1
|
Mutlu Özçınar B, Özükoç C, Türkmen E, Çakır R. Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDSCs), and periodontal ligament stem cells (PDLSCs) isolation, characterization and the effectiveness of allantoin as bioactive molecule for dental regeneration. J Dent 2025; 154:105604. [PMID: 39904472 DOI: 10.1016/j.jdent.2025.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION Dental stem cells are valuable tools in regenerative medicine due to their pluripotency and self-renewal properties. This study aimed to investigate the effects of allantoin (Al) on Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDSCs), and periodontal ligament stem cells (PDLSCs) regarding cytotoxicity, proliferation, wound healing, and osteogenic differentiation. METHODS Human dental stem cells were isolated from three dental tissues using the explant culture method and cultured in DMEM-F12 medium supplemented with 15 % fetal bovine serum (FBS) and antibiotics. The cytotoxicity and proliferation of allantoin were assessed using the XTT cell viability assay at concentrations ranging from 0.25 to 5 mg/mL. Wound healing was evaluated through a scratch assay at 1 mg/mL, and osteogenic differentiation was assessed using Alizarin Red S staining at 0.5 mg/mL and 1 mg/mL. RESULTS Al exhibited no cytotoxic effects across the tested concentrations. It enhanced cell proliferation, particularly in SHEDSCs at 5 mg/mL. DPSCs also showed significant improvement in wound healing in the scratch assay. At 1 mg/mL, Al inhibited osteogenic differentiation in DPSCs and PDLSCs, as indicated by reduced mineralization. CONCLUSION Al shows potential as a non-cytotoxic agent for enhancing the proliferation of dental stem cells, especially SHEDSCs. However, its limited effect on wound healing of SHEDSCs and PDLSCs and inhibition of osteogenic differentiation at higher concentrations suggest that further optimization is required for its application in bone regeneration. STATEMENT OF CLINICAL RELEVANCE Evaluation of the effects of plant-based therapeutic compounds on various types of dental stem cells may have the potential to increase the success of stem cell-based therapies in clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Betül Mutlu Özçınar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey.
| | - Can Özükoç
- Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| | - Emrah Türkmen
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| | - Rabia Çakır
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
2
|
Hu J, Liang R, Li M, Zhang X, Li M, Qu H, Wang Z. Differentiation of human umbilical cord mesenchymal stem cells into functional intestinal epithelial cells via conditioned medium co-culture. Gene 2025; 934:149008. [PMID: 39427828 DOI: 10.1016/j.gene.2024.149008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The induction of stem cell differentiation to generate intestinal epithelial cells (IECs) with absorptive functions offers significant therapeutic potential for treating conditions such as Crohn's disease, ulcerative colitis, radiation enteritis, and other refractory intestinal epithelial injuries. Human umbilical cord mesenchymal stem cells (hUC-MSCs) are capable of differentiating into functional IEC-like cells. OBJECTIVE This study aimed to induce the differentiation of hUC-MSCs into IECs using a conditioned medium co-culture method. METHOD A culture medium derived from human IECs was used as the inductive medium to facilitate the differentiation of hUC-MSCs into IECs. The cellular morphology was assessed using inverted microscopy, and the expression of IEC markers, including Villin, CK20, CK8, and CK18 proteins, was analyzed via immunofluorescence staining. Furthermore, the expression levels of IEC markers, such as KRT18, were quantified using real-time quantitative PCR analysis. The functionality of the differentiated IECs in terms of sucrase secretion was assessed through sucrase activity assays. RESULTS By the 14th day of induction, hUC-MSCs exhibited a morphology similar to IECs and exhibited the expression of IEC markers, including the KRT18 gene and Villin, CK20, CK8, and CK18 proteins. Sucrase activity assays further confirmed that the differentiated cells demonstrated significant sucrase activity. CONCLUSION The conditioned medium co-culture method effectively induced the differentiation of hUC-MSCs into functional IECs.
Collapse
Affiliation(s)
- Jiale Hu
- Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Rui Liang
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Man Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Xianglian Zhang
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Menglong Li
- Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Huaidong Qu
- Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiqiang Wang
- Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
3
|
Heinämäki J, Koshovyi O, Botsula I, Shpychak A, Vo HQ, Nguyen HT, Raal A. Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives. J Tissue Eng Regen Med 2025; 2025:2812191. [PMID: 40224956 PMCID: PMC11985229 DOI: 10.1155/term/2812191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025]
Abstract
Bone defects are becoming a true challenge in global health care due to the aging population and higher prevalence of musculoskeletal disorders. The interest in using plant-origin compounds and plant-derived biomaterials in bone tissue engineering (BTE) has been increased due to their availability (abundance), safety, biocompatibility, biodegradability, and low cost. Plant-origin compounds have supportive effects on bone tissue healing, and cell-laden plant-derived biomaterials can be applied in formulating bioinks for three-dimensional (3D) bioprinting to facilitate the preparation of native bone tissue-mimicking structures and customized bone scaffolds. Such plant-derived materials also have the capacity to improve cell viability and support osteoconductive and osteoinductive properties of a bone construct. In this article, we review the ethnomedical aspects related to the use of medicinal plants and plant-origin bioactive compounds in bone healing and the recent developments in the 3D bioprinting of bone constructs with plant-derived biomaterials for advancing BTE. The commonly used 3D-bioprinting techniques, the properties of plant-origin compounds and biomaterials (for bone 3D bioprinting), and the selective examples of bone scaffolds fabricated using plant-derived biomaterials are discussed with a special reference set on applicability, performance, advantages, limitations, and challenges. Plant-origin compounds, biomaterials, and biomimetic 3D-bioprinted constructs could be the basis for a next-generation BTE.
Collapse
Affiliation(s)
- Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Iryna Botsula
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Alina Shpychak
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Hung Quoc Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Wang X, Zhang C, Zhao G, Yang K, Tao L. Obesity and lipid metabolism in the development of osteoporosis (Review). Int J Mol Med 2024; 54:61. [PMID: 38818830 PMCID: PMC11188977 DOI: 10.3892/ijmm.2024.5385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
Osteoporosis is a common bone metabolic disease that causes a heavy social burden and seriously threatens life. Improving osteogenic capacity is necessary to correct bone mass loss in the treatment of osteoporosis. Osteoblasts are derived from the differentiation of bone marrow mesenchymal stem cells, a process that opposes adipogenic differentiation. The peroxisome proliferator‑activated receptor γ and Wnt/β‑catenin signaling pathways mediate the mutual regulation of osteogenesis and adipogenesis. Lipid substances play an important role in the occurrence and development of osteoporosis. The content and proportion of lipids modulate the activity of immunocytes, mainly macrophages, and the secretion of inflammatory factors, such as IL‑1, IL‑6 and TNF‑α. These inflammatory effectors increase the activity and promote the differentiation of osteoclasts, which leads to bone imbalance and stronger bone resorption. Obesity also decreases the activity of antioxidases and leads to oxidative stress, thereby inhibiting osteogenesis. The present review starts by examining the bidirectional differentiation of BM‑MSCs, describes in detail the mechanism by which lipids affect bone metabolism, and discusses the regulatory role of inflammation and oxidative stress in this process. The review concludes that a reasonable adjustment of the content and proportion of lipids, and the alleviation of inflammatory storms and oxidative damage induced by lipid imbalances, will improve bone mass and treat osteoporosis.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Zhao
- Department of Orthopedics, Fourth Hospital of China Medical University, Shenyang, Liaoning 110165, P.R. China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
5
|
Deepika BK, Apoorva NH, Joel PR, B B, Sudheer SP. Enhanced osteogenic differentiation potential of Arnica montana and Bellis perennis in C3H10T1/2 multipotent mesenchymal stem cells. Mol Biol Rep 2024; 51:596. [PMID: 38683461 DOI: 10.1007/s11033-024-09509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Arnica montana and Bellis perennis are two medicinal plants that are thought to accelerate bone repair in homoeopathic literature. Mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate and regenerate bone or osteogenesis. Hence, we aimed to determine the role of Arnica montana and Bellis perennis on the osteogenic differentiation of the C3H10T1/2 stem cell line. METHODS AND RESULTS The cell proliferation of Arnica montana and Bellis perennis was evaluated by MTT assay. Osteogenic differentiation of C3H10T1/2 was induced by the addition of β-glycerophosphate, ascorbic acid and dexamethasone in the differentiation medium over 3 weeks. Cells were treated with Arnica montana and Bellis perennis individually as well as in combination. The osteogenic differentiation potential of Arnica montana and Bellis perennis to differentiate C3H10T1/2 into osteoblasts was measured by alkaline phosphatase activity, alizarin red staining and the expression of Osteocalcin using immunostaining and qRT-PCR. Arnica montana and Bellis perennis could enhance C3H10T1/2 cell proliferation at 1600 µg. Further, the compound showed the ability to augment osteogenesis as confirmed by increased expression of alkaline phosphatase and enhanced calcium accumulation as seen by the Alizarin Red staining and quantification. Enhanced osteogenesis was further supported by the increased expression of osteocalcin in the treated cells with individual and combined doses of Arnica montana and Bellis perennis. Therefore, the findings provide additional support for the positive impact of Arnica montana and Bellis perennis on bone formation. CONCLUSIONS Our findings suggest that homoeopathic compounds Arnica montana and Bellis perennis can augment osteogenesis individually as well as in combination.
Collapse
Affiliation(s)
- Bhat K Deepika
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to Be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Nagendra H Apoorva
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to Be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Pinto R Joel
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to Be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha B
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to Be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Shenoy P Sudheer
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to Be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
6
|
Kumari P, Shirumalla RK, Bhalla V, Alam MS. New Emerging Aspect of Herbal Extracts for the Treatment of Osteoporosis: Overview. Curr Rheumatol Rev 2024; 20:361-372. [PMID: 38173067 DOI: 10.2174/0115733971273691231121131455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/05/2024]
Abstract
As the global population ages, osteoporosis is becoming a more common silent disease. Osteoporosis is characterized by decreased bone quality and strength, which increases the risk of fragility fractures in the elderly. According to estimates, 50% of women eventually suffer from an osteoporotic fracture. Due to increasing disability, more frequent hospital hospitalizations, and most critically, fragility fractures have been linked to a reduced quality of life. Osteoporotic fractures have been linked to an increased mortality risk; and must be considered in awareness as a serious health concern. There are anti-osteoporotic medications available that improve bone quality. Considering the availability of various treatment options, still there are a lot of underserved needs in the treatment of fractures and osteoporosis. For example, the application of natural products and herbal resources for fracture healing, because of the androgen-like and antioxidant characteristics of the plants, they can play a crucial for accelerating the repair of bone fractures. In this article, we'll discuss the herbal remedies that are essential for treating osteoporosis (bone disease).
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Pharmacology, SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| | - Raj K Shirumalla
- Department of Pharmacology, SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| | - Vijay Bhalla
- SGT College of Pharmacy, Department of Pharmacology, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| | - Md Sabir Alam
- Department of Pharmaceutics, SGT College of Pharmacy, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| |
Collapse
|
7
|
Mahmoudzadeh E, Nazemiyeh H, Hamedeyazdan S. Anti-inflammatory Properties of the Genus Symphytum L.: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123949. [PMID: 36060906 PMCID: PMC9420230 DOI: 10.5812/ijpr.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
: The Symphytum genus has been mainly used in traditional medicine, containing its anti-inflammatory activity. Symphytum spp.’s active components, such as allantoin, polyphenols, flavonoids, and alkaloids, can act on several intentions in the signaling pathway, constrain pro-inflammatory enzymes, reducing the construction of inflammatory chemokine’s and cytokines, and decreasing oxidative stress, which afterward suppresses inflammation procedures. Preclinical and clinical trials have reported the prevailing anti-inflammatory effect of several Symphytum species. This review presents an overview of the anti-inflammatory activities of different products and bioactive constituents in this genus. The papers with the English language were gathered from 2000 to 2021. This review may provide a scientific base for establishing innovative and alternative techniques for isolating a single individual from this genus to attenuate inflammatory disorders. The Symphytum genus is waiting for researchers to develop safe and effective anti-inflammatory agents for additional investigation of other different mechanisms of action.
Collapse
Affiliation(s)
- Elaheh Mahmoudzadeh
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding Author: Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Glutamate Uptake Is Not Impaired by Hypoxia in a Culture Model of Human Fetal Neural Stem Cell-Derived Astrocytes. Genes (Basel) 2022; 13:genes13030506. [PMID: 35328060 PMCID: PMC8953426 DOI: 10.3390/genes13030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various neural cells in the development of glutamate excitotoxicity in humans, is not fully understood. In this study, we developed a culture model of human fetal neural stem cell (FNSC)-derived astrocytes and examined their glutamate uptake in response to hypoxia. We isolated, established, and characterized cultures of FNSCs from aborted fetal brains and differentiated them into astrocytes, characterized by increased expression of the astrocyte markers glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1) and EAAT2, and decreased expression of neural stem cell marker Nestin. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2%, respectively). Interestingly, no change was observed in the expression of the glutamate transporter EAAT2 or glutamate uptake by astrocytes, even after exposure to severe hypoxia for 48 h. These results together suggest that human FNSC-derived astrocytes can maintain glutamate uptake after hypoxic injury and thus provide evidence for the possible neuroprotective role of astrocytes in hypoxic conditions.
Collapse
|
9
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|
10
|
Ali A, Li Y, Arockiam Jeyasundar PGS, Azeem M, Su J, Wahid F, Mahar A, Shah MZ, Li R, Zhang Z. Streptomyces pactum and Bacillus consortium influenced the bioavailability of toxic metals, soil health, and growth attributes of Symphytum officinale in smelter/mining polluted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118237. [PMID: 34592330 DOI: 10.1016/j.envpol.2021.118237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Soil microbes influence the uptake of toxic metals (TMs) by changing soil characteristics, bioavailability and translocation of TMs, and soil health indicators in polluted environment. The potential effect of Streptomyces pactum (Act12) and Bacillus consortium (B. subtilis and B. licheniformis; 1:1) on soil enzymes and bacterial abundance, bioavailability and translocation of Zn and Cd by Symphytum officinale, and physiological indicators in soil acquired from Fengxian (FX) mining site. Act12 and Bacillus consortium were applied at 0 (CK), 0.50 (T1), 1.50 (T2), and 2.50 (T3) g kg-1 in a split plot design and three times harvested (H). Results showed that soil pH significantly dropped, whereas, electrical conductivity increased at higher Act12 and Bacillus doses. The extractable Zn lowered and Cd increased at each harvest compared to their controls. Soil β-glucosidase, alkaline phosphatase, urease and sucrase improved, whereas, dehydrogenase reduced in harvest 2 and 3 (H2 and H3) as compared to harvest 1 (H1) after Act12 and Bacillus treatments. The main soil phyla individually contributed ∼5-55.6%. Soil bacterial communities' distribution was also altered by Act12 and Bacillus amendments. Proteobacteria, Acidobacteria, and Bacteroidetes increased, whereas, the Actinobacteria, Chloroflexi, and Gemmatimonadetes decreased during the one-year trial. The Zn and Cd concentration significantly decreased in shoots at each harvest, whereas, the roots concentration was far higher than the shoots, implicating the rhizoremediation by S. officinale. Accumulation factor (AF) and bioconcentration ratio (BCR) of Zn and Cd in shoots were lower and remained higher in case of roots than the standard level (≥1). BCR values of roots indicated that S. officinale can be used for rhizoremediation of TMs in smelter/mines-polluted soils. Thus, field trials in smelter/mines contaminated soils and the potential role of saponin and tannin exudation in metal translocation by plant will broaden our understanding about the mechanism of rhizoremediation of TMs by S. officinale.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, Swabi, 23340, Pakistan
| | - Amanullah Mahar
- Centre for Environmental Sciences, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muhammad Zahir Shah
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Agarwal T, Tan SA, Onesto V, Law JX, Agrawal G, Pal S, Lim WL, Sharifi E, Moghaddam FD, Maiti TK. Engineered herbal scaffolds for tissue repair and regeneration: Recent trends and technologies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Carbohydr Polym 2021; 269:118351. [PMID: 34294355 DOI: 10.1016/j.carbpol.2021.118351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/27/2021] [Accepted: 06/13/2021] [Indexed: 01/18/2023]
Abstract
Here, we fabricated the platelet-rich fibrin (PRF)-loaded PCL/chitosan (PCL/CS-PRF) core-shell nanofibrous scaffold through a coaxial electrospinning method. Our goal was to evaluate the effect of CS-RPF in the core layer of the nanofibrous on the osteogenic differentiation of human mesenchymal stem cells (HMSCs). The elastic modulus of PCL/CS-PRF core-shell scaffold (44 MPa) was about 1.5-fold of PCL/CS scaffold (25 MPa). The specific surface area of the scaffolds increased from 9.98 m2/g for PCL/CS scaffold to 16.66 m2/g for the PCL/CS-PRF core-shell nanofibrous scaffold. Moreover, the release rate of PRF from PCL/CS-PRF nanofibrous scaffold was measured to be 24.50% after 10 days which showed slow and sustained release of PRF from the nanofibrous. The formation of Ca-P on the surface of scaffold immersed in simulated body fluid solution indicated the suitable osteoconductivity of PCL/CS-PRF core-shell nanofibrous scaffold. Also, the value of ALP activity and calcium deposited on the surface of PCL/CS-PRF core-shell nanofibrous scaffold were 81.97 U/L and 40.33 μg/scaffold, respectively after 14 days, which confirmed the significantly higher amounts of ALP and calcium deposition on the scaffold containing PRF compared to PCL/CS scaffold. Due to higher hydrophilicity and porosity of PCL/CS-PRF core-shell nanofibrous scaffold compared to PCL/CS scaffold, a better bone cell growth on surface of PCL/CS-PRF scaffold was observed. The Alizarin red-positive area was significantly higher on PCL/CS-PRF scaffold compared to PCL/CS scaffold, indicating more calcium deposition and osteogenic differentiation of HMSCs in the presence of PRF. Our findings demonstrate that PCL/CS-PRF core-shell scaffolds can provide a strong construct with improved osteogenic for bone tissue engineering applications.
Collapse
Affiliation(s)
- Amirabbas Rastegar
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Mohammad Mirjalili
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Navid Nasirizadeh
- Department of Chemical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
13
|
Kulsirirat T, Honsawek S, Takeda-Morishita M, Sinchaipanid N, Udomsinprasert W, Leanpolchareanchai J, Sathirakul K. The Effects of Andrographolide on the Enhancement of Chondrogenesis and Osteogenesis in Human Suprapatellar Fat Pad Derived Mesenchymal Stem Cells. Molecules 2021; 26:1831. [PMID: 33805078 PMCID: PMC8037192 DOI: 10.3390/molecules26071831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Andrographolide is a labdane diterpenoid herb, which is isolated from the leaves of Andrographis paniculata, and widely used for its potential medical properties. However, there are no reports on the effects of andrographolide on the human suprapatellar fat pad of osteoarthritis patients. In the present study, our goal was to evaluate the innovative effects of andrographolide on viability and Tri-lineage differentiation of human mesenchymal stem cells from suprapatellar fat pad tissues. The results revealed that andrographolide had no cytotoxic effects when the concentration was less than 12.5 µM. Interestingly, andrographolide had significantly enhanced, dose dependent, osteogenesis and chondrogenesis as evidenced by a significantly intensified stain for Alizarin Red S, Toluidine Blue and Alcian Blue. Moreover, andrographolide can upregulate the expression of genes related to osteogenic and chondrogenic differentiation, including Runx2, OPN, Sox9, and Aggrecan in mesenchymal stem cells from human suprapatellar fat pad tissues. In contrast, andrographolide suppressed adipogenic differentiation as evidenced by significantly diminished Oil Red O staining and expression levels for adipogenic-specific genes for PPAR-γ2 and LPL. These findings confirm that andrographolide can specifically enhance osteogenesis and chondrogenesis of mesenchymal stem cells from human suprapatellar fat pad tissues. It has potential as a therapeutic agent derived from natural sources for regenerative medicine.
Collapse
Affiliation(s)
- Thitianan Kulsirirat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (T.K.); (J.L.)
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Hyogo 650-8586, Japan;
| | - Nuttanan Sinchaipanid
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | | | - Korbtham Sathirakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (T.K.); (J.L.)
| |
Collapse
|
14
|
Jiang M, Wang X, Wang P, Peng W, Zhang B, Guo L. Inhibitor of RAGE and glucose‑induced inflammation in bone marrow mesenchymal stem cells: Effect and mechanism of action. Mol Med Rep 2020; 22:3255-3262. [PMID: 32945430 PMCID: PMC7453676 DOI: 10.3892/mmr.2020.11422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence and development of hyperglycemia‑induced inflammation is associated with increased expression of receptor for advanced glycation end products (RAGE) and inflammatory factors, including IL‑1β, TNF‑α and IL‑6. Previous studies have reported that the nucleotide‑binding oligomerization domain‑like receptor protein 3 (NLRP3) inflammasome interacts with thioredoxin‑interacting protein (TXNIP) and serves a crucial role in inflammation. FPS‑ZM1 has been identified as target inhibitor of RAGE and has been shown to exert an anti‑inflammatory effect in vitro. However, the underlying mechanism by which FPS‑ZM1 impacts high glucose (HG)‑induced inflammation in bone marrow mesenchymal stem cells (BMSCs) remains unclear. The present study explored the regulatory effect of FPS‑ZM1 on HG‑induced inflammation in BMSCs. Furthermore, the role of the TXNIP/NLRP3 inflammasome signaling pathway in the regulatory effects of FPS‑ZM1 on HG‑induced inflammation was studied. Cell viability was determined using Cell Counting Kit‑8 and western blotting was used to assess the protein expression levels of RAGE. ELISA was used to determine the levels of inflammatory markers. Reverse transcription‑quantitative PCR and western blotting were used to measure the mRNA and protein expression levels of TXNIP, caspase‑1, thioredoxin (TRX), NLRP3 and apoptosis‑related speck‑like protein containing CARD (ASC). The results revealed that in BMSCs, RAGE expression was stimulated by HG, an effect which was reversed by treatment with FPS‑ZM1. In addition, HG activated inflammatory factors, such as TNF‑α, IL‑1β and IL‑6; however, their levels were suppressed when cells were treated with FPS‑ZM1 or the TXNIP/NLRP3 pathway inhibitor, resveratrol (Res). Furthermore, FPS‑ZM1 inhibited the mRNA and protein expression levels of TXNIP, caspase‑1, NLRP3 and ASC, and promoted TRX expression, which was consistent with the effects of Res. These findings indicated that FPS‑ZM1 may attenuate HG‑induced inflammation in BMSCs. Furthermore, the TXNIP/NLRP3 inflammasome signaling pathway mediated the molecular mechanism underlying this effect.
Collapse
Affiliation(s)
- Mengyi Jiang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuemei Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Pin Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Peng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bo Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|