1
|
Zhong Z, Chen Y, Ruan X, Xie H, Wang B, Tan S, Qin X. Lipidomics analysis of bone marrow in a mouse model of postmenopausal osteoporosis. J Pharm Biomed Anal 2024; 246:116212. [PMID: 38735209 DOI: 10.1016/j.jpba.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Postmenopausal osteoporosis (PMOP) is a major public health problem worldwide, afflicting many postmenopausal women. Although many studies have focused on the biological role of individual lipids in osteoporosis, no studies have systematically elucidated the lipid profile of osteoporosis. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology based on multiple reaction monitoring (MRM) method was used to compare the levels of lipid molecules in bone marrow cells of osteoporotic mice (OVX) group and sham-operation (Sham) group. Principal component analysis (PCA) was used for multivariate statistics. Differential lipids were obtained by bar graph, heatmap and volcano map. A total of 400 lipid molecules were identified. A total of 199 lipid molecules were identified to be associated with PMOP, including 6 phospholipids and 3 sphingolipids. These differential lipid molecules provide a systematic lipid profile for osteoporosis, which helps to discover new candidate osteoporosis biomarkers, and their changes at the molecular level can be used as new targets for diagnosis or prevention.
Collapse
Affiliation(s)
- Ziqing Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yongling Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xuelian Ruan
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Huilin Xie
- Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510030, China
| | - Binbin Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Shaolin Tan
- Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Li X, Zhao X, Yu M, Zhang M, Feng J. Effects of Heat Stress on Breast Muscle Metabolomics and Lipid Metabolism Related Genes in Growing Broilers. Animals (Basel) 2024; 14:430. [PMID: 38338073 PMCID: PMC10854583 DOI: 10.3390/ani14030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
With global warming and worsening climatic conditions, heat stress (HS) has become a significant challenge affecting the development of poultry production. In this study, we aimed to determine the effects of HS on breast muscle metabolomics and lipid metabolism-related genes in growing broilers. One hundred twenty 29-day-old Arbor Acres broilers were randomly divided into normal temperature (NT; 21 ± 1 °C) and heat stress (HS; 31 ± 1 °C) groups, with six replicates (ten birds in each replicate) in each group, raised for 14 days in two environment chambers at 60 ± 7% relative humidity. Compared with the broilers in the NT group, the average daily food intake, average daily gain and breast muscle yield in the HS group were significantly lower (p < 0.05). The feed conversion ratio was significantly higher in the HS group (p < 0.05). The concentrations of serum corticosterone, free fatty acids and cholesterol and the percentage of abdominal fat of broilers in the HS group were significantly higher (p < 0.05) than the values of the broilers in the NT group. Untargeted breast muscle metabolome analysis revealed 14 upregulated differential metabolites, including glycerophosphocholine, and 27 downregulated differential metabolites, including taurine, in the HS group compared to the NT group; the HS group also displayed significant effects on six metabolic pathways compared to the NT group (p < 0.05). The mRNA expression levels of peroxisome proliferator-activated receptor gamma coactivator-1-alpha, peroxisome proliferator-activated receptor alpha (PPARα) and ATP-binding cassette transporter A1 in the liver and breast muscles were significantly decreased in the HS group compared with the NT group (p < 0.05). The collective findings reveal that HS can cause disorders in breast muscle lipid metabolism in broilers. The PPARα gene might be the key gene in the mechanism of the lipid metabolism that is induced by HS in breast muscle of broilers. These findings provide novel insights into the effects of HS on chicken growth.
Collapse
Affiliation(s)
| | | | | | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (M.Y.); (J.F.)
| | | |
Collapse
|
3
|
Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci 2023; 17:1191609. [PMID: 37333888 PMCID: PMC10272456 DOI: 10.3389/fncel.2023.1191609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Ceramide, a bioactive sphingolipid, serves as an important second messenger in cell signal transduction. Under stressful conditions, it can be generated from de novo synthesis, sphingomyelin hydrolysis, and/or the salvage pathway. The brain is rich in lipids, and abnormal lipid levels are associated with a variety of brain disorders. Cerebrovascular diseases, which are mainly caused by abnormal cerebral blood flow and secondary neurological injury, are the leading causes of death and disability worldwide. There is a growing body of evidence for a close connection between elevated ceramide levels and cerebrovascular diseases, especially stroke and cerebral small vessel disease (CSVD). The increased ceramide has broad effects on different types of brain cells, including endothelial cells, microglia, and neurons. Therefore, strategies that reduce ceramide synthesis, such as modifying sphingomyelinase activity or the rate-limiting enzyme of the de novo synthesis pathway, serine palmitoyltransferase, may represent novel and promising therapeutic approaches to prevent or treat cerebrovascular injury-related diseases.
Collapse
|
4
|
Sueajai J, Sutjarit N, Boonmuen N, Auparakkitanon S, Noumjad N, Suksamrarn A, Vinayavekhin N, Piyachaturawat P. Lowering of lysophosphatidylcholines in ovariectomized rats by Curcuma comosa. PLoS One 2022; 17:e0268179. [PMID: 35588422 PMCID: PMC9119514 DOI: 10.1371/journal.pone.0268179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
Decline of ovarian function in menopausal women increases metabolic disease risk. Curcuma comosa extract and its major compound, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD), improved estrogen-deficient ovariectomized (OVX) rat metabolic disturbances. However, information on their effects on metabolites is limited. Here, we investigated the impacts of C. comosa ethanol extract and DPHD on 12-week-old OVX rat metabolic disturbances, emphasizing the less hydrophobic metabolites. Metabolomics analysis of OVX rat serum showed a marked increase compared to sham-operated rat (SHAM) in levels of lysophosphatidylcholines (lysoPCs), particularly lysoPC (18:0) and lysoPC (16:0), and of arachidonic acid (AA), metabolites associated with inflammation. OVX rat elevated lysoPCs and AA levels reverted to SHAM levels following treatments with C. comosa ethanol extract and DPHD. Overall, our studies demonstrate the effect of C. comosa extract in ameliorating the metabolic disturbances caused by ovariectomy, and the elevated levels of bioactive lipid metabolites, lysoPCs and AA, may serve as potential biomarkers of menopausal metabolic disturbances.
Collapse
Affiliation(s)
- Jetjamnong Sueajai
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saranya Auparakkitanon
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nantida Noumjad
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Nawaporn Vinayavekhin
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| | | |
Collapse
|
5
|
Guo Y, Liao J, Liang Z, Balasubramanian B, Liu W. Hepatic lipid metabolomics in response to heat stress in local broiler chickens breed (Huaixiang chickens). Vet Med Sci 2021; 7:1369-1378. [PMID: 33639042 PMCID: PMC8294384 DOI: 10.1002/vms3.462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
High-temperature environment-induced heat stress (HS) is a hazard environmental element for animals, leading to dramatic changes in physiological and metabolic function. However, the metabolomic-level mechanisms underlying lipid metabolism in liver of slow-growing broilers are still obscure. The present study investigated the effects of HS on hepatic lipidomics in Chinese indigenous slow-growing broilers (Huaixiang chickens). The study includes two treatments, each treatment had 5 replicates with 4 broilers per cage, where a total of 40 eight-week-old female Huaixiang chickens (average initial body weight of 840.75 ± 20.79 g) were randomly divided into normal temperature (NT) and HS groups for 4 weeks, and the broilers of NT and HS groups were exposed to 21.3 ± 1.2℃ and 32.5 ± 1.4℃ respectively. The relative humidity of the two groups was maintained at 55%-70%. The liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were conducted to evaluate the changes in hepatic lipidomics of broilers. The results showed that there were 12 differential metabolites between the two treatments. Compared with the NT group, HS group reduced the levers of hepatic phosphatidylcholine (PC) (16:0/16:0), PC (16:0/18:2), triglyceride (TG) (16:0/16:1/18:1), TG (18:0/18:1/20:4) (VIP > 1 and p < 0.05), while increased PC (18:1/20:3), PC (18:0/18:1), PC (18:1/18:1), PC (18:0/22:5), dimethyl-phosphatidyl ethanolamine (dMePE) (14:0/18:3), dMePE (18:0/18:1) and dMePE (16:0/20:3) levels (Variable Importance in the Projection; VIP > 1 and p < 0.05). In addition, according to the analysis of metabolic pathway, the pathways of linoleic acid, alpha-linolenic acid, glycerolipid and glycerophospholipid metabolism were involved in the effects of HS on hepatic lipid metabolism of broilers (p < 0.05). In conclusion, HS altered the hepatic lipid metabolism mainly through linoleic acid, alpha-linolenic acid, glycerolipid and glycerophospholipid metabolism pathway in indigenous broilers. These findings provided novel insights into the role of HS on hepatic lipidomics in Chinese indigenous broiler chickens.
Collapse
Affiliation(s)
- Yan Guo
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| | - Jia‐Hao Liao
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| | - Zi‐Long Liang
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| | | | - Wen‐Chao Liu
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| |
Collapse
|
6
|
Guo Y, Balasubramanian B, Zhao ZH, Liu WC. Heat stress alters serum lipid metabolism of Chinese indigenous broiler chickens-a lipidomics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10707-10717. [PMID: 33098000 DOI: 10.1007/s11356-020-11348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Heat stress (HS) by high-temperature environment reduced the production performance of poultry and caused losses to the breeding industry. The present study was conducted to investigate the effects of HS on serum lipidomics in Chinese indigenous slow-growing broiler chickens (Huaixiang chickens). A total of 40 8-week-old female Huaixiang chickens were randomly allocated to two groups, including normal temperature (NT, fed basal diet) and HS (fed basal diet), and each group consisted of five replicates with four birds per replicate. NT and HS groups were exposed to 21.3 ± 1.2 °C and 32.5 ± 1.4 °C for 4 weeks, respectively. Serum lipidomics in broilers was determined by liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. The results indicated that there were significant differences in metabolic spectra between the groups, and a total of 17 differential metabolites were screened. Compared with NT group, HS group reduced the serum ceramide (cer) (d18:1/22:0), cer (d18:1/24:1), cer (d20:2/22:2), lyso-phosphatidylcholine (LPC) (18:0), phosphatidylcholine (PC) (18:0/20:4), PC (15:0/23:4), PC (18:0/22:6), PC (18:2/18:2), phosphatidylethanolamine (PE) (18:1/18:1), polyethylene terephthalate (PEt) (37:3/8:0), phosphatidylglycerol (PG) (32:1/16:2), phosphatidyl methyl ethanolamine (PMe) (19:3/13:0), PMe (26:1/9:0), sphingomyelin (SM) (d16:0/18:1), triglycerides (TG) (18:0/18:1/18:2), and TG (19:4/21:6/21:6) levels [variable importance in the projection (VIP > 1 and P < 0.05)], while HS group increased serum PC (17:0/17:0) content (VIP > 1 and P < 0.05). Also, metabolic pathway analysis showed that the pathways of glycerolphospholipid, linoleic acid and α-linolenic acid metabolism, and glycosylphosphatidylinositol (GPI)-anchored biosynthesis were changed (P < 0.05). In conclusion, HS led to the disorders of serum lipid metabolism in broilers, and mainly downregulated serum content of phospholipids. These findings provide novel insights into the effects of HS on serum lipidomics in indigenous slow-growing chickens.
Collapse
Affiliation(s)
- Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
7
|
Zywno H, Bzdega W, Kolakowski A, Kurzyna P, Harasim-Symbor E, Sztolsztener K, Chabowski A, Konstantynowicz-Nowicka K. The Influence of Coumestrol on Sphingolipid Signaling Pathway and Insulin Resistance Development in Primary Rat Hepatocytes. Biomolecules 2021; 11:biom11020268. [PMID: 33673122 PMCID: PMC7918648 DOI: 10.3390/biom11020268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Coumestrol is a phytoestrogen widely known for its anti-diabetic, anti-oxidant, and anti-inflammatory properties. Thus, it gets a lot of attention as a potential agent in the nutritional therapy of diseases such as obesity and type 2 diabetes. In our study, we evaluated whether coumestrol affects insulin resistance development via the sphingolipid signaling pathway in primary rat hepatocytes. The cells were isolated from the male Wistar rat's liver with the use of collagenase perfusion. Next, we incubated the cells with the presence or absence of palmitic acid and/or coumestrol. Additionally, some groups were incubated with insulin. The sphingolipid concentrations were assessed by HPLC whereas the expression of all the proteins was evaluated by Western blot. Coumestrol markedly reduced the accumulation of sphingolipids, namely, ceramide and sphinganine through noticeable inhibition of the ceramide de novo synthesis pathway in insulin-resistant hepatocytes. Moreover, coumestrol augmented the expression of fatty acid transport proteins, especially FATP5 and FAT/CD36, which also were responsible for excessive sphingolipid accumulation. Furthermore, coumestrol altered the sphingolipid salvage pathway, which was observed as the excessive deposition of the sphingosine-1-phosphate and sphingosine. Our study clearly showed that coumestrol ameliorated hepatic insulin resistance in primary rat hepatocytes. Thus, we believe that our study may contribute to the discovery of novel preventive and therapeutic methods for metabolic disorders.
Collapse
|
8
|
Cabrera D, Kruger M, Wolber FM, Roy NC, Fraser K. Effects of short- and long-term glucocorticoid-induced osteoporosis on plasma metabolome and lipidome of ovariectomized sheep. BMC Musculoskelet Disord 2020; 21:349. [PMID: 32503480 PMCID: PMC7275480 DOI: 10.1186/s12891-020-03362-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the metabolic and lipidomic changes that accompany bone loss in osteoporosis might provide insights about the mechanisms behind molecular changes and facilitate developing new drugs or nutritional strategies for osteoporosis prevention. This study aimed to examine the effects of short- or long-term glucocorticoid-induced osteoporosis on plasma metabolites and lipids of ovariectomized (OVX) sheep. METHODS Twenty-eight aged ewes were divided randomly into four groups: an OVX group, OVX in combination with glucocorticoids for two months (OVXG2), and OVX in combination with five doses of glucocorticoids (OVXG5) to induce bone loss, and a control group. Liquid chromatography-mass spectrometry untargeted metabolomic analysis was applied to monthly plasma samples to follow the progression of osteoporosis over five months. RESULTS The metabolite profiles revealed significant differences in the plasma metabolome of OVX sheep and OVXG when compared with the control group by univariate analysis. Nine metabolites were altered, namely 5-methoxytryptophan, valine, methionine, tryptophan, glutaric acid, 2-pyrrolidone-5-carboxylic acid, indole-3-carboxaldehyde, 5-hydroxylysine and malic acid. Similarly, fifteen lipids were perturbed from multiple lipid classes such as lysophoslipids, phospholipids and ceramides. CONCLUSION This study showed that OVX and glucocorticoid interventions altered the metabolite and lipid profiles of sheep, suggesting that amino acid and lipid metabolisms are potentially the main perturbed metabolic pathways regulating bone loss in OVX sheep.
Collapse
Affiliation(s)
- Diana Cabrera
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Marlena Kruger
- School of Health Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
| | - Frances M. Wolber
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- School of Food Advanced technology, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Nicole C. Roy
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| | - Karl Fraser
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| |
Collapse
|
9
|
Li Y, Zhang W, Li J, Sun Y, Yang Q, Wang S, Luo X, Wang W, Wang K, Bai W, Zhang H, Qin L. The imbalance in the aortic ceramide/sphingosine-1-phosphate rheostat in ovariectomized rats and the preventive effect of estrogen. Lipids Health Dis 2020; 19:95. [PMID: 32430006 PMCID: PMC7236922 DOI: 10.1186/s12944-020-01279-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background The prevalence of hypertension in young women is lower than that in age-matched men while the prevalence of hypertension in women is significantly increased after the age of 50 (menopause) and is greater than that in men. It is already known that sphingosine-1-phosphate (S1P) and ceramide regulate vascular tone with opposing effects. This study aimed to explore the effects of ovariectomy and estrogen supplementation on the ceramide/S1P rheostat of the aorta in rats, and to explore a potential mechanism for perimenopausal hypertension and a brand-new target for menopausal hormone therapy to protect vessels. Methods In total, 30 female adult SD rats were randomly divided into three groups: The sham operation group (SHAM), ovariectomy group (OVX) and ovariectomy plus estrogen group (OVX + E). After 4 weeks of treatment, the blood pressure (BP) of the rats was monitored by a noninvasive system; the sphingolipid content (e.g., ceramide and S1P) was detected by liquid chromatography-mass spectrometry (LC-MS); the expression of the key enzymes involved in ceramide anabolism and catabolism was measured by real-time fluorescence quantitative polymerase chain reaction (qPCR); and the expression of key enzymes and proteins in the sphingosine kinase 1/2 (SphK1/2)-S1P-S1P receptor 1/2/3 (S1P1/2/3) signaling pathway was detected by qPCR and western blotting. Results In the OVX group compared with the SHAM group, the systolic BP (SBP), diastolic BP (DBP) and pulse pressure (PP) increased significantly, especially the SBP and PP (P < 0.001). For aortic ceramide metabolism, the mRNA level of key enzymes involved in anabolism and catabolism decreased in parallel 2–3 times, while the contents of total ceramide and certain long-chain subtypes increased significantly (P < 0.05). As for the S1P signaling pathway, SphK1/2, the key enzymes involved in S1P synthesis, decreased significantly, and the content of S1P decreased accordingly (P < 0.01). The S1P receptors showed various trends: S1P1 was significantly down-regulated, S1P2 was significantly up-regulated, and S1P3 showed no significant difference. No significant difference existed between the SHAM and OVX + E groups for most of the above parameters (P > 0.05). Conclusions Ovariectomy resulted in the imbalance of the aortic ceramide/S1P rheostat in rats, which may be a potential mechanism underlying the increase in SBP and PP among perimenopausal women. Besides, the ceramide/S1P rheostat may be a novel mechanism by which estrogen protects vessels.
Collapse
Affiliation(s)
- Yao Li
- Department of Cardiology, Peking University People's Hospital, No. 11 South Avenue, Beijing, 100044, Xi Zhi Men Xicheng District, China
| | - Wei Zhang
- Department of Urology, Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Junlei Li
- Department of Cardiology, Peking University People's Hospital, No. 11 South Avenue, Beijing, 100044, Xi Zhi Men Xicheng District, China
| | - Yanrong Sun
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Qiyue Yang
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Sinan Wang
- Department of Stomatology, General Hospital of Armed Police, Beijing, 100039, China
| | - Xiaofeng Luo
- Department of Stomatology, General Hospital of Armed Police, Beijing, 100039, China
| | - Wenjuan Wang
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Ke Wang
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Wenpei Bai
- Department of Obstetrics and Gynecology, Shijitan Hospital, Beijing, 100038, China
| | - Haicheng Zhang
- Department of Cardiology, Peking University People's Hospital, No. 11 South Avenue, Beijing, 100044, Xi Zhi Men Xicheng District, China.
| | - Lihua Qin
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China.
| |
Collapse
|
10
|
Vinayavekhin N, Kongchai W, Piapukiew J, Chavasiri W. Aspergillus niger upregulated glycerolipid metabolism and ethanol utilization pathway under ethanol stress. Microbiologyopen 2019; 9:e00948. [PMID: 31646764 PMCID: PMC6957411 DOI: 10.1002/mbo3.948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022] Open
Abstract
The knowledge of how Aspergillus niger responds to ethanol can lead to the design of strains with enhanced ethanol tolerance to be utilized in numerous industrial bioprocesses. However, the current understanding about the response mechanisms of A. niger toward ethanol stress remains quite limited. Here, we first applied a cell growth assay to test the ethanol tolerance of A. niger strain ES4, which was isolated from the wall near a chimney of an ethanol tank of a petroleum company, and found that it was capable of growing in 5% (v/v) ethanol to 30% of the ethanol‐free control level. Subsequently, the metabolic responses of this strain toward ethanol were investigated using untargeted metabolomics, which revealed the elevated levels of triacylglycerol (TAG) in the extracellular components, and of diacylglycerol, TAG, and hydroxy‐TAG in the intracellular components. Lastly, stable isotope labeling mass spectrometry with ethanol‐d6 showed altered isotopic patterns of molecular ions of lipids in the ethanol‐d6 samples, compared with the nonlabeled ethanol controls, suggesting the ability of A. niger ES4 to utilize ethanol as a carbon source. Together, the studies revealed the upregulation of glycerolipid metabolism and ethanol utilization pathway as novel response mechanisms of A. niger ES4 toward ethanol stress, thereby underlining the utility of untargeted metabolomics and the overall approaches as tools for elucidating new biological insights.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wimonsiri Kongchai
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Jittra Piapukiew
- Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
González-García I, Contreras C, Estévez-Salguero Á, Ruíz-Pino F, Colsh B, Pensado I, Liñares-Pose L, Rial-Pensado E, Martínez de Morentin PB, Fernø J, Diéguez C, Nogueiras R, Le Stunff H, Magnan C, Tena-Sempere M, López M. Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress. Cell Rep 2018; 25:413-423.e5. [PMID: 30304681 PMCID: PMC6198289 DOI: 10.1016/j.celrep.2018.09.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence has shown that, besides its putative effect on the regulation of the gonadal axis, estradiol (E2) exerts a dichotomic effect on the hypothalamus to regulate food intake and energy expenditure. The anorectic effect of E2 is mainly mediated by its action on the arcuate nucleus (ARC), whereas its effects on brown adipose tissue (BAT) thermogenesis occur in the ventromedial nucleus (VMH). Here, we demonstrate that central E2 decreases hypothalamic ceramide levels and endoplasmic reticulum (ER) stress. Pharmacological or genetic blockade of ceramide synthesis and amelioration of ER stress selectively occurring in the VMH recapitulate the effect of E2, leading to increased BAT thermogenesis, weight loss, and metabolic improvement. These findings demonstrate that E2 regulation of ceramide-induced hypothalamic lipotoxicity and ER stress is an important determinant of energy balance, suggesting that dysregulation of this mechanism may underlie some changes in energy homeostasis seen in females.
Collapse
Affiliation(s)
- Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Ánxela Estévez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Francisco Ruíz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain
| | - Benoit Colsh
- CEA-Centre d'Etude de Saclay, Laboratoire d'étude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Iván Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Pablo B Martínez de Morentin
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, 5021, Norway
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay 91405 Cedex, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain; FiDiPro Program, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
12
|
Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br J Cancer 2018; 119:847-854. [PMID: 30293997 PMCID: PMC6189177 DOI: 10.1038/s41416-018-0270-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022] Open
Abstract
Background Previous results obtained from serum samples of late-stage, high-grade serous ovarian carcinoma patients showed large alterations in lipid metabolism. To validate and extend the results, we studied lipidomic changes in early-stage ovarian tumours. In addition to serous ovarian cancer, we investigated whether these changes occur in mucinous and endometrioid histological subtypes as well. Methods Altogether, 354 serum or plasma samples were collected from three centres, one from Germany and two from Finland. We performed lipidomic analysis of samples from patients with malignant (N = 138) or borderline (N = 25) ovarian tumours, and 191 controls with benign pathology. These results were compared to previously published data. Results We found 39 lipids that showed consistent alteration both in early- and late-stage ovarian cancer patients as well as in pre- and postmenopausal women. Most of these changes were already significant at an early stage and progressed with increasing stage. Furthermore, 23 lipids showed similar alterations in all investigated histological subtypes. Conclusions Changes in lipid metabolism due to ovarian cancer occur in early-stage disease but intensify with increasing stage. These changes occur also in other histological subtypes besides high-grade serous carcinoma. Understanding lipid metabolism in ovarian cancer may lead to new therapeutic and diagnostic alternatives.
Collapse
|
13
|
Cabrera D, Kruger M, Wolber FM, Roy NC, Totman JJ, Henry CJ, Cameron-Smith D, Fraser K. Association of Plasma Lipids and Polar Metabolites with Low Bone Mineral Density in Singaporean-Chinese Menopausal Women: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1045. [PMID: 29789485 PMCID: PMC5982084 DOI: 10.3390/ijerph15051045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 01/23/2023]
Abstract
The diagnosis of osteoporosis is mainly based on clinical examination and bone mineral density assessments. The present pilot study compares the plasma lipid and polar metabolite profiles in blood plasma of 95 Singaporean-Chinese (SC) menopausal women with normal and low bone mineral density (BMD) using an untargeted metabolomic approach. The primary finding of this study was the association between lipids and femoral neck BMD in SC menopausal women. Twelve lipids were identified to be associated with low BMD by the orthogonal partial least squares (OPLS) model. Plasma concentrations of eight glycerophospholipid, glycerolipid, and sphingolipid species were significantly lower in menopausal women with low BMD but higher in two glycerophospholipid species (phosphatidylinositol and phosphatidic acid). Further, this study found no significant differences in plasma amino acid metabolites. However, trends for lower 4-aminobutyric acid, turanose, proline, aminopropionitrile, threonine, and methionine were found in women with low BMD. This pilot study identified associations between lipid metabolism and femoral neck BMD in SC women. Further studies are required on larger populations for evaluating the bone health effect of these compounds and their usefulness as clinical biomarkers for osteoporosis prediction in women.
Collapse
Affiliation(s)
- Diana Cabrera
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Marlena Kruger
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| | - Frances M Wolber
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| | - John J Totman
- A*Star-NUS Clinical Imaging Research Centre, Singapore 117599, Singapore.
| | | | - David Cameron-Smith
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- The Liggins Institute, The University of Auckland, Auckland 1142, New Zealand.
| | - Karl Fraser
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| |
Collapse
|
14
|
Sutjarit N, Sueajai J, Boonmuen N, Sornkaew N, Suksamrarn A, Tuchinda P, Zhu W, Weerachayaphorn J, Piyachaturawat P. Curcuma comosa reduces visceral adipose tissue and improves dyslipidemia in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:167-175. [PMID: 29273438 DOI: 10.1016/j.jep.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma comosa Roxb. (C. comosa) or Wan chak motluk Zingiberaceae family, is widely used in Thai traditional medicine for treatment of gynecological problems as well as relief of postmenopausal symptoms. Since C. comosa contains phytoestrogen and causes lipid lowering effect by an unknown mechanism, we investigated its effect on adiposity and lipid metabolism in estrogen-deprived rats. MATERIALS AND METHODS Adult female rats were ovariectomized (OVX) and received daily doses of either a phytoestrogen from C. comosa [(3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol; DPHD], C. comosa extract, or estrogen (17β-estradiol; E2) for 12 weeks. Adipose tissue mass, serum levels of lipids and adipokines were determined. In addition, genes and proteins involved in lipid synthesis and fatty acid oxidation in visceral adipose tissue were analyzed. RESULTS Ovariectomy for 12 weeks elevated level of serum lipids and increased visceral fat mass and adipocyte size. These alterations were accompanied with the up-regulation of lipogenic mRNA and protein expressions including LXR-α, SREBP1c and their downstream targets. OVX rats showed decrease in proteins involved in fatty acid oxidation including AMPK-α and PPAR-α in adipose tissue, as well as alteration of adipokines; leptin and adiponectin. Treatments with E2, DPHD or C. comosa extract in OVX rats prevented an increase in adiposity, down-regulated lipogenic genes and proteins with marked increases in the protein levels of AMPK-α and PPAR-α. These findings indicated that their lipid lowering effects were mediated via the suppression of lipid synthesis in concert with an increase in fatty acid oxidation. CONCLUSIONS C. comosa exerts a lipid lowering effect in the estrogen deficient rats through the modulations of lipid synthesis and AMPK-α activity in adipose tissues, supporting the use of this plant for health promotion in the post-menopausal women.
Collapse
Affiliation(s)
- Nareerat Sutjarit
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jetjamnong Sueajai
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Patoomratana Tuchinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | | | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
15
|
Metabolomic analysis uncovered an association of serum phospholipid levels with estrogen-induced mammary tumors in female ACI/Seg rats. Toxicol Lett 2018; 288:65-70. [PMID: 29454887 DOI: 10.1016/j.toxlet.2018.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/19/2018] [Accepted: 02/11/2018] [Indexed: 11/21/2022]
Abstract
Estrogen is reported to be involved in mammary tumorigenesis. To unveil metabolic signatures for estrogen-induced mammary tumorigenesis, we carried out serum metabolomic analysis in an estrogen-induced mammary tumor model, female August Copenhagen-Irish/Segaloff (ACI/Seg) rats, using liquid chromatography-mass spectrometry. In contrast to the control group, all rats with an implanted 17β-estradiol (E2) pellet developed mammary tumors during this experiment. E2 treatment significantly suppressed body weight gain. But no significant differences in food consumption were observed between the two groups, suggesting that metabolic alteration depended on E2 treatment. Serum metabolomic analysis detected 116 features that were statistically different (p < 0.01) between the groups. Quantitation analysis revealed that several phospholipids such as phosphatidylcholines and lysophosphatidylcholines (LPCs) were identified as significantly different metabolites. E2-treated rat serum stimulated the proliferation of human breast cancer MDA-MB-231 cells. In addition, the proliferation effect was diminished by pretreating cells with either autotaxin inhibitor or antagonist for lysophosphatidic acid receptor whose ligands are metabolites of LPCs via autotaxin-mediated hydrolysis. In summary, our results suggest that not only are phospholipids potential biomarkers for mammary tumors but importantly, LPCs themselves could be associated with E2-induced mammary tumorigenesis in female ACI/Seg rats.
Collapse
|