1
|
An X, Ma L, Bai Y, Chen C, Liu J, Dawuti A, Zeng K, Yang B, Han B, Abulizi A. Nuciferine Attenuates Cancer Cachexia-Induced Muscle Wasting in Mice via HSP90AA1. J Cachexia Sarcopenia Muscle 2025; 16:e13777. [PMID: 40170230 PMCID: PMC11961380 DOI: 10.1002/jcsm.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/17/2024] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Around 80% of patients with advanced cancer have cancer cachexia (CC), a serious complication for which there are currently no FDA-approved treatments. Nuciferine (NF) is the main active ingredient of lotus leaf, which has anti-inflammatory, anti-tumour and other effects. The purpose of this work was to explore the target and mechanism of NF in preventing cancer cachexia-induced muscle atrophy. METHODS The action of NF against CC-induced muscle atrophy was determined by constructing an animal model with a series of behavioural tests, H&E staining and related markers. Network pharmacology and molecular docking were used to preliminarily determine the mechanism and targets of NF against CC-induced muscle atrophy. The mechanisms of NF in treating CC-induced muscle atrophy were verified by western blotting. Molecular dynamics simulation (MD), drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) were used to validate the key target of NF. RESULTS After 13 days of NF treatment, the reduction of limb grip strength and hanging time in LLC model mice increased by 29.7% and 192.2% (p ≤ 0.01; p ≤ 0.001). Gastrocnemius and quadriceps muscles weight/initial body weight (0.98 ± 0.11 and 1.20 ± 0.17) and cross-sectional area of muscle fibres (600-1600 μm2) of NF-treated mice were significantly higher than those of the model group (0.84 ± 0.10, 0.94 ± 0.09, 400-800 μm2, respectively) (p ≤ 0.01; p ≤ 0.01; p ≤ 0.001). NF treatment also decreased the MyHC (myosin heavy chain) degradation and the protein levels of muscle-specific E3 ubiquitin ligases Atrogin1 and MuRF1 in the model group (p ≤ 0.001; p ≤ 0.01; p ≤ 0.05). Network pharmacology revealed that NF majorly targeted AKT1, TNF and HSP90AA1 to regulate PI3K-Akt and inflammatory pathways. Molecular docking predicted that NF bound best to HSP90AA1. Mechanism analysis demonstrated that NF regulated NF-κB and AKT-mTOR pathways for alleviating muscle wasting in tumour bearing mice. The results of MD, DARTS and SPR further confirmed that HSP90AA1 was the direct target of NF. CONCLUSIONS Overall, we first discovered that NF retards CC-induced muscle atrophy by regulating AKT-mTOR and NF-κB signalling pathways through directly binding HSP90AA1, suggesting that NF may be an effective treatment for cancer cachexia.
Collapse
Affiliation(s)
- Xueyan An
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Lisha Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Yulan Bai
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Chaoyue Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Ji Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Awaguli Dawuti
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Kewu Zeng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
| | - Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of PharmacyShihezi UniversityShiheziChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| |
Collapse
|
2
|
Kim H, Kim T, Oh B, Lee DW, Hwang JK. Standardized Curcuma xanthorrhiza Extract and Its Major Compound, Xanthorrhizol, Mitigate Cancer-Associated Muscle Atrophy in CT26-Bearing Mice by Inhibiting Catabolic Signaling Pathways. J Med Food 2025; 28:377-384. [PMID: 39973249 DOI: 10.1089/jmf.2024.k.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Cancer cachexia, defined by the gradual depletion of muscle and fat mass, is a complex multifactorial syndrome affecting up to 80% of cancer patients. This study investigated the effects of Curcuma xanthorrhiza extract (CXE) and xanthorrhizol (XAN) in ameliorating cancer-induced muscle atrophy in BALB/c mice. Treatment with CXE and XAN reversed muscle mass loss, grip strength decline, and decrease in myofiber size induced by cancer. In gastrocnemius muscle tissue, CXE and XAN downregulated the expression of nuclear factor kappa-beta (NF-κB), reducing the expression levels of proinflammatory cytokines. They also suppressed catabolic factors, including myostatin and ubiquitin-proteasome E3 ligases, and the nuclear translocation of forkhead box O3a. Furthermore, CXE and XAN promoted skeletal muscle anabolism by stimulating myogenesis and activating the phosphoinositide 3-kinase/protein kinase B signaling pathway. This activation subsequently upregulated the mammalian target of rapamycin and its downstream molecules. Overall, CXE and XAN effectively mitigated skeletal muscle catabolism induced by cancer cachexia and may serve as an intervention for inhibiting muscle atrophy in affected cancer patients if efficacy can be confirmed in human trials.
Collapse
Affiliation(s)
- Haeun Kim
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taeuk Kim
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
| | - Boeun Oh
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Kwan Hwang
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Huang X, Chen B, Xiao X, Piao C. Potential molecular mechanisms of Jiedu Tongluo Tiaogan Formula in treating hyperthyroidism based on network pharmacology and in vivo experiments in mice. Physiol Genomics 2025; 57:148-159. [PMID: 39854209 DOI: 10.1152/physiolgenomics.00113.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
"Jiedu Tongluo Tiaoying Formula" (JDTLTYF) is a kind of traditional Chinese medicine (TCM) prescription for treating hyperthyroidism, which can effectively improve the condition of patients. The main active ingredients of JDTLTYF were collected from the traditional Chinese medicine systems pharmacology (TCMSP) database, and the target was predicted. Genes related to hyperthyroidism were identified using DisGeNET, GeneCards, and Online Mendelian Inheritance in Man (OMIM) databases. Protein-protein interaction (PPI) network and interaction network of "formula-herb-active ingredient-target genes" was constructed. Mass spectrometry was used to identify the components. The binding of key components to the target was verified by molecular docking and molecular dynamics (MD) simulations. A hyperthyroidism mouse model was established by using levothyroxine sodium tablets, and the hormone and expression levels of inflammatory factors were examined by ELISA and Western blot. The key genes of JDTLTYF in the treatment of hyperthyroidism were TNF and AKT1. The results of mass spectrometry also showed that quercetin was one of the main components. The results of molecular docking and MD simulation showed that the binding-free energy between AKT1 and quercetin was the lowest, and the binding was stable. In vivo experimental results showed that gastric lavage with JDTLTYF could target AKT1 and TNF-α, effectively alleviate the pathological features of hyperthyroidism in mice, and reduce inflammation response. This study elucidated the key small molecule compounds and their action targets of JDTLTYF in the treatment of hyperthyroidism. It provides a direction for the development of new drugs for clinical hyperthyroidism.NEW & NOTEWORTHY Based on the network pharmacology and molecular dynamics (MD) simulation, this study elucidated the key small molecule compounds and their action targets of JDTLTYF Chinese herbal prescription (debark peony root, common selfheal fruit-spike, figwort root, thunberg fritillary bulb, and oyster shell) in the treatment of hyperthyroidism, preliminarily analyzed its molecular mechanism, and provided a reference direction for subsequent cell experiments.
Collapse
Affiliation(s)
- Xin Huang
- Shenzhen Futian District Shenkang Community Health Care Service Station, Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Binqin Chen
- Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Xiaoli Xiao
- Shenzhen Futian District Tefa Community Health Care Service Station, Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Chunli Piao
- Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Jalali A, Jafari F, Behnamrad S, Zarshenas MM, Zhang X, Kashkooe A. The Genus Paeonia: A Review of the Targeted Signaling Pathways and Underlying Mechanisms of Pharmacological and Clinical Properties. Curr Drug Discov Technol 2025; 22:e100724231842. [PMID: 38988165 DOI: 10.2174/0115701638318395240703115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION The Paeoniaceae family contains only the Paeonia genus and is considered a major group of flowering plants. Several traditional and pharmacological applications of Paeoniaceae herbs have been described. This paper aimes to determine the pharmacological activities of the most prevalent herbs from the genus Paeonia by focusing on their underlying mechanism of action and signaling pathways, providing insight for further in-depth research on the medicinal resources of Paeonia. METHODS The "Paeoniaceae" keyword was searched from 1st January 1995 to 15th May 2024 through the PubMed and Scopus databases. Only papers related to pharmacology, pharmaceutics, and toxicology were extracted. The possible pharmacological activity of the Paeonia plants, including their underlying mechanisms of action and signaling pathways, was subsequently discussed. RESULTS Following our venture, only 15 Paeonia herbs were adequately evaluated for their pharmacological applications. Paeonia lactiflora Pall., Paeonia suffruticosa Andrews, and Paeonia emodi Royle are among the most prevalent Paeonia plants that have attracted increased attention in modern pharmacological studies. Paeonia herbs possess various pharmacological applications, such as antiinflammatory, anti-allergic, anticancer, antimicrobial, cardiovascular protective, cosmetic and skincare, radical scavenging, hepatoprotective and anti-ulcerative, anti-diabetic, musculoskeletal, and neuroprotective effects, and can be used as alternative therapies under critical medical conditions. CONCLUSION Among the applications of Paeonia herbs, anti-inflammatory and antioxidant activities are critical, as most other pharmacological effects are attributed to them. In other words, nuclear factor (NF)-κB and nuclear factor erythroid 2-related factor 2 (Nrf2) can be considered the most important signaling pathways involved in the pharmacological activity of Paeonia herbs.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shima Behnamrad
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ali Kashkooe
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Ma W, Ren H, Meng X, Liu S, Du K, Fang S, Chang Y. A review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and quality control of Paeonia lactiflora Pall. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118616. [PMID: 39053710 DOI: 10.1016/j.jep.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (called Shaoyao in China) is a common herb cultivated all over the world. In some Asian and European countries, such as China, Japan, South Korea and Britain, P. lactiflora has a long history of ethnomedical uses, which is widely used to relieve pain, treat gynecological diseases, anti-infection and so on. It is attributed to the extensive pharmacological activities of total glucosides of P. lactiflora. Up to now, it is still commonly used in clinical medicine. THE AIM OF THE REVIEW The paper aims to make a comprehensive review on the botanical characterization and distribution, ethnopharmacology, phytochemistry, biosynthesis pathway, pharmacology, pharmacokinetics and quality control of P. lactiflora, so as to provide new insights and scientific evidence for the subsequent research. MATERIALS AND METHODS The information of P. lactiflora was obtained from books related to traditional Chinese medicine and electronic databases, including Scifinder, PubMed, Web of Science, CNKI and Google Scholar. RESULTS P. lactiflora is a kind of herb with a long history and it is used for medicine, food and ornamental, and shows high utilization value. There are 200 compounds have been identified from it, including terpenoids, flavonoids, polyphenols, organic acids and others, among those paeoniflorin, a monoterpenoid glycoside, has multiple activities and is currently the focus of pharmacological research. A great deal of pharmacological experiments supported the anti-inflammatory, anti-oxidant, hepatoprotective, neuroprotective, antibacterial, antitumor, dermatosis treating and other effects of P. lactiflora. In addition, evaluating the quality of P. lactiflora is essential to safe use of drug in humans. CONCLUSIONS The chemical components of P. lactiflora are diverse and have a wide range of activities. Modern pharmacological studies have provided reliable evidence for the traditional efficacy, such as suppressing liver yang, regulating menstruation and relieving pain. However, there are still some problems to be solved, such as part of the pharmacological mechanism has not been clarified and the biosynthetic pathway of cage-like monoterpenoids remains poorly defined. In addition, further studies on compounds other than paeoniflorin are clearly warranted. It is hoped that P. lactiflora will serve the clinic better in the future.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haishuo Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Yeo H, Lee H, Park SM, Kang HN. Paeoniae radix overcomes resistance to EGFR-TKIs via aurora B pathway suppression in lung adenocarcinoma. Life Sci 2024; 357:123097. [PMID: 39362582 DOI: 10.1016/j.lfs.2024.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Targeted therapies using epidermal growth factor receptor (EGFR) inhibitors have markedly improved survival rates and quality of life for patients with EGFR-mutant lung adenocarcinoma (LUAD). Despite these advancements, resistance to EGFR inhibitors remains a significant challenge, limiting the overall effectiveness of the treatment. This study explored the synergistic effects of combining Paeoniae Radix (PR) with first-generation EGFR-tyrosine kinase inhibitors (TKIs), erlotinib and gefitinib, to overcome this resistance. Transcriptomic analysis of EGFR-mutant LUAD cell lines revealed that PR treatment could potentially reverse the gene signatures associated with resistance to EGFR-TKIs, primarily through the suppression of the Aurora B pathway. Experimental validation demonstrated that combining PR with erlotinib and gefitinib enhanced drug responsiveness by inhibiting Aurora kinase activity and inducing apoptosis in LUAD cells. Additionally, gene expression changes confirmed these combined effects, with the suppression of the Aurora B pathway and upregulation of the apoptotic pathway, which was accompanied by increased expression of multiple pro-apoptotic genes. Our findings contribute to the development of natural product-based therapeutic strategies to mitigate drug resistance in LUAD.
Collapse
Affiliation(s)
- Heerim Yeo
- College of Pharmacy, Chungnam National University, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Busan National University, Republic of Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Republic of Korea.
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Republic of Korea.
| |
Collapse
|
7
|
Hatae A, Watanabe T, Taniguchi C, Kubota K, Katsurabayashi S, Iwasaki K. Ninjinyoeito ameliorates anorexia and changes in peptide YY and ghrelin levels of cisplatin-treated mice. Neuropeptides 2024; 107:102464. [PMID: 39182332 DOI: 10.1016/j.npep.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
We explored the effect of Ninjinyoeito (NYT) on cisplatin-induced anorexia, which reduces cancer patient survival. Both gastrointestinal motility and plasma concentrations of gastrointestinal peptides were assessed. Nine-week-old ICR female mice received intraperitoneal cisplatin injections (10 mg/kg) and daily oral NYT doses of 300 mg/kg (NYT300) or 1000 mg/kg (NYT1000). Plasma levels of gastrointestinal peptides were measured at 3 and 6 days after cisplatin injection. Gastrointestinal motility was assessed by analyzing the concentration of phenol red marker within sections of the gastrointestinal tract. Cisplatin-injected mice showed a decrease in daily food intake, but this effect was attenuated on day 5 with NYT1000 administration. Although plasma ghrelin levels were reduced on day 3 in cisplatin-treated mice, NYT1000 administration ameliorated this decrease. However, there were no differences in ghrelin levels among all groups on day 6. Levels of peptide YY (PYY) were elevated in the plasma of cisplatin-injected mice on days 3 and 6. Administration of NYT300 and NYT1000 suppressed the increase in PYY levels on day 6 but not on day 3. Gastrointestinal motility was impaired on day 6 in cisplatin-treated mice, but NYT1000 administration attenuated this effect. Our results suggest that NYT improves cisplatin-induced anorexia by suppressing alterations in ghrelin and PYY levels and by increasing gastrointestinal motility. Therefore, NYT may be a promising candidate for alleviating cisplatin-induced anorexia.
Collapse
Affiliation(s)
- Akinobu Hatae
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Chise Taniguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
8
|
Lee SB, Woo TW, Baek DC, Son CG. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica promotes skeletal muscle hypertrophy in a treadmill exercise mouse model. Front Nutr 2024; 11:1362550. [PMID: 38966418 PMCID: PMC11223055 DOI: 10.3389/fnut.2024.1362550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Background Maintaining a normal range of muscle mass and function is crucial not only for sustaining a healthy life but also for preventing various disorders. Numerous nutritional or natural resources are being explored for their potential muscle hypertrophic properties. Aim We aimed to evaluate the muscle hypertrophic effects of APX, a 1:1 mixture of Astragalus membranaceus and Paeonia japonica. In addition to the myotube differentiation cell assay, we utilized a weighted exercise-based animal model and evaluated changes in muscle hypertrophy using dual-energy X-ray absorptiometry (DXA) and histological analysis. Results The 8-week treadmill exercise led to notable decreases in body weight and fat mass but an increase in muscle mass compared to the control group. Administration of APX significantly accelerated muscle mass gain (p < 0.05) without altering body weight or fat mass compared to the exercise-only group. This muscle hypertrophic effect of APX was consistent with the histologic size of muscle fibers in the gastrocnemius (p > 0.05) and rectus femoris (p < 0.05), as well as the regulation of myogenic transcription factors (MyoD and myogenin), respectively. Furthermore, APX demonstrated a similar action to insulin-like growth factor 1, influencing the proliferation of C2C12 myoblast cells (p < 0.01) and their differentiation into myotubes (p < 0.05) compared to the control group. Conclusion The present study provides experimental evidence that APX has muscle hypertrophic effects, and its underlying mechanisms would involve the modulation of MyoD and myogenin.
Collapse
Affiliation(s)
| | | | | | - Chang-Gue Son
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Li Q, Kong ZD, Wang H, Gu HH, Chen Z, Li SG, Chen YQ, Cai Y, Yang ZJ. Jianpi Decoction Combined with Medroxyprogesterone Acetate Alleviates Cancer Cachexia and Prevents Muscle Atrophy by Directly Inhibiting E3 Ubiquitin Ligase. Chin J Integr Med 2024; 30:499-506. [PMID: 37612478 DOI: 10.1007/s11655-023-3702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE To provide comprehensive evidence for the anti-cancer cachexia effect of Jianpi Decoction (JP) and to explore its mechanism of anti-cancer cachexia. METHODS A mouse model of colon cancer (CT26)-induced cancer cachexia (CC) was used to investigate the anti-CC effect of JP combined with medroxyprogesterone acetate (MPA). Thirty-six mice were equally divided into 6 groups: normal control, CC, MPA (100 mg•kg-1•d-1), MPA + low-dose (20 mg•kg-1•d-1) JP (L-JP), MPA + medium-dose (30 mg•kg-1•d-1) JP (M-JP), and MPA + high-dose (40 mg•kg-1•d-1) JP (H-JP) groups. After successful modeling, the mice were administered by gavage for 11 d. The body weight and tumor volume were measured and recorded every 2 d starting on the 8th day after implantation. The liver, heart, spleen, lung, kidney, tumor and gastrocnemius muscle of mice were collected and weighed. The pathological changes of the tumor was observed, and the cross-sectional area of the gastrocnemius muscle was calculated. The protein expressions of STAT3 and E3 ubiquitinase in the gastrocnemius muscle were measured by Western blot. In addition, an in vitro C2C12 myotube formation model was established to investigate the role of JP in hindering dexamethasone-induced muscle atrophy. In vitro experiments were divided into control, model, and JP serum groups. After 2-d administration, microscopic photographs were taken and myotube diameters were calculated. Western blot was performed to measure the protein expressions of STAT3 and E3 ubiquitinase. RESULTS JP combined with MPA restored tumor-induced weight loss (P<0.05, vs. CC) and muscle fiber size (P<0.01, vs. CC). Mechanistically, JP reduced the expression of atrophy-related proteins MuRF1 and MAFbx in tumor-induced muscle atrophy in vivo (P<0.05, vs. CC). In addition, JP reduced the expression of atrophy-related proteins MuRF1 and MAFbx and p-STAT3 phosphorylation (P<0.05 or P<0.01 vs. model group) in C2C12 myotubes treated with dexamethasone in vitro. CONCLUSIONS Administration of JP combined with MPA restores tumor-induced cachexia conditions. In addition, the profound effect of JP combined with MPA on tumor-induced cachexia may be due to its inhibition of muscle proteolysis (E3 ubiquitinase system).
Collapse
Affiliation(s)
- Qi Li
- Department of Oncology and Hematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, 518033, China
| | - Zhao-di Kong
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Huan Wang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hong-Hui Gu
- Department of Oncology and Hematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, 518033, China
| | - Zhong Chen
- Department of Oncology and Hematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, 518033, China
| | - Shi-Guang Li
- Department of Oncology and Hematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, 518033, China
| | - Yi-Qi Chen
- Department of Oncology and Hematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, 518033, China
| | - Yu Cai
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
- Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632, China
| | - Zhen-Jiang Yang
- Department of Oncology and Hematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, 518033, China.
| |
Collapse
|
10
|
Dawuti A, Ma L, An X, Guan J, Zhou C, He L, Xu Y, Han B, Abulizi A. Exploring the effect and mechanism of Aloin A against cancer cachexia-induced muscle atrophy via network pharmacology, molecular docking, molecular dynamics and experimental validation. Aging (Albany NY) 2023; 15:15557-15577. [PMID: 38180061 PMCID: PMC10781478 DOI: 10.18632/aging.205416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
80% of advanced cancer patients suffer from cachexia, but there are no FDA-approved drugs. Therefore, it is imperative to discover potential drugs. OBJECTIVE This study aims at exploring the effect and targets of Aloin A against cancer cachexia (CC)-induced muscle atrophy. METHODS Network pharmacology, molecular docking, molecular dynamics (MD) and animal model of CC-induced muscle atrophy with a series of behavior tests, muscle quality, HE staining and RT-PCR were performed to investigate the anticachectic effects and targets of Aloin A and its molecular mechanism. RESULTS Based on network pharmacology, 51 potential targets of Aloin A on CC-induced muscle atrophy were found, and then 10 hub genes were predicted by the PPI network. Next, KEGG and GO enrichment analysis showed that the anticachectic effect of Aloin A is associated with PI3K-AKT, MAPK, TNF, TLR, etc., pathways, and biological processes like inflammation, apoptosis and cell proliferation. Molecular docking and MD results showed good binding ability between the Aloin A and key targets. Moreover, experiments in vivo demonstrated that Aloin A effectively rescued muscle function and wasting by improving muscle quality, mean CSA, and distribution of muscle fibers by regulating HSP90AA1/AKT signaling in tumor-bearing mice. CONCLUSION This study offers new insights for researchers to understand the effect and mechanism of Aloin A against CC using network pharmacology, molecular docking, MD and experimental validation, and Aloin A retards CC-induced muscle wasting through multiple targets and pathways, including HSP90AA1/AKT signaling, which provides evidence for Aloin A as a potential therapy for cancer cachexia in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lisha Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xueyan An
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Changdong Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Linyun He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Han Y, Kim HI, Park J. The Role of Natural Products in the Improvement of Cancer-Associated Cachexia. Int J Mol Sci 2023; 24:ijms24108772. [PMID: 37240117 DOI: 10.3390/ijms24108772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The enormous library of natural products and herbal medicine prescriptions presents endless research avenues. However, the lack of research evidence and trials on cancer-induced cachexia limit the therapeutic potential of natural products. Cancer-induced cachexia is a systemic wasting syndrome characterized by continuous body weight loss with skeletal muscle and adipose tissue atrophy. Cancer cachexia is a problem in itself and reduces the quality of life by lessening the treatment efficacy of anticancer drugs. This review summarizes single natural product extracts for cancer-induced cachexia, not compounds derived from natural products and herbal medicine prescriptions. This article also discusses the effect of natural products on cachexia induced by anticancer drugs and the role of AMPK in cancer-induced cachexia. The article included the mice model used in each experiment to encourage researchers to utilize animal models for research on cancer-induced cachexia in the future.
Collapse
Affiliation(s)
- Yohan Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Preparation and anti-tumor activity of selenium nanoparticles based on a polysaccharide from Paeonia lactiflora. Int J Biol Macromol 2023; 232:123261. [PMID: 36649870 DOI: 10.1016/j.ijbiomac.2023.123261] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The combination of selenium and polysaccharides is one of the significant ways to ameliorate the anti-cancer effects of polysaccharides. PLP50-1, a homogeneous polysaccharide purified from the aqueous extract of Paeonia lactiflora, had a molecular weight of 1.52 × 104 Da and consisted of α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and →6)-β-D-Fruf-(2→. PLP50-1 showed weak anti-tumor effects against A549 cells. To ameliorate the activity of PLP50-1, the complex nanoparticles combining P. lactiflora polysaccharide with selenium were constructed successfully. Structural properties of the polysaccharide-based selenium nanoparticles (PLP-SeNPs) were clarified using various means. The results displayed that a kind of monodisperse spherical nanoparticles containing high selenium content (39.1 %) with controllable size was constructed and showed satisfactory stability. The cellular anti-tumor assay indicated that PLP-SeNPs had stronger antiproliferative activity against A549 cells than PLP50-1. Additionally, the zebrafish experiments displayed that PLP-SeNPs inhibited the proliferation and migration of A549 cells significantly and blocked the angiogenesis.
Collapse
|
13
|
Quercetin and Isorhamnetin Reduce Benzo[a]pyrene-Induced Genotoxicity by Inducing RAD51 Expression through Downregulation of miR-34a. Int J Mol Sci 2022; 23:ijms232113125. [PMID: 36361910 PMCID: PMC9653982 DOI: 10.3390/ijms232113125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023] Open
Abstract
Benzo[a]pyrene (B[a]P) is metabolized in the liver into highly reactive mutagenic and genotoxic metabolites, which induce carcinogenesis. The mutagenic factors, including B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) and reactive oxygen species, generated during B[a]P metabolism can cause DNA damage, such as BPDE-DNA adducts, 8-oxo-dG, and double-strand breaks (DSBs). In this study, we mechanistically investigated the effects of quercetin and its major metabolite isorhamnetin on the repair of B[a]P-induced DNA DSBs. Whole-transcriptome analysis showed that quercetin and isorhamnetin each modulate the expression levels of genes involved in DNA repair, especially those in homologous recombination. RAD51 was identified as a key gene whose expression level was decreased in B[a]P-treated cells and increased by quercetin or isorhamnetin treatment. Furthermore, the number of γH2AX foci induced by B[a]P was significantly decreased by quercetin or isorhamnetin, whereas RAD51 mRNA and protein levels were increased. Additionally, among the five microRNAs (miRs) known to downregulate RAD51, miR-34a level was significantly downregulated by quercetin or isorhamnetin. The protective effect of quercetin or isorhamnetin was lower in cells transfected with a miR-34a mimic than in non-transfected cells, and the B[a]P-induced DNA DSBs remained unrepaired. Our results show that quercetin and isorhamnetin each upregulates RAD51 by downregulating miR-34a and thereby suppresses B[a]P-induced DNA damage.
Collapse
|
14
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
15
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
16
|
Guo W, Yao X, Lan S, Zhang C, Li H, Chen Z, Yu L, Liu G, Lin Y, Liu S, Chen H. Metabolomics and integrated network pharmacology analysis reveal SNKAF decoction suppresses cell proliferation and induced cell apoptisis in hepatocellular carcinoma via PI3K/Akt/P53/FoxO signaling axis. Chin Med 2022; 17:76. [PMID: 35725485 PMCID: PMC9208213 DOI: 10.1186/s13020-022-00628-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND There is no comprehensive treatment method for hepatocellular carcinoma (HCC); hence, research and development are still focused on systemic therapies, including drugs. Sinikangai fang (SNKAF) decoction, a classic Chinese herbal prescription, has been widely used to treat liver cancer. However, there is no research on its core active component and target. METHODS Mouse models were established to measure the anticancer effect of SNKAF decoction on HCC. Further, we investigated the effect of SNKAF decoction on inhibition of hepatoma cells proliferation using cell viability, cloning and invasion assays in vitro. The components of SNKAF were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and TCM@Taiwan database. Metabolomic analysis was used to identify the potential genes and pathways in HCC treated with SNKAF decoction. Then, the expression of phosphoinositide 3-kinase (PI3K), Akt, P53, FoxO proteins of the potential signal pathways were detected using Western blot. RESULTS The animal experiments showed that SNKAF decoction inhibited tumor growth (P < 0.05) and induced no weight loss in the mice. In vitro data showed that HCCLM3 and MHCC97H cell proliferation was inhibited by SNKAF serum in a time- and concentration dependent manner. Further combined analysis network pharmacology with metabonomics showed that 217 target genes overlapped. The core target genes included BCL2, MCL1, Myc, PTEN, gsk3b, CASP9, CREB1, MDM2, pt53 and CCND1. Cancer-associated pathways were largely involved in SNKAF mechanisms, including P53, FoxO, and PI3K/Akt signaling pathways, which are closely related to induced-tumor cell apoptosis. In addition, Western bolt verified that 10% SNKAF serum significantly affected the main proteins of PI3K/Akt/P53/FoxO signaling pathway in both cell lines. CONCLUSION SNKAF decoction-containing serum inhibited HCCLM3 and MHCC97H cell proliferation, migration, invasion, and induced-tumor cell apoptosis in-vivo. We confirmed that SNKAF decoction is a promising alternative treatments for HCC patients.
Collapse
Affiliation(s)
- Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaohui Yao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Siyuan Lan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Chi Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hanhan Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zhuangzhong Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Ling Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guanxian Liu
- Department of Nephrology, Huizhou Municipal Central Hospital, Huizhou, 510006, Guangdong, People's Republic of China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Shan Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Hanrui Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Sim I, Jang J, Song J, Lee J, Lim H, Lee HJ, Hwang G, Kwon YV, Lee D, Yoon Y. Paeonia lactiflora extract improves the muscle function of mdx mice, an animal model of Duchenne muscular dystrophy, via downregulating the high mobility group box 1 protein. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115079. [PMID: 35149132 DOI: 10.1016/j.jep.2022.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. is an ethnopharmacological medicine with a long history of human use for treating various inflammatory diseases in many Asian countries. AIM OF THE STUDY Duchenne muscular dystrophy (DMD) is an X-linked degenerative muscle disease affecting 1 in 3500 males and is characterized by severe muscle inflammation and a progressive decline in muscle function. This study aimed to elucidate the effects of an ethanol extract of the root of Paeonia lactiflora Pall. (PL) on the muscle function in the muscular dystrophy X-linked (mdx) mouse, the most commonly used animal model of DMD. MATERIALS AND METHODS Male mdx mice and wild-type controls aged 5 weeks were orally treated with PL for 4 weeks. The corticosteroid prednisolone was used as a comparator drug. Muscle strength and motor coordination were assessed via the grip-strength and rotarod tests, respectively. Muscle damage was evaluated via histological examination and assessment of plasma creatine-kinase activity. Proteomic analyses were conducted to identify the muscle proteins whose levels were significantly affected by PL (ProteomeXchange identifier: PXD028886). Muscle and plasma levels of these proteins, and their corresponding mRNAs were measured using western blotting and ELISA, and quantitative reverse transcription-polymerase chain reaction, respectively. RESULTS The muscle strength and motor coordination of mdx mice were significantly increased by the oral treatment of PL. PL significantly reduced the histological muscle damage and plasma creatine-kinase activity. Proteomic analyses of the muscle showed that PL significantly downregulated the high mobility group box 1 (HMGB1) protein and Toll-like receptor (TLR) 4, thus suppressing the HMGB1-TLR4-NF-κB signaling, in the muscle of mdx mice. Consequently, the muscle levels of proinflammatory cytokines/chemokines, which play crucial roles in inflammation, were downregulated. CONCLUSION PL improves the muscle function and reduces the muscle damage in mdx mice via suppressing the HMGB1-TLR4-NF-κB signaling and downregulating proinflammatory cytokines/chemokines.
Collapse
Affiliation(s)
- Inae Sim
- Department of Microbiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jaewoong Jang
- Department of Microbiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jaewon Song
- Department of Microbiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jongkyu Lee
- Department of Microbiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Hyemi Lim
- Department of Microbiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Gyusik Hwang
- Research Center, EBIOGEN Inc., #405, Sungsu A1 Center, 48 Ttukseom-ro 17-ga-gil, Seongdong-gu, Seoul, 04785, Republic of Korea.
| | - Young V Kwon
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Bio-Synergy Research Center, 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| | - Yoosik Yoon
- Department of Microbiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Bio-Synergy Research Center, 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
18
|
Identification of a novel anticancer mechanism of Paeoniae Radix extracts based on systematic transcriptome analysis. Biomed Pharmacother 2022; 148:112748. [PMID: 35219117 DOI: 10.1016/j.biopha.2022.112748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Paeoniae Radix (PR) has a great therapeutic value in many clinical applications; however, the presence of various bioactive compounds and its complicated effects on human health makes its precise mechanisms of action unclear. This study investigated the effects of PR at the molecular pathway level by profiling genome-wide gene expression changes following dose-dependent treatment of human lung cancer cells (A549) with PR water extract (WPR), PR ethanol extracts (EPR), as well as their individual components. We found that PR exerts anticancer effects in A549 cells by regulating numerous pathways. Specifically, EPR and two compounds, namely, hederagenin (HG) and oleanolic acid (OA), significantly downregulate the Aurora B pathway. Furthermore, we generated an integrated PR extracts-compounds-target genes network in the Aurora B pathway to understand their interactions. Our findings reinforce that inhibiting Aurora kinase activity is a therapeutic target for treating cancers, providing the potential for novel mechanisms of action for PR and its components against lung cancer.
Collapse
|
19
|
Sun X, Chen L, Yan H, Cui L, Hussain H, Xie L, Liu J, Jiang Y, Meng Z, Cao G, Park J, Wang D. An efficient high-speed counter-current chromatography method for the preparative separation of potential antioxidant from Paeonia lactiflora Pall. combination of in vitro evaluation and molecular docking. J Sep Sci 2022; 45:1856-1865. [PMID: 35338696 DOI: 10.1002/jssc.202200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/10/2022]
Abstract
Paeonia lactiflora Pall., one of the most famous classical herbal medicine, has been used to treat diseases for over 1200 years. In this research, the functional ingredients were purified by online-switch two-dimensional high-speed counter-current chromatography combined with inner-recycling and continuous injection mode. The antioxidant activity was evaluated by investigating the 2,2'-azobis (2-amidinopropane) dihydrochloride-induced oxidant damage in vitro and confirmed through molecular docking. n-Butanol/ethyl acetate/water (2:3:5, v/v) solvent system was used for the first dimensional separation and optimized the sample loading. Two pure compounds and a polyphenol-enriched fraction were separated. The polyphenol-enriched fraction was separated with a solvent system n-hexane/ethyl acetate/methanol/water (2:8:4:6, v/v) with continuous injection mode. Five compounds were successfully separated, including gallic acid (1), methyl gallate (2), albiflorin (3), paeoniflorin (4), and ethyl gallate (5). Their structures were identified by mass spectrometry and nuclear magnetic resonance. The results from antioxidant effect showed that albiflorin had stronger antioxidant activity. Molecular docking results indicated that the affinity energy of the identified compounds ranged from -3.79 to -8.22 kcal/mol and albiflorin showed the lowest affinity energy. Overall, all those findings suggested that the strong antioxidant capacity of albiflorin can be potentially used for treatment of diseases that caused by oxidation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuan Sun
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China.,School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Long Chen
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Huijiao Yan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Li Cui
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Lei Xie
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Jie Liu
- Engineering Research Center for Medicines of Orthopedic Pain of Shandong Province, Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Yujuan Jiang
- Engineering Research Center for Medicines of Orthopedic Pain of Shandong Province, Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, China
| | - Jeonghill Park
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daijie Wang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
20
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Meng J, Cheng M, Liu L, Sun J, Condori-Apfata JA, Zhao D, Tao J. In-vitro antioxidant and in-vivo anti-aging with stress resistance on Caenorhabditis elegans of herbaceous peony stamen tea. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1967385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jiasong Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, P.R. China
| | - Menglin Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, P.R. China
| | - Lei Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, P.R. China
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, P.R. China
| | | | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, P.R. China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
22
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
23
|
Kim JH, Kim M, Hong S, Kim EY, Lee H, Jung HS, Sohn Y. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol 2021; 12:690113. [PMID: 34349649 PMCID: PMC8327266 DOI: 10.3389/fphar.2021.690113] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Fracture healing is related to osteogenic differentiation and mineralization. Recently, due to the unwanted side effects and clinical limitations of existing treatments, various natural product-based chemical studies have been actively conducted. Albiflorin is a major ingredient in Paeonia lactiflora, and this study investigated its ability to promote osteogenic differentiation and fracture healing. To demonstrate the effects of albiflorin on osteoblast differentiation and calcified nodules, alizarin red S staining and von Kossa staining were used in MC3T3-E1 cells. In addition, BMP-2/Smad and Wnt/β-catenin mechanisms known as osteoblast differentiation mechanisms were analyzed through RT-PCR and western blot. To investigate the effects of albiflorin on fracture healing, fractures were induced using a chainsaw in the femur of Sprague Dawley rats, and then albiflorin was intraperitoneally administered. After 1, 2, and 3 weeks, bone microstructure was analyzed using micro-CT. In addition, histological analysis was performed by staining the fractured tissue, and the expression of osteogenic markers in serum was measured. The results demonstrated that albiflorin promoted osteoblastogenesis and the expression of RUNX2 by activating BMP-2/Smad and Wnt/β-catenin signaling in MC3T3-E1 cells. In addition, albiflorin upregulated the expression of various osteogenic genes, such as alkaline phosphatase, OCN, bone sialoprotein, OPN, and OSN. In the femur fracture model, micro-CT analysis showed that albiflorin played a positive role in the formation of callus in the early stage of fracture recovery, and histological examination proved to induce the expression of osteogenic genes in femur tissue. In addition, the expression of bone-related genes in serum was also increased. This suggests that albiflorin promotes osteogenesis, bone calcification and bone formation, thereby promoting the healing of fractures in rats.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - SooYeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyangsook Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
24
|
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021; 12:252-273. [PMID: 33783983 PMCID: PMC8061402 DOI: 10.1002/jcsm.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is characterized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2 muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochondrial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of muscle function, other factors such as muscle-nerve interaction and calcium handling are probably involved in the decrease in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients, but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient's quality of life and health care systems.
Collapse
Affiliation(s)
- Agnès Martin
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| | - Damien Freyssenet
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| |
Collapse
|
25
|
LGK974 suppresses lipopolysaccharide-induced endotoxemia in mice by modulating the crosstalk between the Wnt/β-catenin and NF-κB pathways. Exp Mol Med 2021; 53:407-421. [PMID: 33692475 PMCID: PMC8080716 DOI: 10.1038/s12276-021-00577-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 01/31/2023] Open
Abstract
Endotoxemia, a type of sepsis caused by gram-negative bacterial endotoxin [i.e., lipopolysaccharide (LPS)], is associated with manifestations such as cytokine storm; failure of multiple organs, including the liver; and a high mortality rate. We investigated the effect and mechanism of action of LGK974, a Wnt signaling inhibitor, in mice with LPS-induced endotoxemia, an animal model of sepsis. LGK974 significantly and dose-dependently increased the survival rate and reduced plasma cytokine levels in mice with LPS-induced endotoxemia. Transcriptome analysis of liver tissues revealed significant changes in the expression of genes associated with the Wnt pathway as well as cytokine and NF-κB signaling during endotoxemia. LGK974 treatment suppressed the activation of NF-κB signaling and cytokine expression as well as the Wnt/β-catenin pathway in the livers of endotoxemic mice. Coimmunoprecipitation of phospho-IκB and β-transducin repeat-containing protein (β-TrCP) was increased in the livers of endotoxemic mice but was reduced by LGK974 treatment. Moreover, LGK974 treatment decreased the coimmunoprecipitation and colocalization of β-catenin and NF-κB, which were elevated in the livers of endotoxemic mice. Our results reveal crosstalk between the Wnt/β-catenin and NF-κB pathways via interactions between β-TrCP and phospho-IκB and between β-catenin and NF-κB during endotoxemia. The results of this study strongly suggest that the crosstalk between the Wnt/β-catenin and NF-κB pathways contributes to the mutual activation of these two pathways during endotoxemia, which results in amplified cytokine production, liver damage and death, and that LGK974 suppresses this vicious amplification cycle by reducing the crosstalk between these two pathways.
Collapse
|
26
|
Lee SB, Lee JS, Moon SO, Lee HD, Yoon YS, Son CG. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica, protects against muscle atrophy in a C26 colon cancer cachexia mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113470. [PMID: 33068652 DOI: 10.1016/j.jep.2020.113470] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus (Fisch.) and Bunge and Paeonia japonica (Makino)Miyabe & H.Takeda have been traditionally used to improve the poor quality of life such as weakness, lack of appetite, fatigue, and malaise which is considered with cachexia condition. AIM OF THE STUDY We investigated anti-cachectic effects of a herbal formula composed of Astragalus membranaceus and Paeonia japonica (APX) and the molecular mechanisms of APX in C26 cancer-induced cachexia mice and TNF-a-treated C2C12 myotubes. Additionally synergistic anti-cachectic effects of APX were compared to those of individual herbal extracts and megestrol acetate. METHODS AND MATERIALS The forty-two BALB/c mice were randomly divided into 6 groups: normal (nontreatment), control (C26 injection), AM (C26 injection with Astragalus membranaceus), PJ (C26 injection with Paeonia japonica), APX (C26 injection with combination of Astragalus membranaceus and Paeonia japonica and MA (C26 injection with megestrol acetate). All mice were orally administered DW (normal and control groups) or 100 mg/kg AM, PJ, APX or MA for 10 days. In the animal model, several tissues were weighed, and muscle tissue and blood were used to measure pro-inflammatory cytokines. C2C12 myotubes were exposed to 100 ng/mL TNF- α with or without 10 μg/mL of AM, PJ, APX or MA for 48 h. The cells were used to immunofluorescence staining and western blot analyses. RESULTS C26 injection induced notable body and muscle weight loss while APX administration significantly attenuated these alterations and the decrease of muscle weights and strength. APX also significantly attenuated the abnormal elevations in the concentration of three muscle atrophy-inducible cytokines; serum and muscle TNF-α,muscle TWEAK and IL-6 in C26 tumor-bearing mice. In the TNF-α-treated C2C12 myotube model, TNF-α treatment notably decreased MyH but activated atrophic proteins (MuRF and Fbx32) along with p38 and NFκB while these molecular alterations were significantly ameliorated by APX treatment. These pharmacological actions of APX were supported by the results of immunofluorescence staining to MyH expression and the translocation of NFκB into the nucleus in C2C12 myotubes. CONCLUSIONS Our data indicate the potential of an herbal formula, APX as an anti-cachexia agent; the effect of APX was superior to that of megestrol acetate overall especially for muscle atrophy. The underlying mechanisms of this herbal formula may involve the modulation of muscle atrophy-promoting molecules including p38, NFκB, TNF-α and TWEAK.
Collapse
Affiliation(s)
- Sung-Bae Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon University, Daejeon, 35235, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon University, Daejeon, 35235, Republic of Korea
| | - Sung-Ok Moon
- National Institute for Korean Medicine Development, Gyeongsan-si, 38540, Republic of Korea
| | - Hwa-Dong Lee
- National Institute for Korean Medicine Development, Gyeongsan-si, 38540, Republic of Korea
| | - Yoo-Sik Yoon
- Department of Microbiology, ChungAng University College of Medicine, Seoul, 06974, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon University, Daejeon, 35235, Republic of Korea.
| |
Collapse
|
27
|
Jang J, Lee H, Song J, Bae T, Park M, Kwon YV, Lee D, Yoon Y. Paeonia lactiflora extract suppresses cisplatin-induced muscle wasting via downregulation of muscle-specific ubiquitin E3 ligases, NF-κB signaling, and cytokine levels. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113403. [PMID: 32971160 DOI: 10.1016/j.jep.2020.113403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried root of Paeonia lactiflora Pall. (Radix Paeoniae) has been traditionally used to treat various inflammatory diseases in many Asian countries. AIM OF THE STUDY Cisplatin is a broad-spectrum anticancer drug used in diverse types of cancer. However, muscle wasting is a common side effect of cisplatin chemotherapy. This study aimed to elucidate the effects of an ethanol extract of the root of Paeonia lactiflora Pall. (Radix Paeoniae, RP) on cisplatin-induced muscle wasting along with its molecular mechanism. MATERIAL AND METHODS C57BL/6 mice were intraperitoneally injected with cisplatin and orally treated with RP. Megestrol acetate was used as a comparator drug. Skeletal muscle mass was measured as the weight of gastrocnemius and quadriceps muscles, and skeletal muscle function was measured by treadmill running time and grip strength. Skeletal muscle tissues were analyzed by RNAseq, western blotting, ELISA, and immunofluorescence microscopy. RESULTS In mice treated with cisplatin, skeletal muscle mass and skeletal muscle function were significantly reduced. However, oral administration of RP significantly restored skeletal muscle mass and function in the cisplatin-treated mice. In the skeletal muscle tissues of the cisplatin-treated mice, RP downregulated NF-κB signaling and cytokine levels. RP also downregulated muscle-specific ubiquitin E3 ligases, resulting in the restoration of myosin heavy chain (MyHC) and myoblast determination protein (MyoD), which play crucial roles in muscle contraction and muscle differentiation, respectively. CONCLUSION RP restored skeletal muscle function and mass in cisplatin-treated mice by restoring the muscle levels of MyHC and MyoD proteins via downregulation of muscle-specific ubiquitin E3 ligases as well as muscle NF-κB signaling and cytokine levels.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Hyunji Lee
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jaewon Song
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Taehyun Bae
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Minwoo Park
- Research Center, EBIOGEN Inc., 25 Seonyuro 13-gil, Seoul, 07282, Republic of Korea.
| | - Young V Kwon
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Bio-Synergy Research Center, 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| | - Yoosik Yoon
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Bio-Synergy Research Center, 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
28
|
MC38 Tumors Induce Musculoskeletal Defects in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031486. [PMID: 33540821 PMCID: PMC7867345 DOI: 10.3390/ijms22031486] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death, and the prevalence of CRC in young adults is on the rise, making this a largescale clinical concern. Advanced CRC patients often present with liver metastases (LM) and an increased incidence of cachexia, i.e., musculoskeletal wasting. Despite its high incidence in CRC patients, cachexia remains an unresolved issue, and animal models for the study of CRC cachexia, in particular, metastatic CRC cachexia, remain limited; therefore, we aimed to establish a new model of metastatic CRC cachexia. C57BL/6 male mice (8 weeks old) were subcutaneously (MC38) or intrasplenically injected (mMC38) with MC38 murine CRC cells to disseminate LM, while experimental controls received saline (n = 5-8/group). The growth of subcutaneous MC38 tumors was accompanied by a reduction in skeletal muscle mass (-16%; quadriceps muscle), plantarflexion force (-22%) and extensor digitorum longus (EDL) contractility (-20%) compared to experimental controls. Meanwhile, the formation of MC38 LM (mMC38) led to heighted reductions in skeletal muscle mass (-30%; quadriceps), plantarflexion force (-28%) and EDL contractility (-35%) compared to sham-operated controls, suggesting exacerbated cachexia associated with LM. Moreover, both MC38 and mMC38 tumor hosts demonstrated a marked loss of bone indicated by reductions in trabecular (Tb.BV/TV: -49% in MC38, and -46% in mMC38) and cortical (C.BV/TV: -12% in MC38, and -8% in mMC38) bone. Cell culture experiments revealed that MC38 tumor-derived factors directly promote myotube wasting (-18%) and STAT3 phosphorylation (+5-fold), while the pharmacologic blockade of STAT3 signaling was sufficient to preserve myotube atrophy in the presence of MC38 cells (+21%). Overall, these results reinforce the notion that the formation of LM heightens cachexia in an experimental model of CRC.
Collapse
|
29
|
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q, Gao W. Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 2020; 22:4967-4980. [PMID: 33174001 PMCID: PMC7646947 DOI: 10.3892/mmr.2020.11608] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a severe clinical problem involving the loss of muscle mass and strength that frequently accompanies the development of numerous types of cancer, including pancreatic, lung and gastric cancers. Cancer cachexia is a multifactorial syndrome characterized by a continuous decline in skeletal muscle mass that cannot be reversed by conventional nutritional therapy. The pathophysiological characteristic of cancer cachexia is a negative protein and energy balance caused by a combination of factors, including reduced food intake and metabolic abnormalities. Numerous necessary cellular processes are disrupted by the presence of abnormal metabolites, which mediate several intracellular signaling pathways and result in the net loss of cytoplasm and organelles in atrophic skeletal muscle during various states of cancer cachexia. Currently, the clinical morbidity and mortality rates of patients with cancer cachexia are high. Once a patient enters the cachexia phase, the consequences are difficult to reverse and the treatment methods for cancer cachexia are very limited. The present review aimed to summarize the recent discoveries regarding the pathogenesis of cancer cachexia-induced muscle atrophy and provided novel ideas for the comprehensive treatment to improve the prognosis of affected patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Hui Wu
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuqing Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zhiyin Du
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuanbo Ling
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Weizhuo Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qian Wu
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
30
|
Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, Fu Q, Jiang M, Fu C, He Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112913. [PMID: 32371143 DOI: 10.1016/j.jep.2020.112913] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Alba (PRA, called baishao in China), the root of Paeonia lactiflora Pall., has shown a rich medicinal value for more than 2000 years. PRA is used in local medicine and traditional medicine for autoimmune diseases associated with inflammation. At present, total glucosides of paeony (TGP), the main active ingredient of PRA, has been developed into a preparation for the treatment of autoimmune diseases, as TGP exhibits the effect of regulating immunity, anti-inflammatory, and analgesic effects. AIM OF THE REVIEW TGP was developed and applied to inflammation-related autoimmune diseases in modern clinical practice. Based on its application in traditional prescriptions, this article reviews PRA's botany and phytochemistry (including its extraction process and quality control), and discusses the clinical application and pharmacological research of TGP as an anti-inflammatory drug from the perspective of ethnopharmacology. Additionally, we review modern pharmacological and molecular-target research on TGP and discuss the mechanisms of TGP in treating autoimmune diseases. Through a systematic literature review, we also highlight the clinical efficacy of TGP in the treatment of immune diseases, and provide a reference for the continued scientific development and quality control of TGP so that its wider application and clinical value can be fully realized. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Total glucosides of paeony", "Paeonia lactiflora Pall. ", "Paeonia veitchii Lynch", "Paeoniae Radix Alba or white peony", "Paeoniae Radix Rubra or red peony", "Paeoniflorin", "Albiflorin", "Autoimmune diseases", and their combinations. In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS Approximately 15 compounds have been identified in TGP, of which paeoniflorin and albiflorin are the most common constituents. In recent years, studies have found that TGP and its main chemical components are effective in the treatment of autoimmune diseases, such as rheumatoid arthritis, psoriasis, oral lichen planus, and Sjogren's syndrome. TGP has a variety of pharmacological effects related to PRA traditional effects, including anti-organ-damage, anti-inflammatory, analgesic, antioxidant, cardiovascular, and nervous-system protection. Previously published reports on TGP treatment of autoimmune diseases have shown that TGP regulates intracellular pathways, such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathways. However, there is no standardized preparation method for TGP, and there is insufficient quality control of formulations. Many related pharmacological studies have not tested TGP components, and the validity of such pharmacological results requires further verification. CONCLUSIONS Modern pharmacological research on TGP is based on the traditional usage of PRA, and its folk medicinal value in the treatment of autoimmune diseases has now been verified. In particular, TGP has been developed into a formulation used clinically for the treatment of autoimmune diseases. The combination of TGP capsules and chemicals to treat autoimmune diseases has the effect of increasing efficacy and reducing toxicity. Based on further research on its preparation, quality control, and mechanisms of action, TGP is expected to eventually play a greater role in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Huajuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Jie Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Lin Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Shengju Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Xin Nie
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yi Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Qiang Fu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Maoyuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Chaomei Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yao He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| |
Collapse
|
31
|
Xu T, Wang Q, Liu M. A Network Pharmacology Approach to Explore the Potential Mechanisms of Huangqin-Baishao Herb Pair in Treatment of Cancer. Med Sci Monit 2020; 26:e923199. [PMID: 32609659 PMCID: PMC7346753 DOI: 10.12659/msm.923199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study was to identify the bioactive ingredients of Huangqin-Baishao herb pair and to reveal its anti-cancer mechanisms through a pharmacology approach. MATERIAL AND METHODS Detailed information on compounds in the HQ-BS herb pair was obtained from the Traditional Chinese medicine systems pharmacology (TCMSP) and screened by the criteria of OB ≥30% and DL ≥0.18. A systematic drug targeting model (SysDT) was used for compound targets prediction, and then the targets were analyzed for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) network of HQ-BS targets was constructed, after identifying core networks through Cytoscape plugins. RESULTS We found 47 bioactive compounds of HQ-BS and 107 human-derived targets. A compound target network and a target signal pathway network were constructed and used for topological analysis. Kaempferol, beta-sitosterol, stigmasterol, wogonin, and oroxylin-a were identified as core compounds and pathways in cancer. The calcium signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, chemical carcinogenesis, estrogen signaling pathway, proteoglycans in cancer, HIF-1 signaling pathway, thyroid hormone signaling pathway, VEGF signaling pathway, small cell lung cancer, prostate cancer, colorectal cancer, NOD-like receptor signaling pathway, and T cell receptor signaling pathway were found to be potential signals of HQ-BS in treating cancer. Through PPI network analysis, TNF signaling pathway, tryptophan metabolism, proteoglycans in cancer, cell cycle, and chemical carcinogenesis sub-networks were obtained. CONCLUSIONS HQ-BS contains various bioactive compounds, including flavonoids, phytosterols, and other compounds, and these compounds can inhibit or activate multiple targets and pathways against cancer.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
32
|
Miyano K, Ohshima K, Suzuki N, Furuya S, Yoshida Y, Nonaka M, Higami Y, Yoshizawa K, Fujii H, Uezono Y. Japanese Herbal Medicine Ninjinyoeito Mediates Its Orexigenic Properties Partially by Activating Orexin 1 Receptors. Front Nutr 2020; 7:5. [PMID: 32175325 PMCID: PMC7056666 DOI: 10.3389/fnut.2020.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is highly prevalent in patients with progressive cancer and is characterized by decreased food consumption, and body weight. Japanese herbal medicine Ninjinyoeito (NYT), composed of 12 herbal crude drugs, is prescribed in Asian countries to improve several symptoms such as anorexia and fatigue, which are commonly observed in patients with cancer cachexia. However, the action mechanisms of NYT in improving anorexia or fatigue in patients with cancer are not clear. Therefore, in the present study, we examined the effects of NYT on the activities of several G-protein-coupled receptors (GPCRs), which activate hyperphagia signaling in the central nervous system, using an in vitro assay with the CellKey™ system, which detects the activation of GPCRs as a change in intracellular impedance (ΔZ). NYT increased the ΔZ of human embryonic kidney 293 (HEK293) cells expressing orexin 1 receptor (OX1R) and those expressing neuropeptide Y1 receptor (NPY1R) in a dose-dependent manner. On the contrary, NYT did not significantly increase the ΔZ of HEK293A cells expressing growth hormone secretagogue receptor (GHSR) and those expressing NPY5R. The selective OX1R antagonist SB674042 significantly decreased the NYT-induced increase in ΔZ in OX1R-expressing cells. Contrarily, the selective NPY1R antagonist BIBO3340 failed to inhibit the NPY-induced increase in ΔZ in NPY1R-expressing cells. Additionally, we prepared modified NYT excluding each one of the 12 herbal crude drugs in NYT and investigated the effects on the activity of OX1R. Among the 12 modified NYT formulations, the one without citrus unshiu peel failed to activate OX1R. A screening of each of the 12 herbal crude drugs showed that citrus unshiu peel significantly activated OX1R, which was significantly suppressed by SB674042. These finding suggest that NYT and citrus unshiu peel could increase food intake via activation of orexigenic OX1R-expressing neurons in the hypothalamus. This study provides scientific evidence to support the potential of NYT for cancer patients with anorexia.
Collapse
Affiliation(s)
- Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kaori Ohshima
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nozomi Suzuki
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Saho Furuya
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yuki Yoshida
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miki Nonaka
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hideaki Fujii
- Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Supportive Care Research, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, Tokyo, Japan.,Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|