Fenchone showed a spasmolytic effect in isolated trachea mediated predominantly by K+ channel activation followed by dual inhibition of PDE and Ca2+ channels. Further in silico molecular docking studies provided the insight for binding of fenchone with Ca2+ channel (−5.3 kcal/mol) and K+ channel (−5.7), which also endorsed the idea of dual inhibition.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (N.U.R.); (M.N.A.); Tel.: +966-11-5886-035 (N.U.R.); +966-11-5886-037 (M.N.A.)
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (N.U.R.); (M.N.A.); Tel.: +966-11-5886-035 (N.U.R.); +966-11-5886-037 (M.N.A.)
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| |
Collapse
|
30
|
Scariolo F, Palumbo F, Vannozzi A, Sacilotto GB, Gazzola M, Barcaccia G. Genotyping Analysis by RAD-Seq Reads Is Useful to Assess the Genetic Identity and Relationships of Breeding Lines in Lavender Species Aimed at Managing Plant Variety Protection. Genes (Basel) 2021; 12:genes12111656. [PMID: 34828262 PMCID: PMC8621978 DOI: 10.3390/genes12111656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Lavender species are widely distributed in their wild forms around the Mediterranean Basin and they are also cultivated worldwide as improved and registered clonal varieties. The economic interest of the species belonging to the Lavandula genus is determined by their use as ornamental plants and important source of essential oils that are destinated to the production of cosmetics, pharmaceuticals and foodstuffs. Because of the increasing number of cases of illegal commercialization of selected varieties, the protection of plant breeders’ rights has become of main relevance for the recognition of breeding companies’ royalties. With this aim, genomic tools based on molecular markers have been demonstrated to be very reliable and transferable among laboratories, and also much more informative than morphological descriptors. With the rising of the next-generation sequencing (NGS) technologies, several genotyping-by-sequencing approaches are now available. This study deals with a deep characterization of 15 varietal clones, belonging to two distinct Lavandula species, by means of restriction-site associated DNA sequencing (RAD-Seq). We demonstrated that this technology screens single nucleotide variants that enable to assess the genetic identity of individual accessions, to reconstruct genetic relationships among related breeding lines, to group them into genetically distinguishable main subclusters, and to assign their molecular lineages to distinct ancestors. Moreover, a number of polymorphic sites were identified within genes putatively involved in biosynthetic pathways related to both tissue pigmentation and terpene production, useful for breeding and/or protecting newly registered varieties. Overall, the results highlighted the presence of pure ancestries and interspecific hybrids for the analyzed Lavandula species, and demonstrated that RAD-Seq analysis is very informative and highly reliable for characterizing Lavandula clones and managing plant variety protection.
Collapse
Affiliation(s)
- Francesco Scariolo
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (F.S.); (F.P.); (A.V.)
| | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (F.S.); (F.P.); (A.V.)
| | - Alessandro Vannozzi
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (F.S.); (F.P.); (A.V.)
| | - Gio Batta Sacilotto
- Gruppo Padana Ortofloricoltura S.S., Via Olimpia 41, 31038 Treviso, Italy; (G.B.S.); (M.G.)
| | - Marco Gazzola
- Gruppo Padana Ortofloricoltura S.S., Via Olimpia 41, 31038 Treviso, Italy; (G.B.S.); (M.G.)
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (F.S.); (F.P.); (A.V.)
- Correspondence:
| |
Collapse
|
31
|
Chograni H, Riahi L, Messaoud C. Variability of qualitative and quantitative secondary metabolites traits among wild genetic resources of Lavandula stoechas L. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Chemical Composition and Biological Activities of Oregano and Lavender Essential Oils. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Folk medicine uses wild herbs, especially from the Lamiaceae family, such as oregano and lavender, in the treatment of many diseases. In the present study, we investigated the antibacterial activity of the essential oils of Origanum glandulosum Desf. and Lavandula dentata L. against multidrug-resistant Klebsiella pneumoniae strains. The chemical composition of essential oils and their effect on the ultrastructure of the tested bacteria and on the release of cellular components that absorb at 260 nm were studied. Furthermore, the cytotoxicity and the production of reactive oxygen species in human lymphocytes treated with essential oils were evaluated. Thymol (33.2%) was the major constituent in O. glandulosum, and β-pinene (17.3%) was the major constituent in L. dentata. We observed ultrastructural damage in bacteria and increased release of cellular material. Furthermore, ROS production in human lymphocytes treated with essential oils was lower than in untreated lymphocytes and no cytotoxicity was observed. Therefore, the essential oils of lavender and oregano could be used as a source of natural antibacterial and antioxidant agents with potential pharmacological applications.
Collapse
|
33
|
Uncovering Prospective Role and Applications of Existing and New Nutraceuticals from Bacterial, Fungal, Algal and Cyanobacterial, and Plant Sources. SUSTAINABILITY 2021. [DOI: 10.3390/su13073671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutraceuticals are a category of products more often associated with food but having pharmaceuticals property and characteristics. However, there is still no internationally accepted concept of these food-pharmaceutical properties, and their interpretation can differ from country to country. Nutraceuticals are used as part of dietary supplements in most countries. They can be phytochemicals which are biologically active and have health benefits. These can be supplied as a supplement and/or as a functional food to the customer. For human health and longevity, these materials are likely to play a vital role. Consumption of these items is typical without a therapeutic prescription and/or supervision by the vast majority of the public. The development of nutraceuticals can be achieved through many bioresources and organisms. This review article will discuss the current research on nutraceuticals from different biological sources and their potential use as an agent for improving human health and well-being, as well as the gaps and future perspective of research related to nutraceutical development.
Collapse
|
34
|
Pessoa MLDS, Silva LMO, Araruna MEC, Serafim CADL, Júnior EBA, Silva AO, Pessoa MMB, Neto HD, Lima EDO, Batista LM. Antifungal activity and antidiarrheal activity via antimotility mechanisms of (-)-fenchone in experimental models. World J Gastroenterol 2020; 26:6795-6809. [PMID: 33268962 PMCID: PMC7684460 DOI: 10.3748/wjg.v26.i43.6795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND (-)-Fenchone is a bicyclic monoterpene present in essential oils of plant species, such as Foeniculum vulgare and Peumus boldus, used to treatment of gastrointestinal diseases. Pharmacological studies report its anti-inflammatory, antioxidant, and antinociceptive activity.
AIM To investigate antidiarrheal activity related to gastrointestinal motility, intestinal secretion and antimicrobial activity.
METHODS A castor oil-induced diarrhea model was used to evaluate antidiarrheal activity. Intestinal transit and gastric emptying protocols were used to assess a possible antimotility effect. Muscarinic receptors, presynaptic α2-adrenergic and tissue adrenergic receptors, KATP channels, nitric oxide were investigated to uncover antimotility mechanisms of action and castor oil-induced enteropooling to elucidate antisecretory mechanisms. The antimicrobial activity was evaluated in the minimum inhibitory concentration model, the fractional inhibitory concentration index using the (-)-fenchone association method with standard antifungal agents.
RESULTS (-)-Fenchone (75, 150 and 300 mg/kg) showed antidiarrheal activity, with a significant decrease in the evacuation index. This activity is possibly related to a percentage of reduced intestinal transit (75, 150 and 300 mg/kg). The antimotility effect of (-)-fenchone decreased in the presence of pilocarpine, yohimbine, propranolol, L-NG-nitroarginine methyl ester or glibenclamide. In the enteropooling model, no reduction in intestinal fluid weight was observed. (-)- Fenchone did not show antibacterial activity; on the other hand, inhibits the growth of strains of fungi with a minimum fungicide concentration of 32 μg/mL. However, when it was associated with amphotericin B, no synergism was observed.
CONCLUSION The antidiarrheal effect of (-)-fenchone in this study involves antimotility effect and not involve antisecretory mechanisms. (-)-Fenchone presents antifungal activity; however, it did not show antibacterial activity.
Collapse
Affiliation(s)
- Michelle Liz de Souza Pessoa
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Maria Elaine Cristina Araruna
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Edvaldo Balbino Alves Júnior
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Alessa Oliveira Silva
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Hermes Diniz Neto
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Edeltrudes de Oliveira Lima
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraiba, João Pessoa 58051-900, Brazil
| |
Collapse
|
35
|
O-Carboxymethylated chitosan; A promising tool with in-vivo anti-inflammatory and analgesic properties in albino rats. Int J Biol Macromol 2020; 156:531-536. [DOI: 10.1016/j.ijbiomac.2020.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/05/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
|
36
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
37
|
Masi M, Pannacci E, Santoro E, Zermane N, Superchi S, Evidente A. Stoechanones A and B, Phytotoxic Copaane Sesquiterpenoids Isolated from Lavandula stoechas with Potential Herbicidal Activity against Amaranthus retroflexus. JOURNAL OF NATURAL PRODUCTS 2020; 83:1658-1665. [PMID: 32383878 DOI: 10.1021/acs.jnatprod.0c00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
From the organic extract of Lavandula stoechas, a Mediterranean native plant species, two new phytotoxic copaane sesquiterpenoids were isolated and named stoechanones A and B (1 and 2). They were obtained together with the methyl esters of caffeic and p-coumaric acids and the flavonoid apigenin (3-5, respectively). The structures of stoechanones A and B were determined by spectroscopic (essentially 1D and 2D 1H and 13C NMR and HRESIMS) and chemical methods, and they were characterized as 9,10-dihydroxy-8-isopropyl-1,5-dimethyltricyclo[4.4.0.02.7]dec-4-en-3-one and its 9-O-acetyl derivative. Their relative configurations were assigned by NOESY experiments, and the absolute configurations by comparison of the experimental and DFT-computed ECD spectra. When assayed through Petri dish bioassays, both stoechanones A and B showed phytotoxic effects against seed germination and seedling growth of Amaranthus retroflexus, strongly inhibiting seed germination percentage and radicle and hypocotyl lengths of seedlings. Owing to the herbicidal activity toward A. retroflexus, these two new tricyclic sesquiterpenoids could be proposed and developed as natural bioherbicides in order to increase the control of this problematic weed in the future.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Euro Pannacci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| | - Ernesto Santoro
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Nadjia Zermane
- Faculty of Sciences, University of Algiers, 2 Didouche Mourad Street, 16002 Algiers, Algeria
| | - Stefano Superchi
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
38
|
Pagnocca TS, Zank S, Hanazaki N. "The plants have axé": investigating the use of plants in Afro-Brazilian religions of Santa Catarina Island. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:20. [PMID: 32334606 PMCID: PMC7183622 DOI: 10.1186/s13002-020-00372-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cultural and religious practices of African origin have decisively influenced traditional health practices in the Americas since the African diaspora. Plants are core elements in the religions of African origin. Compared with other parts of Brazil where the Afro-Brazilian presence is widely recognized, in Southern Brazil, these cultural practices are often socially invisible. Yet, there are several terreiros of three Afro-Brazilian religions: Candomblé, Umbanda, and Ritual deAlmas e Angola. We hypothesize that the importance of plants in Afro-Brazilian religions is linked not only to spiritual and magical issues but also to the medicinal properties of these plants. We seek to answer the following questions: (a) Which plants are used in the terreiros and what are their indications for use?; (b) Are there plants that stand out culturally in these religious groups?; and (c) What is the importance of the adaptive maintenance and replacement process in the use of plants in these religions, considering the Neotropical and African plants? METHODS We performed a census of the existing terreiros on the Island of Santa Catarina to collect information on the knowledge and use of plants. In all terreiros that consented to participate in the research, we collected data through semi-structured interviews, guided tours for plant collection, and participant observation. We identified the botanical species through expert consultations and botanical literature. RESULTS We interviewed 27 spiritual leaders, who cited 93 plants belonging to 86 botanical species. We identified 14 categories of use, with emphasis on liturgical ritual use (59%), general and unspecified diseases (32%), and digestive diseases (27%). In most liturgics uses, direct contact between plant and patient occurs, as in the case of bathing and the cleansing use of smoke. Sixteen plants were cited in all terreiros, configuring a set of species that can be considered as culturally important plants for these religious groups. CONCLUSIONS These groups have extensive knowledge about a highly consensual set of therapeutic plants that should be further investigated pharmacologically to understand the effect of their external use. Also, we emphasize the importance of recognizing and valuing this ancestral Afro-Brazilian knowledge and learning also from these people about their broader vision of health which also adds more spirituality in health care.
Collapse
Affiliation(s)
- Tiago Santos Pagnocca
- Laboratory of Human Ecology and Ethnobotany (ECOHE), Department of Ecology and Zoology, Federal University of Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, s/n, Florianópolis, SC, 88040-900, Brazil
| | - Sofia Zank
- Laboratory of Human Ecology and Ethnobotany (ECOHE), Department of Ecology and Zoology, Federal University of Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, s/n, Florianópolis, SC, 88040-900, Brazil
| | - Natalia Hanazaki
- Laboratory of Human Ecology and Ethnobotany (ECOHE), Department of Ecology and Zoology, Federal University of Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, s/n, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
39
|
Almohawes ZN, Alruhaimi HS. Effect of Lavandula dentata extract on Ovalbumin-induced Asthma in Male Guinea Pigs. BRAZ J BIOL 2020; 80:87-96. [PMID: 31017237 DOI: 10.1590/1519-6984.191485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023] Open
Abstract
Asthma is an inflammatory disease of the lungs, and it causes oxidative stress. Lavandula dentata is an aromatic herb with anti-oxidative and anti-inflammatory activities. This study examined the activity of L. dentata extract on a guinea pig model of asthma. Adult males were divided into five groups: First group was control, second was asthma model induced by OVA, third was treated with L. dentata extract orally (300 mg/kg) for 21 days; the fourth was an asthma model with L. dentata extract (300 mg/kg) and fifth was treated with Tween 80 for 21 days. OVA treatment increased IgE, triglycerides, total cholesterol, glucose levels in serum, WBC count in blood and MDA in lungs. Also, OVA reduced SOD activity, GSH content in lungs, and GGT activity in serum (p<0.05). L. dentata extract treatment in asthma model reduced elevated IgE, triglycerides, total cholesterol, glucose levels in serum, and MDA in lungs (p<0.05), while it increased GSH content in lungs (p<0.05). These results suggest the possibility that L . dentata extract can exert suppressive effects on asthma, and may provide evidence that it is a useful agent for the treatment of allergic airway disease, it also limits oxidative stress induced by OVA. L. dentata extract appears to have hypolipidemic and hypoglycemic activities.
Collapse
Affiliation(s)
- Z N Almohawes
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - H S Alruhaimi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Ez zoubi Y, Bousta D, Farah A. A Phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-019-0142-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe Mediterranean region is characterized by a diverse vegetation cover, and the Lavandula genus is one of the most important medicinal and aromatic plants in this region. It has been used in traditional medicine as a treatment for anxiety and insomnia and to improve sleep quality for a long history. Lavender is commonly used in perfumes, soaps, bath powders, and scented sachets. It can flavor teas or food even at low concentrations. Several ethnopharmacological studies have demonstrated its use in treating several diseases; it has anti-inflammatory, antioxidant, antispasmodic, sedative, insecticidal, antimicrobial and antifungal activities. This paper reviews the geographical distribution, traditional uses, chemical composition, and pharmacological activities of the Lavandula stoechas.
Collapse
|
41
|
Sayout A, Ouarhach A, Rabie R, Dilagui I, Soraa N, Romane A. Evaluation of Antibacterial Activity of Lavandulapedunculata subsp. atlantica (Braun-Blanq.) Romo Essential Oil and Selected Terpenoids against Resistant Bacteria Strains-Structure-Activity Relationships. Chem Biodivers 2020; 17:e1900496. [PMID: 31909551 DOI: 10.1002/cbdv.201900496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
The genus Lavandula is known for its different uses in traditional medicine. This study is interested in the chemical composition of Lavandulapedunculata subsp.atlantica (Braun-Blanq.) Romo as well as evaluating its antibacterial potential against multi-resistant strains. The analysis of Lavandulaatlantica essential oil (LAEO) allows the identification of 47 components representing 93.6 % of all identified. The main constituent of LAEO was camphor (50.4 %), followed by fenchone (14.1 %) and camphene (5.6 %). The antibacterial assays revealed that LAEO was active against all the studied bacteria. A preliminary study of the relationship between certain terpenoids and antibacterial activity was also carried out in order to note the compound(s) that are responsible for LAEO's antibacterial activity. This study showed that the activity of the essential oil may be due to the presence of certain minor compounds such as carvone, considering the presence of the synergistic effect between the essential oil.
Collapse
Affiliation(s)
- Ahlam Sayout
- Laboratory of Applied Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Aicha Ouarhach
- Laboratory of Applied Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Reda Rabie
- Laboratory of Application Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez B.P. 2202, Morocco
| | - Ilham Dilagui
- Laboratory of Microbiology and Virology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, B.P. 7010, Morocco
| | - Nabila Soraa
- Laboratory of Microbiology and Virology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, B.P. 7010, Morocco
| | - Abderrahmane Romane
- Laboratory of Applied Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| |
Collapse
|
42
|
Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L. Antioxidants (Basel) 2019; 8:antiox8080267. [PMID: 31382408 PMCID: PMC6719046 DOI: 10.3390/antiox8080267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
The phenolic composition of hydroethanolic extracts of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L., obtained from plants grown under organic cultivation, was determined and their hepatoprotective effects were investigated in vitro. L. cardiaca extract was rich in phenylethenoid glycosides, especially lavandolifolioside (254 ± 36 μg/mg), whereas rosmarinic acid and eriodictyol-O-rutinoside were the major phenolic compounds of L. dentata and M. aquatica extracts, accounting for 68 ± 7 μg/mg and 145 ± 22 μg/mg, respectively. These differential phenolic components presumably account for their dissimilar antioxidant properties. While L. cardiaca extract showed moderate biological effects, M. aquatica extract displayed high antioxidant activity in chemical models, and that of L. dentata was effective in counteracting potassium dichromate-induced ROS generation in human hepatocarcinoma cells. Moreover, M. aquatica extract (50 μg/mL) and its mixture (50%/50%) with L. dentata extract displayed an effective cytoprotective effect.
Collapse
|
43
|
Karaman S, Karaman T, Tapar H, Dogru S, Suren M. A randomized placebo-controlled study of aromatherapy for the treatment of postoperative nausea and vomiting. Complement Ther Med 2019; 42:417-421. [PMID: 30670276 DOI: 10.1016/j.ctim.2018.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE The purpose of this study was to compare the aromatherapy treatment effects on PONV patients using ginger, lavender and rose oils and a placebo. DESIGN A randomized 4-armed placebo controlled study. SETTING Gaziosmanpasa University, School of Medicine, Health Research and Application Center. INTERVENTION The total of 184 patients were randomized into 4 groups: Aromatherapy with lavender essential oil (Lavender group), with rose essential oil (Rose group), with ginger essential oil (Ginger group) or with pure water (Placebo group). MAIN OUTCOME MEASURES Postoperative nausea (0-3 Likert type; 0=no nausea, 1=some, 2=a lot, 3=severe) and vomiting scores (0-3 Likert type; 0=no vomiting, 1 = 1 time, 2 = 2 or 3 time, 3 = 4 times and up) and antiemetic medication requirement. RESULTS The nausea scores at 15 min were statistically significantly different between the groups (p = 0.00). The postoperative nausea scores improved in 20 (43.5%) subjects in the placebo group, 38 (82.6%) subjects in the lavender group, 22 (47.8%) subjects in the rose group and 30 (65.2%) subjects in the ginger group (p = 0.00). There were statistically significant differences between the groups with regard to the vomiting and antiemetic drug requirements (p = 0.00). CONCLUSION The aromatherapy can be used as an alternative or complementary method for managing PONV. Specifically, the ginger and lavender essential oils were superior to the rose oil and pure water for the aromatherapy treatments. However, further studies with larger sample sizes are necessary to confirm these results.
Collapse
Affiliation(s)
- Serkan Karaman
- Department of Anesthesiology and Reanimation, School of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Tugba Karaman
- Department of Anesthesiology and Reanimation, School of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Hakan Tapar
- Department of Anesthesiology and Reanimation, School of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Serkan Dogru
- Department of Anesthesiology and Reanimation, School of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Mustafa Suren
- Department of Anesthesiology and Reanimation, School of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
44
|
Zang J, Ma S, Wang C, Guo G, Zhou L, Tian X, Lv M, Zhang J, Han B. Screening for active constituents in Turkish galls against ulcerative colitis by mass spectrometry guided preparative chromatography strategy: in silico, in vitro and in vivo study. Food Funct 2019; 9:5124-5138. [PMID: 30256363 DOI: 10.1039/c8fo01439f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Turkish galls have been reported to exhibit remedial effects in ulcerative colitis (UC). However, the active constituents of Turkish galls for the treatment of UC remain unclear. The objective of this study was to screen for anti-inflammatory active constituents and clarify their associated molecular mechanisms. Therefore, systems pharmacology was developed to predict the relationship between constituents and the corresponding targets as well as pathways. In addition, mass spectrometry-guided preparative chromatography technique was used for preparing constituents to evaluate the anti-inflammatory activities and the therapeutic efficacy against UC. In silico, active constituents exhibited a remedial effect on UC possibly by regulating multiple pathways and attacking multiple targets, of which those involved mainly in the NF-κB pathway were selected for verification. In vitro, 5 categories of constituents were screened as active constituents by comparing the cytotoxicity and detecting the level of the pro-inflammatory factors of 9 category constituents. In vivo, dextran sulfate sodium (DSS)-induced UC was significantly ameliorated in active constituents-fed mice. The results indicated that the active fraction comprising methyl gallate, digallic acid, di-O-galloyl-β-d-glucose, and tri-O-galloyl-β-d-glucose primarily contributed to the treatment of UC. Moreover, active fraction could also inhibit the phosphorylation level of IKKβ, thus inhibiting the downstream NF-κB signaling pathway. The approach developed in this study not only clarifies the anti-inflammation effect of Turkish galls but also provides a beneficial reference for the discovery of the base material and functional mechanism of this herbal medicine.
Collapse
Affiliation(s)
- Jie Zang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education/School of Medicine, Shihezi University, Xinjiang Shihezi 832003, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Salehi B, Mnayer D, Özçelik B, Altin G, Kasapoğlu KN, Daskaya-Dikmen C, Sharifi-Rad M, Selamoglu Z, Acharya K, Sen S, Matthews KR, Fokou PVT, Sharopov F, Setzer WN, Martorell M, Sharifi-Rad J. Plants of the Genus Lavandula: From Farm to Pharmacy. Nat Prod Commun 2018; 13. [DOI: 10.1177/1934578x1801301037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024] Open
Abstract
The Lavandula genus, belonging to the Lamiaceae, includes 39 species, with nearly 400 registered cultivars. Lavandula are worldwide plants that occur over the Mediterranean, Europe, North Africa, southwest Asia to southeast India. Lavandula plants have been used since ancient time to flavor and preserved food, to treat diseases including wound healing, sedative, antispasmodic, microbial and viral infections. Numerous researches have described the chemical composition and the primary components of lavender oils are the monoterpenoids (linalool, linalyl acetate, 1,8-cineole, β-ocimene, terpinen-4-ol, and camphor), sesquiterpenoids (β-caryophyllene and nerolidol) and other terpenoid compounds (e.g., perillyl alcohol). The high concentrations of linalyl acetate make them attractive in perfumery, flavoring, cosmetics and soap industries. Currently, data on the antimicrobial activity of lavender plants have been scientifically confirmed. Indeed, lavender essential oils possess wide spectra of biological activities such as antispasmodic, carminative, analgesic, sedative, hypotensive, antiseptic, antimicrobial, antifungal, antidiuretic and general tonic action. In addition, clinical studies support their uses as treatment of health conditions. However, further clinical studies are necessary to define the magnitude of the efficacy, mechanisms of action, optimal doses, long-term safety, and, potential side effects of lavender plants.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Fanar, Beirut, Lebanon
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, 34467, Istanbul, Turkey
| | - Gokce Altin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ceren Daskaya-Dikmen
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, 51240, Nigde, Turkey
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal – 743331, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003, Dushanbe, Tajikistan
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
46
|
Kulabas SS, Ipek H, Tufekci AR, Arslan S, Demirtas I, Ekren R, Sezerman U, Tumer TB. Ameliorative potential of Lavandula stoechas in metabolic syndrome via multitarget interactions. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:88-98. [PMID: 29729383 DOI: 10.1016/j.jep.2018.04.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Decoction and infusion prepared from aerial parts of Lavandula stoechas L. (L. stoechas) have been traditionally used as remedy against several components of metabolic syndrome (MetS) and associated disorders including type II diabetes and cardiovascular diseases by Anatolian people. AIM OF THE STUDY The aim is to elucidate the potential ameliorative effects of L. stoechas aqueous extracts on insulin resistance and inflammation models through multitarget in vitro approaches and also to elucidate mechanism of action by analyzing transcriptional and metabolic responses. MATERIALS AND METHODS An aqueous extract was prepared and fractionated to give rise to ethyl acetate (EE) and butanol (BE) extracts. The anti-insulin resistance effects of BE and EE were evaluated on palmitate induced insulin resistance model of H4IIE, C2C12 and 3T3L1 cells by using several metabolic parameters. Specifically, whole genome transcriptome analysis was performed by using microarray over 55.000 genes in control, insulin resistant and EE (25 µg/mL) treated insulin resistant H4IIE cells. Anti-inflammatory effects of both extracts were analyzed in LPS-stimulated RAW264.7 macrophages. RESULTS Both EE and BE at low doses (25-50 µg/mL) significantly decreased hepatic gluconeogenesis in H4IIE cell line by suppressing the expression of PEPCK and G6Pase. In C2C12 myotubes, both extracts increased the insulin stimulated glucose uptake more effectively than metformin. Both extracts decreased the isoproterenol induced lipolysis in 3T3L1 cell line. Moreover, they also effectively increased the expression of lipoprotein lipase protein level in insulin resistant myotubes at low doses. EE increased the protein level of PPARγ and stimulated the activation AKT in insulin resistant H4IIE and C2C12 cell lines. The results obtained from biochemical assays, mRNA/protein studies and whole genome transcriptome analyses were found to be complementary and provided support for the hypothesis that EE might be biologically active against insulin resistance and act through the inhibition of liver gluconeogenesis and AKT activation. Besides, LPS induced inflammation in RAW264.7 macrophages was mainly inhibited by EE through suppression of iNOS/NO signaling, IL1β and COX-2 genes. HPLC-TOF/MS analysis of EE of L. stoechas mainly resulted in caffeic acid, apigenin, luteolin, rosmarinic acid and its methyl ester, 4-hydroxybenzoic acid, vanillic acid, ferrulic acid and salicylic acid. CONCLUSION Data suggest that EE of L. stoechas contains phytochemicals that can be effective in the treatment/prevention of insulin resistance and inflammation. These results validate the traditional use of L. stoechas in Anatolia against several metabolic disorders including metabolic syndrome.
Collapse
Affiliation(s)
- S S Kulabas
- Graduate Program of Biology, Institute of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey
| | - H Ipek
- Graduate Program of Bioengineering, Institute of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey
| | - A R Tufekci
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University 18200 Çankırı Turkey
| | - S Arslan
- Department of Biology, Faculty of Art and Science, Pamukkale University, 20160 Denizli, Turkey
| | - I Demirtas
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University 18200 Çankırı Turkey
| | - R Ekren
- Graduate Program of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752 İstanbul, Turkey
| | - U Sezerman
- Department of Biostatistics and Medical Informatics, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752 İstanbul, Turkey
| | - T B Tumer
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey.
| |
Collapse
|
47
|
Phenolic Composition and Bioactivity of Lavandula pedunculata (Mill.) Cav. Samples from Different Geographical Origin. Molecules 2018; 23:molecules23051037. [PMID: 29710781 PMCID: PMC6099610 DOI: 10.3390/molecules23051037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to characterize the phenolic composition and evaluate the bioactivity of several samples of Lavandula pedunculata (Mill.) Cav, and to compare aqueous and hydroethanolic extracts. Plant materials were obtained by growing some accessions (seed samples) of various wild populations from different regions of Portugal conserved at the Portuguese Genebank in Braga. Phenolic compounds were analised by HPLC-DAD-ESI/MSn, antioxidant potential through in vitro assays (DPPH radical scavenging activity, reducing power and inhibition of lipid peroxidation), cytotoxicity on tumor cells (MCF-7, NCI-H460, HeLa and HepG2) and non-tumor (PLP2) cells, anti-inflammatory activity in rat RAW 264.7 macrophages, by the ability to inhibit NO production and antimicrobial potential by the microdilution method with INT dye (iodonitrotetrazolium chloride). Thirteen compounds were identified, being salvianolic acid B, rosmarinic acid and luteolin-7-O-glucuronide, the main compounds present, with values ranging between 44.3–582, 50.9–550, and 24.36–101.5 mg/g extract, respectively. L. pedunculata aqueous extract revealed a higher antioxidant potential (EC50 values between 14 to 530 μg/mL), which could be related to its higher concentration in phenolic compounds; however, the hydroethanolic extract showed a higher anti-inflammatory (lower EC50 values than 124 μg/mL) potential and antiproliferative capacity (lower GI50 values than 34 μg/mL). Thus, this study highlights the bioactive effects of this species and opens up possibilities of uses in food and pharmaceutical formulations. However, there are potential differences in such properties according to geographical origin of plant material, as in general, the samples from Alentejo presented higher results in all the bioactivities, compared with Trás-os-Montes samples.
Collapse
|
48
|
Ghattamaneni NKR, Panchal SK, Brown L. Nutraceuticals in rodent models as potential treatments for human Inflammatory Bowel Disease. Pharmacol Res 2018; 132:99-107. [PMID: 29680446 DOI: 10.1016/j.phrs.2018.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/26/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of all or part of the digestive tract. Nutraceuticals include bioactive compounds such as polyphenols with anti-inflammatory activities, thus these products have the potential to treat chronic inflammatory diseases. We have emphasized the role of nutraceuticals in ameliorating the symptoms of IBD in rodent models of human IBD through modulation of key pathogenic mechanisms including dysbiosis, oxidative stress, increased inflammatory cytokines, immune system dysregulation, and inflammatory cell signaling pathways. Nutraceuticals have an important role in IBD patients as a preventive approach to extend remission phases and as a therapeutic intervention to suppress active IBD. Further clinical trials on nutraceuticals with positive results in rodent models are warranted.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia; Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia; Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
49
|
Therapeutic Effects of Medicinal Plants on Cutaneous Wound Healing in Humans: A Systematic Review. Mediators Inflamm 2018; 2018:7354250. [PMID: 29805312 PMCID: PMC5901822 DOI: 10.1155/2018/7354250] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/02/2018] [Indexed: 12/27/2022] Open
Abstract
The pharmaceutical industry has made great strides in providing drugs that are able to stimulate the healing process, but only 1-3% of all drugs that are listed in Western pharmacopoeias are intended for use on the skin or cutaneous wounds. Of these, at least one-third are obtained from plants. We sought to review the therapeutic effects of medicinal plants on human skin lesions. For this systematic review, we searched the PubMed, Scopus, and Web of Science databases to identify clinical trials that were published from 1997 to 2017. We reviewed studies that described the use of medicinal plants for the treatment of skin lesions in humans. Ten studies were selected, eight of which were published from 2007 to 2016, with a total of 503 patients. Among the plant species that were used for the treatment of human skin lesions, 12 belonged to 11 families and were included in the analysis. All of the plant species that were studied presented high therapeutic potential for the treatment of cutaneous lesions.
Collapse
|
50
|
Contreras MDM, Algieri F, Rodriguez-Nogales A, Gálvez J, Segura-Carretero A. Phytochemical profiling of anti-inflammatory Lavandula extracts via RP-HPLC-DAD-QTOF-MS and -MS/MS: Assessment of their qualitative and quantitative differences. Electrophoresis 2017; 39:1284-1293. [PMID: 29168886 DOI: 10.1002/elps.201700393] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/16/2022]
Abstract
As for other aromatic plants, there are many analytical methods for the determination of volatile compounds in lavender essential oils. Alternatively, in this study RP-HPLC-DAD-QTOF-MS was used for the profiling of the phytochemical constituents of hydromethanolic extracts of L. stoechas and L. dentata, which were obtained by pressurized liquid extraction. The spectrometric data revealed complex profiles constituted of a wide range of polar and semi-polar phytochemicals, mainly, phenolic compounds (68). Most phenolic compounds (55) have not been previously reported in Lavandula; such is the case of caffeic acid-based oligomers. Moreover, the analytical method was validated for the determination of phenolic compounds. Our findings showed both qualitative and quantitative differences between the extracts. In this sense, while hydroxycinnamic acids made up the largest class in both extracts, flavones were the most abundant class, accounting for 10.44 g (L. dentata) and 4.85 g (L. stoechas) per 100 g of dry extract. In conclusion, this analytical method provided essential information about the phytochemical composition of the studied medicinal plants, revealing novel constituents that were probably hidden for others. In addition, these results may help to understand the anti-inflammatory properties of these extracts.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Research and Development Functional Food Centre (CIDAF), Granada, Spain.,Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Granada, Spain.,Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|