1
|
Lv Y, Zhao H, Liu S, Meng Y, Yu W, Liu T, Sun Q, Shen M, Ren X, Liu L. Anlotinib and anti-PD-1 mAbs perfected CIK cell therapy for lung adenocarcinoma in preclinical trials. J Leukoc Biol 2024; 116:544-554. [PMID: 38373017 DOI: 10.1093/jleuko/qiae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Murine cytokine-induced killer (CIK) cells are heterologous cells that kill various allogeneic and isogenic tumors and have functional and phenotypic characteristics of natural killer cells and T lymphocytes. However, the effect of CIK cells alone on solid tumor therapy is only limited. To enhance the therapeutic effect, it is vital to discover a mix of several therapy approaches. Immune cell function is inhibited by abnormal tumor vessels and the tumor microenvironment, which block lymphocyte entry into tumor tissue. To increase the effectiveness of CIK cells' antitumor activity, antivascular therapy and CIK cell therapy can be combined. Furthermore, anlotinib is a tiny drug with multitarget tyrosine kinase inhibitors that can block cell migration, delay angiogenesis, and decrease blood vessel density. Compared with other antiangiogenesis drugs, anlotinib stands out due to the wider target of action and lower effective dose. In this work, anlotinib and murine CIK cells were coupled to boost CD3+ T cell infiltration, CD3+CD4+ T cell infiltration, and expression of granzyme B and interferon γ from CD3+CD8+ T cells, which increased the antitumor activity. Through the generation of cytotoxic cytokines by T lymphocytes, the therapeutic group using anti-PD-1 monoclonal antibodies in conjunction with anlotinib and CIK cells was more successful than the group receiving dual therapy. The preclinical study contributes to exploring the therapeutic alternatives for patients with lung adenocarcinoma, thus prolonging their lives.
Collapse
Affiliation(s)
- Yingge Lv
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Hua Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Yuexin Road, Binhai New District, Tianjin, 300060, China
| | - Shaochuan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Yuan Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Ting Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Yuexin Road, Binhai New District, Tianjin, 300060, China
| | - Meng Shen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Yuexin Road, Binhai New District, Tianjin, 300060, China
| | - Liang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
2
|
Mancuso C. Panax notoginseng: Pharmacological Aspects and Toxicological Issues. Nutrients 2024; 16:2120. [PMID: 38999868 PMCID: PMC11242943 DOI: 10.3390/nu16132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Current evidence suggests a beneficial role of herbal products in free radical-induced diseases. Panax notoginseng (Burk.) F. H. Chen has long occupied a leading position in traditional Chinese medicine because of the ergogenic, nootropic, and antistress activities, although these properties are also acknowledged in the Western world. The goal of this paper is to review the pharmacological and toxicological properties of P. notoginseng and discuss its potential therapeutic effect. A literature search was carried out on Pubmed, Scopus, and the Cochrane Central Register of Controlled Trials databases. The following search terms were used: "notoginseng", "gut microbiota", "immune system", "inflammation", "cardiovascular system", "central nervous system", "metabolism", "cancer", and "toxicology". Only peer-reviewed articles written in English, with the full text available, have been included. Preclinical evidence has unraveled the P. notoginseng pharmacological effects in immune-inflammatory, cardiovascular, central nervous system, metabolic, and neoplastic diseases by acting on several molecular targets. However, few clinical studies have confirmed the therapeutic properties of P. notoginseng, mainly as an adjuvant in the conventional treatment of cardiovascular disorders. Further clinical studies, which both confirm the efficacy of P. notoginseng in free radical-related diseases and delve into its toxicological aspects, are mandatory to broaden its therapeutic potential.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy; ; Tel.: +39-06-30154367; Fax: +39-06-3050159
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
3
|
Li H, Huang C, Li Y, Wang P, Sun J, Bi Z, Xia S, Xiong Y, Bai X, Huang X. Ethnobotanical study of medicinal plants used by the Yi people in Mile, Yunnan, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:22. [PMID: 38395900 PMCID: PMC10893717 DOI: 10.1186/s13002-024-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The Yi people are a sociolinguistic group living in Mile City, which is their typical settlement in southeastern Yunnan, China. Over the long history of using medicinal plants, the Yi people have accumulated and developed a wealth of traditional medicinal knowledge, which has played a vital role in their health care. However, only a few studies have been performed to systematically document the medicinal plants commonly used by the Yi people. This study provides fundamental data for the development and application of ethnomedicine as well as supports the conservation of the traditional medical knowledge of the Yi people. METHODS This study was conducted from May 2020 to August 2022 and involved five townships in Mile. Information regarding medicinal plants was obtained through semistructured interviews, key informant interviews, and participatory observation. The collected voucher specimens were identified using the botanical taxonomy method and deposited in the herbarium. Ethnobotanical data were analyzed using informant consensus factor, relative frequency of citation, and fidelity level. RESULTS In total, 114 informants distributed in five townships of Mile were interviewed. The Yi people used 267 medicinal plant species belonging to 232 genera and 104 families to treat various diseases. Asteraceae, Lamiaceae, and Fabaceae were the most commonly used plant families by the Yi people. In addition, herbs were most commonly used by the Yi people. Whole plants and roots were the preferred medicinal parts. Decoctions were the most common method of herbal medicine preparation. There are 49 different recorded diseases treated by Yi medicinal plants, and among them, respiratory diseases, rheumatism, traumatic injury, fractures, and digestive system diseases have the largest number of species used. A quantitative analysis demonstrated that plants such as Zingiber officinale, Lycopodium japonicum, Aconitum carmichaelii, Panax notoginseng, Cyathula officinalis, and Leonurus japonicus played crucial roles in disease prevention and treatment. CONCLUSION Traditional knowledge of medicinal plants is closely associated with the social culture of the local Yi people. The medicinal plants used for health care in the study area were diverse. Local healers were skilled at using medicinal plants to treat various diseases. Their treatment methods were convenient and unique, exhibiting distinctive regional characteristics. However, the inheritance of their traditional medicinal knowledge and protection of wild medicinal plant resources are facing serious challenges, including the decreasing number of local healers, aging of healers, lack of successors, and excessive harvesting of medicinal plant resources. This ethnobotanical survey provides a useful reference for the sustainable utilization and protection of medicinal plant resources in Mile and the inheritance of traditional medicinal knowledge of the Yi people.
Collapse
Affiliation(s)
- Hongrui Li
- School of Ethnology and History, Yunnan Minzu University, Kunming, 650504, China
| | - Caiwen Huang
- School of Ethnology and History, Yunnan Minzu University, Kunming, 650504, China
| | - Yanhong Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Pujing Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Jingxian Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Zizhen Bi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Shisheng Xia
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Yong Xiong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Xishan Bai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Xiangzhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| |
Collapse
|
4
|
Zhou Z, Xiang H, Cheng J, Ban Q, Sun X, Guo M. Effects of Panax notoginseng Saponins Encapsulated by Polymerized Whey Protein on the Rheological, Textural and Bitterness Characteristics of Yogurt. Foods 2024; 13:486. [PMID: 38338621 PMCID: PMC10855543 DOI: 10.3390/foods13030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Panax notoginseng saponins (PNSs) have been used as a nutritional supplement for many years, but their bitter taste limits their application in food formulations. The effects of PNS (groups B, C, and D contained 0.8, 1.0 and 1.2 mg/mL of free PNS, respectively) or Panax notoginseng saponin-polymerized whey protein (PNS-PWP) nanoparticles (groups E, F, and G contained 26.68, 33.35 and 40.03 mg/mL of PNS-PWP nanoparticles, respectively) on the rheological, textural properties and bitterness of yogurt were investigated. Group G yogurt showed a shorter gelation time (23.53 min), the highest elastic modulus (7135 Pa), higher hardness (506 g), higher apparent viscosity, and the lowest syneresis (6.93%) than other groups, which indicated that the yogurt formed a stronger gel structure. The results of the electronic tongue indicated that the bitterness values of group E (-6.12), F (-6.56), and G (-6.27) yogurts were lower than those of group B (-5.12), C (-4.31), and D (-3.79), respectively, which might be attributed to PNS being encapsulated by PWP. The results indicated that PWP-encapsulated PNS could cover the bitterness of PNS and improve the quality of yogurt containing PNS.
Collapse
Affiliation(s)
- Zengjia Zhou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Huiyu Xiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Mingruo Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, University of Vermont, 351 Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, Dave PD, Xu J, Sarwar MS, Kong ANT. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharm Res 2023; 40:2699-2714. [PMID: 37726406 DOI: 10.1007/s11095-023-03595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Komal Patel
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
7
|
Zhai W, Hu Y, Zhang Y, Zhang G, Chen H, Tan X, Zheng Y, Gao W, Wei Y, Wu J. A systematic review of phytochemicals from Chinese herbal medicines for non-coding RNAs-mediated cancer prevention and treatment: From molecular mechanisms to potential clinical applications. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Cui ZY, Liu CL, Li DD, Wang YZ, Xu FR. Anticoagulant activity analysis and origin identification of Panax notoginseng using HPLC and ATR-FTIR spectroscopy. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:971-981. [PMID: 35715878 DOI: 10.1002/pca.3152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Panax notoginseng is one of the traditional precious and bulk-traded medicinal materials in China. Its anticoagulant activity is related to its saponin composition. However, the correlation between saponins and anticoagulant activities in P. notoginseng from different origins and identification of the origins have been rarely reported. OBJECTIVES We aimed to analyze the correlation of components and activities of P. notoginseng from different origins and develop a rapid P. notoginseng origin identification method. MATERIALS AND METHODS Pharmacological experiments, HPLC, and ATR-FTIR spectroscopy (variable selection) combined with chemometrics methods of P. notoginseng main roots from four different origins (359 individuals) in Yunnan Province were conducted. RESULTS The pharmacological experiments and HPLC showed that the saponin content of P. notoginseng main roots was not significantly different. It was the highest in main roots from Wenshan Prefecture (9.86%). The coagulation time was prolonged to observe the strongest effect (4.99 s), and the anticoagulant activity was positively correlated with the contents of the three saponins. The content of ginsenoside Rg1 had the greatest influence on the anticoagulant effect. The results of spectroscopy combined with chemometrics show that the variable selection method could extract a small number of variables containing valid information and improve the performance of the model. The variable importance in projection has the best ability to identify the origins of P. notoginseng; the accuracy of the training set and the test set was 0.975 and 0.984, respectively. CONCLUSION This method is a powerful analytical tool for the activity analysis and identification of Chinese medicinal materials from different origins.
Collapse
Affiliation(s)
- Zhi-Ying Cui
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Lu Liu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, Kunming, China
| | - Dan-Dan Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
9
|
Zhu F, Ren Z. Icariin inhibits the malignant progression of lung cancer by affecting the PI3K/Akt pathway through the miR‑205‑5p/PTEN axis. Oncol Rep 2022; 47:115. [PMID: 35514319 PMCID: PMC9100476 DOI: 10.3892/or.2022.8326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/02/2022] [Indexed: 11/06/2022] Open
Abstract
Icariin (ICA) is one of the main bioactive monomer belonging to the flavonoid glycosides that has been widely studied in multiple diseases, including lung cancer. Although ICA has shown anticancer effects, its specific molecular mechanism of action remains to be elucidated. In the present study, the expression of microRNA (miR)-205-5p and Phosphatase and tensin homolog deleted on chromosome ten (PTEN) in human lung cancer and bronchial cells were analyzed. Cell viability, colony formation, migration, invasion, apoptosis and cell cycle distribution were investigated in vitro. In addition, the function of ICA on tumor growth was determined using a xenotransplantation model. The results showed that ICA decreased the viability of lung cancer cells. In addition, miR-205-5p was upregulated in lung cancer tissues but downregulated following ICA treatment, while PTEN showed a significantly lower expression in lung cancer cells. miR-205-5p could increase cancer cell proliferation, migration, invasion and cell cycle progression while suppressing cell apoptosis. Importantly, rescue experiment results showed that ICA could target the miR-205-5p/PTEN axis to affect the PI3K/Akt signaling, thereby suppressing the malignant cell phenotype of lung cancer. Finally, animal experiments confirmed that ICA could inhibit lung cancer growth in vivo. Taken together, our findings suggest that miR-205-5p is a key gene targeted by ICA to inhibit lung cancer progression.
Collapse
Affiliation(s)
- Fengjie Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhe Ren
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
10
|
Hawthorne B, Lund K, Freggiaro S, Kaga R, Meng J. The mechanism of the cytotoxic effect of Panax notoginseng extracts on prostate cancer cells. Biomed Pharmacother 2022; 149:112887. [PMID: 35367754 DOI: 10.1016/j.biopha.2022.112887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Panax notoginseng (Burkill) F.H. commonly referred to as Sanqi, is a Chinese herb that has long been used to treat various conditions including blood disorders and cardiovascular diseases. While Panax notoginseng has been used as an anti-cancer medicinal herb in recent years, how it achieves this therapeutic effect has not been thoroughly elucidated. The purpose of this study was to reveal more about the mechanism of the cytotoxic effect of Panax notoginseng on prostate cancer (PCa) cells. METHODS Ethanol extract of Panax notoginseng root was authenticated using high-performance liquid chromatography (HPLC). The cytotoxic activity of this herb against PCa cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). RESULTS The assessment of cellular metabolic activity demonstrated that Panax notoginseng reduces the viability of LNCaP and 22Rv1 cells in a dose-dependent manner. Annexin-V binding flow cytometry assay showed that Panax notoginseng induces apoptosis in PCa cells. Cell cycle analysis by quantification of DNA content using flow cytometry showed that Panax notoginseng arrests the cell cycle at the G2/M phase in both LNCaP and 22Rv1 cells. Moreover, ELISA demonstrated that Panax notoginseng-treated PCa cells secrete significantly less tumor-promoting cytokine interleukin-4 (IL-4) to the supernatant compared with controls. CONCLUSIONS These results provide evidence for the cytotoxic effects of Panax notoginseng on PCa cell lines. This botanical is a promising candidate for the complementary and integrative medicine treatment of PCa and further studies are indicated to determine the anti-cancer mechanism of Panax notoginseng.
Collapse
Affiliation(s)
- Benjamin Hawthorne
- School of Naturopathic Medicine, Bastyr University, 14500 Juanita Drive NE, Kenmore, WA 98028, USA
| | - Kaleb Lund
- School of Naturopathic Medicine, Bastyr University, 14500 Juanita Drive NE, Kenmore, WA 98028, USA
| | - Sydney Freggiaro
- School of Naturopathic Medicine, Bastyr University, 14500 Juanita Drive NE, Kenmore, WA 98028, USA
| | - Risa Kaga
- School of Natural Health Arts & Sciences, Bastyr University, 14500 Juanita Drive NE, Kenmore, WA 98028, USA
| | - Jing Meng
- School of Natural Health Arts & Sciences, Bastyr University, 14500 Juanita Drive NE, Kenmore, WA 98028, USA.
| |
Collapse
|
11
|
邹 琼, 伍 晓, 王 进, 夏 谍, 邓 萌, 丁 俞, 代 玉, 赵 嵩, 陈 彤. [Therapeutic effect of Panax notoginseng saponins combined with cyclophosphamide in mice bearing hepatocellular carcinoma H 22 cell xenograft]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:538-545. [PMID: 35527489 PMCID: PMC9085587 DOI: 10.12122/j.issn.1673-4254.2022.04.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the therapeutic effects of total saponins from Panax notognseng (PNS) combined with cyclophosphamide (CTX) in mice bearing hepatocellular carcinoma H22 cell xenograft. METHODS We examined the effects of treatment with different concentrations of PNS on H22 cell proliferation for 24 to 72 h in vitro using CCK8 colorimetric assay. Annexin V/PI double fluorescence staining was used to detect the effect of PNS on apoptosis of H22 cells. Mouse models bearing H22 cell xenograft were established and treated with CTX (25 mg/kg), PNS (120, 240 or 480 mg/kg), alone or in combinations. After treatments for consecutive 10 days, the mice were euthanized for examinations of carbon clearance ability of the monocytes and macrophages, splenic lymphocyte proliferation, tumor necrosis factor (TNF-α), interleukin-2 (IL-2), serum hemolysin antibody level, blood indicators, and the tumor inhibition rate. RESULTS Treatment with PNS concentration-dependently inhibited the proliferation and significantly promoted apoptosis of cultured H22 cells (P < 0.01). In the tumor-bearing mouse models, PNS alone and its combination with CTX both resulted in obvious enhancement of phagocytosis of the monocyte-macrophages, stimulated the proliferation of splenic lymphocytes, promoted the release of TNF-α and IL-2 and the production of serum hemolysin antibody, and increased the number of white blood cells, red blood cells and lymphocytes in the peripheral blood. Treatment with 480 mg/kg PNS combined with CTX resulted in a tumor inhibition rate of 83.28% (P < 0.01) and a life prolonging rate of 131.25% in the mouse models (P < 0.05). CONCLUSION PNS alone or in combination with CTX can improve the immunity and tumor inhibition rate and prolong the survival time of H22 tumor-bearing mice.
Collapse
Affiliation(s)
- 琼 邹
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 晓萍 伍
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 进吉 王
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 谍 夏
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 萌玥 邓
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 俞珍 丁
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 玉玲 代
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 嵩月 赵
- 云南省食品药品审核查验中 心,云南 昆明 650228Yunnan Food and Drug Inspection Center, Kunming 650228, China
| | - 彤 陈
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
12
|
Pan F, Li YJ, Lu Y. Panax notoginseng saponins reverse P-gp-mediated steroid resistance in lupus: involvement in the suppression of the SIRT1/FoxO1/MDR1 signalling pathway in lymphocytes. BMC Complement Med Ther 2022; 22:13. [PMID: 35022006 PMCID: PMC8756704 DOI: 10.1186/s12906-021-03499-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background P-glycoprotein (P-gp)-mediated steroid resistance (SR) has been suggested to play a significant role in lupus nephritis (LN) treatment failure. Panax notoginseng saponins (PNS), the main effective components of the traditional Chinese medicine notoginseng, exhibited potent reversal capability of P-gp-mediated SR, but its mechanism remains unknown. This study aimed to investigate the effect of PNS on reversing SR in lupus and its underlying mechanism in vivo and in vitro. Methods In this study, an SR animal and splenic lymphocyte model were established using low-dose methylprednisolone (MP). Flow cytometry was used to detect the effect of PNS on reversing P-gp-mediated SR and the expression of P-gp in different T-cells phenotypes. Serum levels of ANA and dsDNA in lupus mice were measured by ELISA. Apoptosis was identified by Annexin V-FITC/PI staining. RT–PCR and Western blotting were used to detect the protein and mRNA expression levels of SIRT1, FoxO1, and MDR1 in SR splenic lymphocytes from lupus mice (SLCs/MPs). Results PNS could reverse the SR in lupus mice. Simultaneously, PNS increased the apoptotic effect of MP on SLCs/MP cells. The increased accumulation of rhodamine-123 (Rh-123) indicated that intracellular steroid accumulation could be increased by the action of PNS. Moreover, PNS decreased the expression of P-gp levels. Further experiments elucidated that the SIRT1/FoxO1/MDR1 signalling pathway existed in SLCs/MP cells, and PNS suppressed its expression level to reverse SR. The expression of P-gp in Th17 from SLCs/MP cells was increased, while PNS could reduce its level in a more obvious trend. Conclusion The present study suggested that PNS reversed P-gp-mediated SR via the SIRT1/FoxO1/MDR1 signalling pathway, which might become a valuable drug for the treatment of SR in lupus. Th17 might be the main effector cell of PNS reversing SR. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03499-5.
Collapse
|
13
|
Panax notoginseng saponins induce apoptosis in retinoblastoma Y79 cells via the PI3K/AKT signalling pathway. Exp Eye Res 2022; 216:108954. [DOI: 10.1016/j.exer.2022.108954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022]
|
14
|
Physicochemical, Digestive, and Sensory Properties of Panax Notoginseng Saponins Encapsulated by Polymerized Whey Protein. Foods 2021; 10:foods10122942. [PMID: 34945493 PMCID: PMC8701336 DOI: 10.3390/foods10122942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Panax Notoginseng Saponins (PNS) may be beneficial to human health due to their bioactive function. The application of PNS in functional foods was limited due to the bitter taste and low oral bioavailability. PNS were encapsulated by polymerized whey protein (PWP) nanoparticles. The physicochemical, digestive, and sensory properties of the nanoparticles were investigated. Results showed that the nanoparticles had a particle size of 55 nm, the zeta potential of -28 mV, and high PNS encapsulation efficiency (92.94%) when the mass ratio of PNS to PWP was 1:30. Differential Scanning Calorimetry (DSC) results revealed that PNS were successfully encapsulated by PWP. The mainly intermolecular forces between PNS and PWP were hydrogen bonding and electrostatic attraction confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Results of simulated gastrointestinal digestion indicated that the PNS-PWP (1:30) nanoparticles had smaller average particle size (36 nm) after treatment with gastric fluids and increased particle size (75 nm) after treatment with intestinal fluids. Transmission Electron Microscopy (TEM) micrographs reflected that the nanoparticles had irregular spherical structures. The encapsulated PNS exhibited significantly (p < 0.05) decreased bitterness compared to the non-encapsulated PNS confirmed by the electronic tongue. The results indicated that encapsulation of PNS with PWP could facilitate their application in functional foods.
Collapse
|
15
|
Song SY, Chang HJ, Kim SD, Kwag EB, Park SJ, Yoo HS. Acute and sub-chronic toxicological evaluation of the herbal product HAD-B1 in Beagle dogs. Toxicol Rep 2021; 8:1819-1829. [PMID: 34804809 PMCID: PMC8590039 DOI: 10.1016/j.toxrep.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
HAD-B1 is used in Korean medicine to treat lung cancer patients. The acute and Sub-chronic toxicity of HAD-B1 was evaluated in Beagle dogs. No toxicologically significant effects were found. The NOAEL was ≥2000 mg/kg/day for both genders, with no target organ effect.
HAD-B1 is a herbal formula originated from Korean Traditional Medicine that used to treat lung cancer patients. Herein we assessed acute and sub-chronic toxicity of HAD-B1 in beagle dogs. Acute study, 4 weeks dose rate finding (DRF) study and sub chronic toxicity study for 13 weeks were done by oral administration at doses of 0, 500, 1000, and 2000 mg/kg. Neither oral acute toxicity study nor DRF study showed any significant clinical signs, death, or weight changes. Based on that, a sub-chronic study for 13-weeks was performed. As a result, HAD-B1 caused a decrease of mean daily feed consumption in females, infiltration of intestinal inflammatory cells in both sexes, a significant decrease in total cholesterol (TCHO) in females, Kupffer cell hypertrophy/hyperplasia in the liver as well as dilation of the sinusoid. However, there were no significant toxic effects in the treated group compared to the control group. Therefore, the No Observed Adverse Effect Level (NOAEL) of the HAD-B1 is at least 2000 mg/kg/day when administrated orally for 13 consecutive weeks. These results demonstrate that HAD-B1 consumption is relatively non-toxic and safe for clinical usage.
Collapse
Affiliation(s)
- Si-Yeon Song
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Hyeok-Joon Chang
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Soo-Dam Kim
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Eun-Bin Kwag
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - So-Jung Park
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Hwa-Seung Yoo
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| |
Collapse
|
16
|
Feng XY, Zhao W, Yao Z, Wei NY, Shi AH, Chen WH. Downregulation of ATP1A1 Expression by Panax notoginseng (Burk.) F.H. Chen Saponins: A Potential Mechanism of Antitumor Effects in HepG2 Cells and In Vivo. Front Pharmacol 2021; 12:720368. [PMID: 34690763 PMCID: PMC8529207 DOI: 10.3389/fphar.2021.720368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The Na+/K+-ATPase α1 subunit (ATP1A1) is a potential target for hepatic carcinoma (HCC) treatment, which plays a key role in Na+/K+ exchange, metabolism, signal transduction, etc. In vivo, we found that Panax notoginseng saponins (PNS) could inhibit tumor growth and significantly downregulate the expression and phosphorylation of ATP1A1/AKT/ERK in tumor-bearing mice. Our study aims to explore the potential effects of PNS on the regulation of ATP1A1 and the possible mechanisms of antitumor activity. The effects of PNS on HepG2 cell viability, migration, and apoptosis were examined in vitro. Fluorescence, Western blot, and RT-PCR analyses were used to examine the protein and gene expression. Further analysis was assessed with a Na+/K+-ATPase inhibitor (digitonin) and sorafenib in vitro. We found that the ATP1A1 expression was markedly higher in HepG2 cells than in L02 cells and PNS exhibited a dose-dependent effect on the expression of ATP1A and the regulation of AKT/ERK signaling pathways. Digitonin did not affect the expression of ATP1A1 but attenuated the effects of PNS on the regulation of ATP1A1/AKT/ERK signaling pathways and enhanced the antitumor effect of PNS by promoting nuclear fragmentation. Taken together, PNS inhibited the proliferation of HepG2 cells via downregulation of ATP1A1 and signal transduction. Our findings will aid a data basis for the clinical use of PNS.
Collapse
Affiliation(s)
- Xiao-Yi Feng
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wei Zhao
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zheng Yao
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ning-Yi Wei
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - An-Hua Shi
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wen-Hui Chen
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
17
|
Han G, Zhang Y, Liu T, Li J, Li H. The anti-osteosarcoma effect from panax notoginseng saponins by inhibiting the G 0 / G 1 phase in the cell cycle and affecting p53-mediated autophagy and mitochondrial apoptosis. J Cancer 2021; 12:6383-6392. [PMID: 34659528 PMCID: PMC8489146 DOI: 10.7150/jca.54602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy, and current chemotherapy sessions against it often induce severe complications in patients. Thus, it is necessary to develop new and effective antineoplastic agents with fewer side effects. Panax notoginseng saponins (PNS) are the active components in panax notoginseng and were reported to be capable of inhibiting the growth of several tumors both in vitro and in vivo. However, its effects on osteosarcoma have not been studied yet, which is addressed in this study for the first time. Our results indicated that PNS can inhibit proliferation, invasion and migration of the osteosarcoma cells, while promoting their apoptosis simultaneously. Specifically, PNS caused an increase in mitochondrial membrane potential and the amount of reactive oxygen species. The cell cycle in osteosarcoma cells was arrested in the G0 / G1 phase after PNS treatment. The expression of p53 and other apoptosis-related mitochondrial proteins were promoted. Nevertheless, it was observed that autophagy became less active in osteosarcoma cells when PNS was administered. In a word, PNS were of potential therapeutic significance for osteosarcoma.
Collapse
Affiliation(s)
- Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Liu
- Department of Orthopedics, Hospital of Shenmu, Shenmu, Shaanxi, 719300, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
18
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
19
|
Liu YR, Wang PY, Xie N, Xie SY. MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy. Anticancer Agents Med Chem 2021; 20:1883-1894. [PMID: 32538735 DOI: 10.2174/1871520620666200615133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.
Collapse
Affiliation(s)
- Yuan-Rong Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, 264000, ShanDong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| |
Collapse
|
20
|
Liu C, Xu CC, Qu YH, Guo PT, Ma Y, Wang B, Zhang H, Luo HL. Effect of alfalfa (Medicago sativa L.) saponins on meat color and myoglobin reduction status in the longissimus thoracis muscle of growing lambs. Anim Sci J 2021; 92:e13556. [PMID: 33973682 DOI: 10.1111/asj.13556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/28/2019] [Accepted: 02/01/2021] [Indexed: 01/12/2023]
Abstract
The effect of alfalfa saponins (AS) supplementation on the meat quality especially the color for growing lamb was investigated. Fifty Hu male lambs with body weights (BW, 19.21 ± 0.45 kg) were divided into five groups and supplemented AS with 0, 500, 1,000, 2,000, and 4,000 mg/kg of dietary dry matter intake. After 90 days, all lambs were slaughtered. The longissimus thoracis muscle in lamb displayed significant changes in the content of intramuscular fat, especially n-3 polyunsaturated fatty acids, and drip loss within AS treatment (p < .05) between control and treatments groups. Redness (a*) significantly improved in both 0-day and 7-day storage with the AS supplementation coupled with the percentage of met-myoglobin reduction (p < .05). The redness (a*) change may result from improved met-myoglobin reducing activity, antioxidant enzymes, lactate dehydrogenase, and succinate dehydrogenase (p < .05) by AS supplementation in muscle. These enzymes may help to protect mitochondria function and reduce met-myoglobin, which bring a bright and red meat color.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chen-Chen Xu
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang-Hua Qu
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ping-Ting Guo
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yong Ma
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hai-Ling Luo
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Sun G, Zhuang W, Lin QT, Wang LM, Zhen YH, Xi SY, Lin XL. Partial response to Chinese patent medicine Kangliu pill for adult glioblastoma: A case report and review of the literature. World J Clin Cases 2021; 9:2845-2853. [PMID: 33969068 PMCID: PMC8058673 DOI: 10.12998/wjcc.v9.i12.2845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common type of brain tumor and is invariably fatal, with a mean survival time of 8-15 mo for recently diagnosed tumors, and a 5-year survival rate of only 7.2%. The standard treatment for newly diagnosed glioblastoma includes surgery followed by concurrent chemoradiotherapy and further adjuvant temozolomide. However, the prognosis remains poor and long-term survival is rare. This report aimed to demonstrate a new therapeutic strategy for the treatment of glioblastoma.
CASE SUMMARY A patient was referred to the Department of Neurosurgery with an intracranial space-occupying lesion with a maximum diameter of approximately 5 cm. The tumor was compressing functional areas, and the patient accordingly underwent partial resection and concurrent chemoradiotherapy. The imaging and pathological findings were consistent with a diagnosis of glioblastoma with oligodendroglioma differentiation (World Health Organization IV). The patient was finally diagnosed with glioblastoma. However, the patient discontinued treatment due to intolerable side effects, and was prescribed Kangliu pill (KLP) 7.5 g three times/d, which he has continued to date. Significant shrinkage of the tumor (maximum diameter reduced from about 3.5 to about 2 cm) was found after 3 mo of KLP therapy, and the tumor was further reduced to about 1 cm after 3 years. The patient’s symptoms of headache, limb weakness, and left hemiplegia were relieved, with no side effects.
CONCLUSION KLP has been a successful intervention for glioblastoma, and the current case indicates that traditional Chinese medicine may offer effective alternative therapies for glioblastoma.
Collapse
Affiliation(s)
- Ge Sun
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Qing-Tang Lin
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lei-Ming Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yu-Hang Zhen
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine and Cancer Research Center, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xiao-Lan Lin
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| |
Collapse
|
22
|
Wei E, Fang X, Jia P, Li M, Jin P, Li F, Wang H, Gao D. Ginsenoside Rb1 Alleviates Lipopolysaccharide-Induced Inflammatory Injury by Downregulating miR-222 in WI-38 Cells. Cell Transplant 2021; 30:9636897211002787. [PMID: 33900120 PMCID: PMC8085372 DOI: 10.1177/09636897211002787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pneumonia is a serious respiratory tract infection disease in children, which threatens to the health or life of children patients. Ginsenoside Rb1 (Rb1) is a principle active ingredient extracted from the root of Panax notoginseng (Burk.) F.H. Chen with anti-inflammatory effect. Our study aimed to determine the effects and molecular mechanisms of Rb1 on lipopolysaccharide (LPS)-induced inflammatory injury of lung fibroblasts WI-38 cells. Cell viability and apoptosis were evaluated by CCK-8 and flow cytometry, respectively. The production of inflammatory cytokines were measured by ELISA and RT-qPCR. miR-222 expression was examined by RT-qPCR. The expression levels of the nuclear factor-kappa B (NF-κB) p65 and phosphorylated p65 were detected by western blot. We found that LPS stimulation induced WI-38 cell inflammatory injury by inhibiting cell viability, and inducing apoptosis and inflammatory cytokine production, while treatment with Rb1 significantly attenuated LPS-induced inflammatory injury in WI-38 cells. Additionally, Rb1 decreased LPS-induced upregulation of miR-222 and activation of the NF-κB pathway in WI-38 cells. Overexpression of miR-222 abolished the inhibitory effects of Rb1 on LPS-induced viability reduction, apoptosis, inflammatory cytokine production and activation of the NF-κB pathway. In conclusion, Rb1 alleviated LPS-induced inflammatory injury in WI-38 cells via downregulating miR-222 and inactivation of the NF-kB pathway.
Collapse
Affiliation(s)
- Erhu Wei
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Fang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peisheng Jia
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxia Li
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peina Jin
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengyan Li
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huaili Wang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Gao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
24
|
Ma C, Guan H, Lin Q, Liu C, Ju Z, Xue Y, Cheng X, Wang C. Dynamic changes in chemical compositions and anti-acetylcholinesterase activity associated with steaming process of stem-leaf saponins of Panax notoginseng. Biomed Chromatogr 2021; 35:e5077. [PMID: 33475178 DOI: 10.1002/bmc.5077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/01/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
Stem-leaf saponins (SLSs), the total saponins from aerial part of P. notoginseng, are by-products of notoginseng, a famous traditional Chinese medicine. SLSs have been used as a health functional food in China, but its mild effects limited clinical applications in diseases. Inspired by steaming of notoginseng to enhance its pharmacological activity, a steaming protocol was developed to treat SLSs. SLSs were steamed at 100, 120, and 140°C for 1, 2, 3, and 4 h, respectively. The ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS and ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry were applied to analyze the dynamic changes in chemical compositions. The anti-acetylcholinesterase activity of steamed SLS were assessed in vitro by directly determining the metabolic product of acetylcholine/choline. The components of SLSs were significantly changed by steaming. A total of 117 saponins and aglycones were characterized, and 35 of them were newly generated. The anti-acetylcholinesterase activity of steamed SLSs gradually increased with the extension of steamed time and the increase of steamed temperature and reached the maximum after 140°C for 3 h. Furthermore, ginsenosides Rk1 and Rg5, the main components of steamed SLSs, showed dose-dependent anti-acetylcholinesterase activities with half maximal inhibitory concentration (IC50 ) values of 26.88 ± 0.53 μm and 22.41 ± 1.31 μm that were only 1.8- and 1.5-fold higher than that of donepezil with IC50 values of 14.93 ± 4.17 μM, respectively.
Collapse
Affiliation(s)
- Chao Ma
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huida Guan
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Qiyan Lin
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Chang Liu
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China.,Department of Chinese Medicine Identification, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhengcai Ju
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Yafu Xue
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Xuemei Cheng
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Changhong Wang
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| |
Collapse
|
25
|
Zeng H, Li X, Zhou D, Wang N, Yu X, Long L, Cheng H, Zhou S, Shen Z, Zhou W. Qihu Preparation Ameliorates Diabetes by Activating the AMPK Signaling Pathway in db/db Mice. Diabetes Metab Syndr Obes 2021; 14:3229-3241. [PMID: 34285530 PMCID: PMC8286761 DOI: 10.2147/dmso.s312137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/02/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To examine the pharmacological effects of Qihu on type 2 diabetes mellitus using db/db mice. MATERIALS AND METHODS Thirty-seven db/db mice were randomly divided into the following 5 groups: diabetes model control group (DM group; n = 7), administered with the adjuvant 0.3% carboxymethyl cellulose-Na; positive control group (Met group; n = 8), administered with metformin (0.13 g/kg bodyweight); Qihu-L group (n = 7), administered with a low dose of Qihu (0.75 g/kg bodyweight), Qihu-M group (n = 7), administered with a medium dose of Qihu (1.5 g/kg bodyweight); Qihu-H group (n = 8), administered with a high dose of Qihu (3.0 g/kg bodyweight). BKS mice (n = 8) were used as the negative control group. The db/db mice were administered with drugs through oral gavage for 28 days. The random blood glucose levels, glucose tolerance test, bodyweight, food intake, and blood lipid levels of the mice were measured during the experimental period. The liver and pancreas tissues were collected for pathological, quantitative real-time polymerase chain reaction, and Western blotting analyses. RESULTS Compared with the DM group, the Qihu groups exhibited decreased bodyweight gain. The blood glucose levels in the Qihu-L, Qihu-M, and Qihu-H were 31.46%, 43.73%, and 51.83%, respectively, lower than those in the DM group. The triglyceride levels were significantly downregulated and the swelling and steatosis of the hepatocytes were significantly lower in the Qihu-M and Qihu-H groups than in the DM group. Qihu downregulated the expression of IL-1β, IL-6, and TXNIP and upregulated the AMP-activated protein kinase (AMPK) signaling pathway in the pancreas and liver tissues of db/db mice. CONCLUSION The anti-diabetic effects of Qihu are mediated through the activation of the AMPK/Txnip signaling and the downregulation of the secretion of inflammatory factors in db/db mice.
Collapse
Affiliation(s)
- Hongfang Zeng
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Ning Wang
- West China Biopharm Research Institute, West China Hospital, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xiaoping Yu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Liangyuan Long
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
| | - Hao Cheng
- China Company 18th, College of Pharmacy, Army Medical University, Chongqing, 400038, People’s Republic of China
- Department of Pharmacy, Medical Security Center, the 925 Hospital, Joint Logistic Support Force, Guiyang, Guizhou Province, 550005, People’s Republic of China
| | - Shuyu Zhou
- China Company 18th, College of Pharmacy, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, People’s Republic of China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, People’s Republic of China
- Correspondence: Weiying Zhou Department of Pharmacology, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People’s Republic of ChinaTel/Fax +86 23 684 85161 Email
| |
Collapse
|
26
|
Li R, Li J, Yang H, Bai Y, Hu C, Wu H, Jiang H, Wang Q. Hepsin Promotes Epithelial-Mesenchymal Transition and Cell Invasion Through the miR-222/PPP2R2A/AKT Axis in Prostate Cancer. Onco Targets Ther 2020; 13:12141-12149. [PMID: 33268993 PMCID: PMC7701367 DOI: 10.2147/ott.s268025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To determine the role and underlying mechanism of hepsin in epithelial–mesenchymal transition (EMT) and cell invasion in prostate cancer. Methods The expression of hepsin in prostate cancer tissue samples and cell lines was measured by immunohistochemical staining and Western blotting. The EMT and cell invasion abilities of prostate cancer cells were detected by Western blot and transwell assays. RNA transfection was used to inhibit or overexpress related genes. The expression of miR-222 was detected by RT-qPCR. A dual‑luciferase reporter gene assay was performed to determine the target of miR-222. Results Hepsin expression was upregulated in prostate cancer tissue samples and cell lines. Inhibition of hepsin attenuated EMT and cell invasion and downregulated the expression of miR-222. Decreased miR-222 expression enhanced the level of PPP2R2A, which in turn attenuated the AKT signaling. Activation of miR-222 or AKT could block the inhibitory effects on EMT and cell invasion induced by hepsin deficiency. Conclusion Hepsin promotes EMT and cell invasion through the miR-222/PPP2R2A/AKT axis in prostate cancer.
Collapse
Affiliation(s)
- Ruiqian Li
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Jun Li
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Hong Yang
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Yu Bai
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Chen Hu
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Hongyi Wu
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Haiyang Jiang
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| | - Qilin Wang
- Department of Urology, Third Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|
27
|
Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1525. [PMID: 33313270 PMCID: PMC7729308 DOI: 10.21037/atm-20-6909] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Panax notoginseng saponins (PNS), also called "sanqi" in Chinese, are the main active ingredients which are extracted from the root of Panax notoginseng (Burk.) F. H. Chen., and they have been traditionally used as a medicine in China for hundreds of years with magical medicinal value. PNS have varied biological functions, such as anti-inflammatory effects, anti-cancer effects, anti-neurotoxicity, and the prevention of diabetes. Nervous system disorders, a spectrum of diseases originating from the nervous system, have a significant impact on all aspects of patients' lives. Due to the dramatic gains in global life expectancy, the prevalence of nervous system disorders is growing gradually. Even if the mechanism of these diseases is still not clear, they are mainly characterized by neuronal dysfunction and neuronal death. Consequently, it is essential to find measures to slow down or prevent the onset of these diseases. At present, traditional Chinese medicines, as well as their active components, have gained widespread popularity in preventing and treating these diseases because of their merits, especially PNS. In this review, we predominantly address the recent advances in PNS researches and their biological functions, and highlight their applications in nervous system disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke.
Collapse
Affiliation(s)
- Jing Qu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Na Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repairing, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruihua Zhang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Li Y, Li Z, Jia Y, Ding B, Yu J. In Vitro Anti-hepatoma Activities of Notoginsenoside R1 Through Downregulation of Tumor Promoter miR-21. Dig Dis Sci 2020; 65:1364-1375. [PMID: 31559550 DOI: 10.1007/s10620-019-05856-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Notoginsenoside R1 (NG-R1) is the predominant active ingredient and a novel triterpene saponin compound extracted from the roots of Panax notoginseng. To date, to the best of our knowledge, there are no previous studies concerning the effect of NG-R1 on hepatocellular carcinoma (HCC). AIMS To investigate the effects of NG-R1 on HCC cell growth, apoptosis, and invasion and to explore the underlying mechanisms. METHODS Cell viability and lactate dehydrogenase (LDH) release were evaluated by cell counting kit-8 and LDH assay, respectively. Apoptosis was assessed using flow cytometry analysis and caspase-3/7 activity assay. Cell invasion was detected by Transwell invasion assay and western blot analysis of matrix metallopeptidase (MMP)-2 and MMP-9. The effects of NG-R1 on miR-21 expression and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway were examined by qRT-PCR and western blot, respectively. RESULTS NG-R1 inhibited the viability, increased LDH release and caspase-3/7 activity, induced apoptosis, and suppressed invasion in HCC cells. NG-R1 reduced miR-21 expression in HCC cells. miR-21 overexpression significantly attenuated the effects of NG-R1 on the viability, LDH release, apoptosis, caspase-3/7 activity, and invasion of HCC cells. We further demonstrated that NG-R1 inhibited the activation of the PI3K/Akt pathway in HCC cells, which was abolished by miR-21 overexpression. CONCLUSIONS NG-R1 exerted anti-hepatoma activity through inactivation of the PI3K/Akt pathway by downregulating miR-21, contributing to further understanding of the anti-tumor activities of NG-R1 in HCC.
Collapse
Affiliation(s)
- Yuan Li
- Department of General Surgery, Nanyang First People's Hospital, No. 12 Renmin Road, Nanyang, 473012, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital, No. 12 Renmin Road, Nanyang, 473012, China
| | - Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital, No. 12 Renmin Road, Nanyang, 473012, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital, No. 12 Renmin Road, Nanyang, 473012, China
| | - Jinsong Yu
- Department of General Surgery, Nanyang First People's Hospital, No. 12 Renmin Road, Nanyang, 473012, China.
| |
Collapse
|
29
|
Liu H, Yang J, Yang W, Hu S, Wu Y, Zhao B, Hu H, Du S. Focus on Notoginsenoside R1 in Metabolism and Prevention Against Human Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:551-565. [PMID: 32103897 PMCID: PMC7012233 DOI: 10.2147/dddt.s240511] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Notoginsenoside (NG)-R1 is one of the main bioactive compounds from Panax notoginseng (PN) root, which is well known in the prescription for mediating the micro-circulatory hemostasis in human. In this article, we mainly discuss NG-R1 in metabolism and the biological activities, including cardiovascular protection, neuro-protection, anti-diabetes, liver protection, gastrointestinal protection, lung protection, bone metabolism regulation, renal protection, and anti-cancer. The metabolites produced by deglycosylation of NG-R1 exhibit higher permeability and bioavailability. It has been extensively verified that NG-R1 may ameliorate ischemia-reperfusion (IR)-induced injury in cardiovascular and neuronal systems mainly by upregulating the activity of estrogen receptor α-dependent phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor erythroid-2-related factor 2 (NRF2) pathways and downregulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. However, no specific targets for NG-R1 have been identified. Expectedly, NG-R1 has been used as a main bioactive compound in many Traditional Chinese Medicines clinically, such as Xuesaitong, Naodesheng, XueShuanTong, ShenMai, and QSYQ. These suggest that NG-R1 exhibits a significant potency in drug development.
Collapse
Affiliation(s)
- Hai Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Jianqiong Yang
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Wanqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bo Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Haiyan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
30
|
20(S)-Protopanaxdiol Suppresses the Abnormal Granule-Monocyte Differentiation of Hematopoietic Stem Cells in 4T1 Breast Cancer-Bearing Mouse. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8747023. [PMID: 32015754 PMCID: PMC6982358 DOI: 10.1155/2020/8747023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Panax notoginseng (PN) has been used as a qi- and blood-activating (Huoxue) drug for thousands of years in China. It has also been widely used as an anticancer drug at present. As a Huoxue drug, the effect of PN on hematopoietic differentiation in tumor-bearing body has been paid more and more attention. Our research found that panax notoginseng saponins (PNS), especially panaxadiol saponins (PDS) and its aglucon 20(S)-Protopanaxdiol (PPD), could improve the immunosuppressive state by regulating the abnormal hematopoietic differentiation in a tumor-bearing body by multiple ways. An interesting phenomenon is that PDS reduced the neutrophil-lymphocyte ratio (NLR) via its inhibition effect on the granule-monocyte differentiation of spleen cells, which is associated with a decrease in the secretion of tumor MPO, G-CSF, PU.1, and C/EBPα. Otherwise, PDS increased the proportion of both hematopoietic stem cells and erythroid progenitor cells in the bone marrow, but inhibited spleen erythroid differentiation via inhibiting secretion of tumor EPO, GATA-1, and GATA-2. This study suggests that PNS regulated the tumor-induced abnormal granule-monocyte differentiation of hematopoietic stem cells, affecting the distribution and function of haemocytes in tumor-bearing mice.
Collapse
|
31
|
Chen X, Lv Z, Zhang C, Wang X, Zhao Y, Wang X, Zheng Y. Retracted Article: Panax notoginseng saponins regulate VEGF to suppress esophageal squamous cell carcinoma progression via DVL3-mediated Wnt/β-catenin signaling. RSC Adv 2020; 10:3256-3265. [PMID: 35497711 PMCID: PMC9048998 DOI: 10.1039/c9ra07830d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
PNS regulate VEGF expression to suppress ESCC progression via the DVL3-mediated Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | - Zhuan Lv
- Medical Administration
- The First Affiliated Hospital of Henan University of CM
- China
| | - Chuanlei Zhang
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | - Xinting Wang
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | | | - Xiao Wang
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | - Yuling Zheng
- Guoyitang
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| |
Collapse
|
32
|
Xu C, Liu T, Liu H, Chen G, Guo Y. Panax notoginseng saponins radiosensitize colorectal cancer cells by regulating the SNHG6/miR-137 axis. RSC Adv 2019; 9:38558-38567. [PMID: 35540209 PMCID: PMC9075843 DOI: 10.1039/c9ra07622k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Panax notoginseng saponins (PNS) have recently attracted great attention for their anti-cancer activity in colorectal cancer (CRC). The aim of this study was to explore the functional role and underlying mechanisms of PNS on CRC radiosensitivity. Cell viability was assessed by a Cell Counting kit-8 assay. Cell survival and apoptosis were determined using colony formation assay and flow cytometry, respectively. Quantitative real-time PCR was used to quantify the levels of SNHG6 and miR-137. The targeted correlation between SNHG6 and miR-137 was validated by dual-luciferase reporter and RNA immunoprecipitation assays. Our data supported that PNS weakened the viability of CRC cells. Moreover, PNS promoted the radiosensitivity of CRC cells. Mechanistically, PNS enhanced CRC cell radiosensitivity by upregulating SNHG6. SNHG6 directly targeted miR-137 and inhibited miR-137 expression. MiR-137 was involved in the regulatory effect of SNHG6 on CRC cell radiosensitivity. Furthermore, PNS increased miR-137 expression through SNHG6 in CRC cells. Our study suggested that PNS promoted radiosensitivity in CRC cells at least partly through regulating the SNHG6/miR-137 axis, providing a novel understanding of the anti-cancer mechanism of PNS in CRC.
Collapse
Affiliation(s)
- Caihui Xu
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| | - Teng Liu
- Xinxiang Medical University Hongqi District Xinxiang Henan China
| | - Haiyan Liu
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| | - Gongbin Chen
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| | - Yinmou Guo
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| |
Collapse
|
33
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
34
|
Therapeutic Effects of Ten Commonly Used Chinese Herbs and Their Bioactive Compounds on Cancers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6057837. [PMID: 31636686 PMCID: PMC6766161 DOI: 10.1155/2019/6057837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Effective cancer therapy is one of the biggest global challenges. Conventional cancer therapies have been at the forefront of combating cancers, but more evidence showed considerable side effects, limiting their use. There are various new therapies in development, but combined approaches for treating cancer are much expected. Natural herbs had been traditionally in use for cancer therapy in most parts of the world. In this review, we have examined ten commonly used Chinese herbs that have, for centuries, shown effectiveness in treating cancers. They demonstrated the abilities to promote the apoptosis of cancer cells, inhibit their metastasis, activate the patient's anticancer immunity, and synergistically increase the efficacy of conventional chemotherapy and radiation therapy when used in combination. Clinical experiences had proved that these herbs and their bioactive compounds were effective against a plethora of cancers through a variety of mechanisms, effectively improving patients' quality of life without significant side effects. These advantages indicate that there are huge potentials in the development of Chinese herbs into cancer medicine as part of a promising, holistic cancer treatment modality.
Collapse
|
35
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
36
|
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Bioactive Ingredients in Chinese Herbal Medicines That Target Non-coding RNAs: Promising New Choices for Disease Treatment. Front Pharmacol 2019; 10:515. [PMID: 31178721 PMCID: PMC6537929 DOI: 10.3389/fphar.2019.00515] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in China and have long been a powerful method to treat diseases in Chinese people. Bioactive ingredients are the main components extracted from herbs that have therapeutic properties. Since artemisinin was discovered to inhibit malaria by Nobel laureate Youyou Tu, extracts from natural plants, particularly bioactive ingredients, have aroused increasing attention among medical researchers. The bioactive ingredients of some CHMs have been found to target various non-coding RNA molecules (ncRNAs), especially miRNAs, lncRNAs, and circRNAs, which have emerged as new treatment targets in numerous diseases. Here we review the evidence that, by regulating the expression of ncRNAs, these ingredients exert protective effects, including pro-apoptosis, anti-proliferation and anti-migration, anti-inflammation, anti-atherosclerosis, anti-infection, anti-senescence, and suppression of structural remodeling. Consequently, they have potential as treatment agents in diseases such as cancer, cardiovascular disease, nervous system disease, inflammatory bowel disease, asthma, infectious diseases, and senescence-related diseases. Although research has been relatively limited and inadequate to date, the promising choices and new alternatives offered by bioactive ingredients for the treatment of the above diseases warrant serious investigation.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Meng L, Lin J, Huang Q, Liang P, Huang J, Jian C, Lin C, Li X. Panax notoginseng Saponins Attenuate Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in Human SH-SY5Y Cells by Regulating the Expression of Inflammatory Factors through miR-155. Biol Pharm Bull 2018; 42:462-467. [PMID: 30587668 DOI: 10.1248/bpb.b18-00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Panax notoginseng saponins (PNS) have been widely used in China to treat stroke. Accumulating evidence has found that microRNA (miR)-155 plays critical roles in the pathology of ischemic stroke. Here we investigated whether PNS plays a protective effect against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced focal inflammation and injury in SH-SY5Y cells by regulating miR-155 expression. Treatment with PNS at a concentration less than 160 µg/mL had no effect on the proliferation of SH-SY5Y cell. In OGD/R-induced SH-SY5Y cells, 160 µg/mL PNS treatment promoted cell proliferation and cell cycle progression, as well as decreased inhibited apoptosis and miR-155 expression. However, overexpression of miR-155 attenuated the promotion effects of PNS on cell proliferation and cell cycle, apoptosis inhibition in OGD/R-induced SH-SY5Y cells. Moreover, 160 µg/mL PNS treatment decreased the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in OGD/R-induced SH-SY5Y cells, whereas overexpression of miR-155 reversed PNS-induced decreases in the levels of IL-1β, IL-6, and TNF-α in OGD/R-treated SH-SY5Y cells. In conclusion, PNS attenuated OGD/R-induced injury in human undifferentiated SH-SY5Y cells by regulating the expression of inflammatory factors through miR-155.
Collapse
Affiliation(s)
- Lanqing Meng
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Jun Lin
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Qing Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Ping Liang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Jianmin Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Chong Lin
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Xuebin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| |
Collapse
|
38
|
Personalizing Chinese medicine by integrating molecular features of diseases and herb ingredient information: application to acute myeloid leukemia. Oncotarget 2018; 8:43579-43591. [PMID: 28454110 PMCID: PMC5522171 DOI: 10.18632/oncotarget.16983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been widely used as a complementary medicine in Acute Myeloid Leukemia (AML) treatment. In this study, we proposed a new classification of Chinese Medicines (CMs) by integrating the latest discoveries in disease molecular mechanisms and traditional medicine theory. We screened out a set of chemical compounds on basis of AML differential expression genes and chemical-protein interactions and then mapped them to Traditional Chinese Medicine Integrated Database. 415 CMs contain those compounds and they were categorized into 8 groups according to the Traditional Chinese Pharmacology. Pathway analysis and synthetic lethality gene pairs were applied to analyze the dissimilarity, generality and intergroup relations of different groups. We defined hub CM pairs and alternative CM groups based on the analysis result and finally proposed a formula to form an effective anti-AML prescription which combined the hub CM pairs with alternative CMs according to patients’ molecular features. Our method of formulating CMs based on patients’ stratification provides novel insights into the new usage of conventional CMs and will promote TCM modernization.
Collapse
|
39
|
Peng M, Yi YX, Zhang T, Ding Y, Le J. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review. Front Pharmacol 2018; 9:188. [PMID: 29593531 PMCID: PMC5859349 DOI: 10.3389/fphar.2018.00188] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 12/05/2022] Open
Abstract
Panax notoginseng (Sanqi), a traditional Chinese medical drug which has been applied to medical use for over four centuries, contains high content of dammarane-type tetracyclic triterpenoid saponins. A number of stereoisomeric dammarane-type saponins exist in this precious herb, and some are particularly regarded as “biomarkers” in processed notoginseng. Contemporary researches have indicated that some saponin stereoisomers may show stereospecific pharmacological activities, such as anti-tumor, antioxidative, anti-photoaging, anti-inflammatory, antidiabetic, and neuro-protective activities, as well as stereoselective effects on ion channel current regulation, cardiovascular system, and immune system. The current review provides a comprehensive overview of chemical compositions of raw and processed P. notoginseng with a particular emphasis on saponin stereoisomers. Besides, the pharmacological and pharmacokinetic researches, as well as determination and biotechnological preparation methods of stereoisomeric saponins in notoginseng are discussed extensively.
Collapse
Affiliation(s)
- Ming Peng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Ya X Yi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Le
- Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
40
|
Kim B, Kim EY, Lee EJ, Han JH, Kwak CH, Jung YS, Lee SO, Chung TW, Ha KT. Panax notoginseng Inhibits Tumor Growth through Activating Macrophage to M1 Polarization. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1369-1385. [DOI: 10.1142/s0192415x18500726] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Among the herbal ingredients of HangAmDan-B, a medicinal formula that redirects macrophages to become tumoricidal effectors, we found that Panax notoginseng (Burk.) F. H. Chen is the active component responsible for its macrophage-mediated antitumor activity. The water extracted roots of P. notoginseng (PN) did not affect the viability of RAW264.7 murine macrophage-like cells and murine Lewis lung carcinoma (LLC) cells up to a concentration of 100[Formula: see text][Formula: see text]g/mL. However, the transfer of culture media from PN-treated RAW264.7 cells suppressed the growth of LLC cells. The expression of classically activated (M1) markers, such as interleukin (IL)-1[Formula: see text], monocyte chemotactic protein (MCP)-1, tumor necrosis factor (TNF)-[Formula: see text], and inducible nitric oxide synthase (iNOS), was increased by PN treatment. The expression of alternatively activated (M2) markers including CD206, IL-10, and [Formula: see text]-[Formula: see text]-acetylhexosaminidases (YM-1) was reduced by PN treatment in the presence of IL-4. Flow cytometry also revealed that PN drives M1 activation of RAW264.7 cells. The transfer of culture media from PN-treated RAW264.7 cells induced the apoptosis of LLC cells as measured by flow cytometry using Annexin-V staining and western blot analysis for caspase cascade-related proteins. In addition, the results from in vivo tumor allograft model demonstrated that PN reduced both tumor volume and weight. The activation of macrophages toward an M1 phenotype was confirmed in the tumor allograft tumor model. These results collectively show that PN can serve as a potent anticancer agent through reeducation of macrophages toward an M1 phenotype.
Collapse
Affiliation(s)
- Bosung Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Eun-Yeong Kim
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Eun-Ji Lee
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Jung Ho Han
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Chung-Hwan Kwak
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Yeon-Seop Jung
- Department of Food Science and Technology, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Tae-Wook Chung
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
41
|
Choi JG, Jin YH, Lee H, Oh TW, Yim NH, Cho WK, Ma JY. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity. Front Immunol 2017; 8:1542. [PMID: 29181006 PMCID: PMC5693858 DOI: 10.3389/fimmu.2017.01542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR), which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP) and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2) expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN)-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3) in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10%) compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK) cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular mechanisms underlying the protective effects of PNR and its components against influenza virus A infection.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Young-Hee Jin
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Heeeun Lee
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Tae Woo Oh
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Nam-Hui Yim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
42
|
Liang X, Yang Y, Huang Z, Zhou J, Li Y, Zhong X. Panax notoginseng saponins mitigate cisplatin induced nephrotoxicity by inducing mitophagy via HIF-1α. Oncotarget 2017; 8:102989-103003. [PMID: 29262539 PMCID: PMC5732705 DOI: 10.18632/oncotarget.19900] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated the role of HIF-1α in the mitigation of cisplatin-induced nephrotoxicity by Panax notoginseng saponins (PNS) in a rat model. Serum creatinine (Scr), blood urea nitrogen (BUN) and urinary N-acetyl-β-D-glucosaminidase (NAG) levels were all elevated in cisplatin treated rats. PNS reduced Scr, BUN and NAG levels in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2ME2). PNS also reduced the high tubular injury scores, which corresponded to renal tubular damage in cisplatin-treated rats and which were exacerbated by 2ME2. Renal tissues from PNS-treated rats showed increased HIF-1α mRNA and nuclear localized HIF-1α protein. Moreover, PNS treatment increased BNIP3 mRNA as well as LC3-II, BNIP3 and Beclin-1 proteins and the LC3-II/LC3-I ratio in rat renal tissues. This suggested that PNS treatment enhanced HIF-1α, which in turn increased autophagy. This was confirmed in transmission electron micrographs of renal tissues that showed autophagosomes in PNS-treated renal tissues. These findings demonstrate that PNS mitigates cisplatin-induced nephrotoxicity by enhancing mitophagy via a HIF-1α/BNIP3/Beclin-1 signaling pathway.
Collapse
Affiliation(s)
- Xueyan Liang
- Postgraduate, Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenguang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinling Zhou
- Postgraduate, Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yue'e Li
- Postgraduate, Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
43
|
Bian M, Du X, Wang P, Cui J, Xu J, Gu J, Zhang T, Chen Y. Combination of ginsenoside Rb1 and Rd protects the retina against bright light-induced degeneration. Sci Rep 2017; 7:6015. [PMID: 28729651 PMCID: PMC5519667 DOI: 10.1038/s41598-017-06471-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/14/2017] [Indexed: 01/17/2023] Open
Abstract
Photoreceptor degeneration is a central pathology of various retinal degenerative diseases which currently lack effective therapies. Antioxidant and anti-inflammatory activities are noted for Panax notoginsenoside saponins (PNS) and related saponin compound(s). However, the photoreceptor protective potentials of PNS or related saponin compound(s) remain unknown. The current study revealed that PNS protected against photoreceptor loss in bright light-exposed BALB/c mice. Combination of ginsenoside Rb1 and Rd, two major saponin compounds of PNS, recapitulated the retinal protection of PNS and attenuated retinal oxidative stress and inflammatory changes. Rb1 or Rd partially alleviated all-trans-Retinal-induced oxidative stress in ARPE19 cells. Rb1 or Rd suppressed lipopolysaccharides (LPS)-induced proinflammatory gene expression in ARPE19 and RAW264.7 cells. Rb1 or Rd also modulated the expression of proinflammatory microRNA, miR-155 and its direct target, anti-inflammatory SHIP1, in LPS-stimulated RAW264.7 cells. The retinal expression of miR-155 and SHIP1 was altered preceding extensive retinal damage, which was maintained at normal level by Rb1 and Rd combination. This work shows for the first time that altered expression of miR-155 and SHIP1 are involved in photoreceptor degeneration. Most importantly, novel retinal protective activities of combination of Rb1 and Rd justify further evaluation for the treatment of related retinal degenerative disorders.
Collapse
Affiliation(s)
- Minjuan Bian
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoye Du
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Peiwei Wang
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingang Cui
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jing Xu
- Department of Pharmacy, East China University of Science and Technology, Shanghai, 201203, China
| | - Jiangping Gu
- Department of Pharmacy, East China University of Science and Technology, Shanghai, 201203, China
| | - Teng Zhang
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yu Chen
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
44
|
Song H, Wang P, Liu J, Wang C. Panax notoginsengPreparations for Unstable Angina Pectoris: A Systematic Review and Meta-Analysis. Phytother Res 2017. [PMID: 28634988 DOI: 10.1002/ptr.5848] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haiying Song
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Peili Wang
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| |
Collapse
|
45
|
Jiang D, Rong Q, Chen Y, Yuan Q, Shen Y, Guo J, Yang Y, Zha L, Wu H, Huang L, Liu C. Molecular cloning and functional analysis of squalene synthase (SS) in Panax notoginseng. Int J Biol Macromol 2016; 95:658-666. [PMID: 27884675 DOI: 10.1016/j.ijbiomac.2016.11.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/17/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Panax notoginseng (Burk.) F. H. Chen, which is a used traditional Chinese medicine known as Sanqi or Tianqi in China, is widely studied for its ability to accumulate the triterpene saponins. Squalene synthase (SS: EC 2.5.1.21) catalyzes the first enzymatic step from the central isoprenoid pathway toward sterol and triterpenoid biosynthesis. In this study, SS from P. notoginseng was cloned and investigated followed by its recombinant expression and preliminary enzyme activity. The nucleotide sequence of the ORF contains 1 248 nucleotides and encodes 415 amino acid residues with molecular weight of 47.16kDa and pI of 6.50. Bioinformatics analysis revealed that the deduced PnSS protein had a high similarity with other plant squalene synthases. To obtain soluble recombinant enzymes, 29 hydrophobic amino acids were deleted from the carboxy terminus and expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3). Approximately 66.46kDa recombinant protein was checked on SDS-PAGE and Western Blot analysis. Preliminary activity of the resultant bacterial crude extract was analyzed by gas chromatograph-mass spectrometer (GC-MS). The identification and function of PnSS is important for further studies of the triterpene saponins biosynthesis in P. notoginseng.
Collapse
Affiliation(s)
- Dan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixian Rong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yijun Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330004, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yirui Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liangping Zha
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huixiao Wu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunsheng Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|