1
|
Wang X, Li J, Nong J, Deng X, Chen Y, Wu P, Huang X. Curcumol Attenuates Portal Hypertension and Collateral Shunting Via Inhibition of Extrahepatic Angiogenesis in Cirrhotic Rats. Biochem Genet 2025; 63:281-297. [PMID: 38438779 DOI: 10.1007/s10528-024-10684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024]
Abstract
Liver cirrhosis can cause disturbances in blood circulation in the liver, resulting in impaired portal blood flow and ultimately increasing portal venous pressure. Portal hypertension induces portal-systemic collateral formation and fatal complications. Extrahepatic angiogenesis plays a crucial role in the development of portal hypertension. Curcumol is a sesquiterpenoid derived from the rhizome of Curcumae Rhizoma and has been confirmed to alleviate liver fibrosis by inhibiting angiogenesis. Therefore, our study was designed to explore the effects of curcumol on extrahepatic angiogenesis and portal hypertension. To induce cirrhosis, Sprague Dawley rats underwent bile duct ligation (BDL) surgery. Rats received oral administration with curcumol (30 mg/kg/d) or vehicle (distilled water) starting on day 15 following surgery, when BDL-induced liver fibrosis had developed. The effect of curcumol was assessed on day 28, which is the typical time of BDL-induced cirrhosis. The results showed that curcumol markedly reduced portal pressure in cirrhotic rats. Curcumol inhibited abnormal splanchnic inflow, mitigated liver injury, improved liver fibrosis, and attenuated portal-systemic collateral shunting in cirrhotic rats. These protective effects were partially attributed to the inhibition on mesenteric angiogenesis by curcumol. Mechanically, curcumol partially reversed the BDL-induced activation of the JAK2/STAT3 signaling pathway in cirrhotic rats. Collectively, curcumol attenuates portal hypertension in liver cirrhosis by suppressing extrahepatic angiogenesis through inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinyuan Wang
- Development of Planning Division, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Juan Li
- Development of Pediatric, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jiao Nong
- Development of Education, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xin Deng
- Basic Medical College, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yiping Chen
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China
| | - Peibin Wu
- Achievement Transformation and Social Service Office, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiabing Huang
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China.
| |
Collapse
|
2
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Rab SO, Roopashree R, Altalbawy FMA, Kumar MR, Chahar M, Singh M, Kubaev A, Alamir HTA, Mohammed F, Kadhim AJ, Alhadrawi M. Phytochemicals and Their Nanoformulations for Targeting Hepatocellular Carcinoma: Exploring Potential and Targeting Strategies. Cell Biochem Funct 2024; 42:e70013. [PMID: 39521962 DOI: 10.1002/cbf.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) continues to pose a global health concern, necessitating the exploration of innovative therapeutic approaches. In the recent decade, targeting tumor stroma consisting of extracellular matrix (ECM), immune cells, vascular system, hypoxia, and also suppressive mechanisms in HCC has attracted interest in repressing tumor growth and metastasis. Phytochemicals have attained considerable attention because of their manifold biological effects and high capacity for anticancer activities. These chemical agents have shown the capability to modulate different cells and secretions within the stroma of malignancies. In recent years, the development of nanoformulations has further enhanced the therapeutic potential of phytochemicals by improving their solubility, bioavailability, and targeted delivery to tumor tissues. This review aims to provide an encyclopedic overview of the potential of phytochemicals and their nanoformulations as promising therapeutic strategies for targeting HCC. The review initially highlights the broad array of phytochemicals exhibiting potent anticancer properties, including flavonoids, alkaloids, terpenoids, and phenolic compounds, among others. Then, the nanoformulations and modification of these agents will be reviewed. Finally, we will review the latest experiments that have examined the modulation of HCC using adjuvant phytochemicals and their nanoformulations.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Liu J, Wang BY, Liu CH, Yang C, Zhao BT. Proteomic analysis reveals the mechanism that low molecular weight hyaluronic acid enhances cell migration in keratinocyte. J Pharm Biomed Anal 2024; 250:116402. [PMID: 39151299 DOI: 10.1016/j.jpba.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hyaluronic acid (HA), as an extracellular matrix, is known to promote wound healing, and its bioactivity is affected by molecular weight. However, the mechanism of LMW-HA on cells migration remains unclear. In this study, we investigated the effect of LMW-HA on cells migration and the underlying mechanism by employing proteomics. The scratch assay showed that LMW-HA can significantly enhance the migration of keratinocytes in vitro, and ten differentially expressed proteins (DEPs) were found to be associated with wound healing through proteomics and network pharmacology. The result of bioinformatic analysis indicated that these DEPs are involved in positive regulation of cell motility and cellular component movement. Moreover, protein targets of key pathways were further validated. The findings suggest that LMW-HA can promote wound healing by accelerating epithelization via the HIF-1α/VEGF pathway, which provides new insight and reference for HA to enhance cells migration.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bin Ya Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chun Huan Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Bing Tian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Deng H, Xu Q, Li XT, Huang X, Liu JY, Yan R, Quan ZS, Shen QK, Guo HY. Design, synthesis, and evaluation of antitumor activity in Pseudolaric acid B Azole derivatives: Novel and potent angiogenesis inhibitor via regulation of the PI3K/AKT and MAPK mediated HIF-1/VEGF signaling pathway. Eur J Med Chem 2024; 278:116813. [PMID: 39226705 DOI: 10.1016/j.ejmech.2024.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Tumor proliferation and metastasis are intricately linked to blood vessel formation, with vascular endothelial growth factor (VEGF) playing a pivotal role in orchestrating angiogenesis throughout tumor progression. Pseudolaric acid B (PAB) has emerged as a potent inhibitor of tumor cell proliferation, migration, and angiogenesis. In efforts to enhance its efficacy, 37 derivatives of PAB were synthesized and assessed for their capacity to suppress VEGF secretion in SiHa cells under hypoxic conditions. Notably, majority of these derivatives exhibited significant inhibition of VEGF protein secretion without inducing cytotoxicity. Among them, compound M2 displayed the most potent inhibitory activity, with an IC50 value of 0.68 μM, outperforming the lead compound PAB (IC50 = 5.44 μM). Compound M2 not only curbed the migration and angiogenesis of HUVECs under hypoxic conditions but also hindered the invasion of SiHa cells. Mechanistic investigations unveiled that compound M2 may impede the accumulation and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) in SiHa cells, thereby downregulating VEGF expression. This inhibitory effect on HIF-1α was corroborated by experiments utilizing the protease inhibitor MG-132 and protein synthesis inhibitor CHX, indicating that compound M2 diminishes HIF-1α levels by reducing its synthesis. Furthermore, compound M2 was observed to modulate the PI3K/AKT/mTOR and MAPK signaling pathways in tumor cells, thereby regulating HIF-1α translation and synthesis. In vivo studies demonstrated that compound M2 exhibited low toxicity and effectively curbed tumor growth. Immunohistochemistry analyses validated that compound M2 effectively suppressed the expression of HIF-1α and VEGF in tumor tissues, underscoring its potential as a promising therapeutic agent for targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiao-Ting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
6
|
Azevedo T, Ferreira T, Peña‐Corona SI, Cortes H, Silva‐Reis R, da Costa RMG, Faustino‐Rocha AI, Oliveira PA, Calina D, Cardoso SM, Büsselberg D, Leyva‐Gómez G, Sharifi‐Rad J, Cho WC. Natural products‐based antiangiogenic agents: New frontiers in cancer therapy. FOOD FRONTIERS 2024; 5:2423-2466. [DOI: 10.1002/fft2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractAngiogenesis, vital for tumor growth and metastasis, is a promising target in cancer therapy. Natural compounds offer potential as antiangiogenic agents with reduced toxicity. This review provides a comprehensive overview of natural product‐based antiangiogenic therapies, focusing on molecular mechanisms and therapeutic potential. A systematic search identified relevant articles from 2019 to 2023. Various natural compounds, including polyphenols, terpenes, alkaloids, cannabinoids, omega‐3 fatty acids, polysaccharides, proteins, and carotenoids, were investigated for their antiangiogenic properties. Challenges such as dose standardization, routes of administration, and potential side effects remain. Further studies, including in‐depth animal models and human epidemiological studies, must elucidate clinical efficacy and safety. Synergistic effects with current antiangiogenic therapies, such as bevacizumab and tyrosine kinase inhibitors, should be explored. Additionally, the potential hormone‐dependent effects of compounds like genistein highlight the need for safety evaluation. In conclusion, natural products hold promise as adjunctive therapies to conventional antineoplastic drugs in modulating angiogenesis in cancer. However, robust clinical trials are needed to validate preclinical findings and ensure safety and efficacy.
Collapse
Affiliation(s)
- Tiago Azevedo
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genómica Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Ciudad de México Mexico
| | - Rita Silva‐Reis
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC) Porto Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering University of Porto Porto Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering University of Porto Porto Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology Federal University of Maranhão (UFMA), UFMA University Hospital (HUUFMA) São Luís Brazil
| | - Ana I. Faustino‐Rocha
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Comprehensive Health Research Center, Department of Zootechnics, School of Sciences and Technology University of Évora Evora Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| | - Susana M. Cardoso
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | | | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Javad Sharifi‐Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo Veracruz Mexico
- Department of Medicine, College of Medicine Korea University Seoul Republic of Korea
- Facultad de Medicina Universidad del Azuay Cuenca Ecuador
| | - William C. Cho
- Department of Clinical Oncology Queen Elizabeth Hospital Kowloon Hong Kong
| |
Collapse
|
7
|
Liu XZ, Tai Y, Hou YB, Cao S, Han J, Li MY, Zuo HX, Xing Y, Jin X, Ma J. Parthenolide Inhibits Synthesis and Promotes Degradation of Programmed Cell Death Ligand 1 and Enhances T Cell Tumor-Killing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21013-21029. [PMID: 39264009 DOI: 10.1021/acs.jafc.4c04916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Parthenolide is a germacrane sesquiterpene lactone separated from the traditional medicinal plant feverfew. Previous studies have shown that parthenolide possesses many pharmacological activities, involving anti-inflammatory and anticancer activities. However, the antitumor mechanism of parthenolide has not been fully elucidated. Thus, we investigate the potential antitumor mechanisms of parthenolactone. We predicted through network pharmacology that parthenolide may target HIF-1α to interfere with the occurrence and development of cancer. We found that parthenolide inhibited PD-L1 protein synthesis through mTOR/p70S6K/4EBP1/eIF4E and RAS/RAF/MEK/MAPK signaling pathways and promoted PD-L1 protein degradation through the lysosomal pathway, thereby inhibiting PD-L1 expression. Immunoprecipitation and Western blotting results demonstrated that parthenolide inhibited PD-L1 expression by suppressing HIF-1α and RAS cooperatively. We further proved that parthenolide inhibited cell proliferation, migration, invasion, and tube formation via down-regulating PD-L1. Moreover, parthenolide increased the effect of T cells to kill tumor cells. In vivo xenograft assays further demonstrated that parthenolide suppressed the growth of tumor xenografts. Collectively, we report for the first time that parthenolide enhanced T cell tumor-killing activity and suppressed cell proliferation, migration, invasion, and tube formation by PD-L1. The current study provides new insight for the development of parthenolide as a novel anticancer drug targeting PD-L1.
Collapse
Affiliation(s)
- Xin Zhe Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yi Tai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yu Bao Hou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shen Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jing Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
8
|
Zhai S, Wang R, Wang J, Xu X, Niu L, Guo M, Zhang Y, Shi Y, Tang X. Curcumol: a review of its pharmacology, pharmacokinetics, drug delivery systems, structure-activity relationships, and potential applications. Inflammopharmacology 2024; 32:1659-1704. [PMID: 38520574 DOI: 10.1007/s10787-024-01447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.
Collapse
Affiliation(s)
- Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Jingyuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Xiangdong Xu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Le Niu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Min Guo
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yongling Zhang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| | - Xuexue Tang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| |
Collapse
|
9
|
Cui T, Li BY, Liu F, Xiong L. Research Progress on Sesquiterpenoids of Curcumae Rhizoma and Their Pharmacological Effects. Biomolecules 2024; 14:387. [PMID: 38672405 PMCID: PMC11048675 DOI: 10.3390/biom14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumae Rhizoma, a traditional Chinese medicine with a wide range of pharmacological activities, is obtained from the dried rhizomes of Curcuma phaeocaulis VaL., Curcuma kwangsiensis S. G. Lee et C. F. Liang, and Curcuma wenyujin Y. H. Chen et C. Ling. Sesquiterpenoids and curcuminoids are found to be the main constituents of Curcumae Rhizoma. Sesquiterpenoids are composed of three isoprene units and are susceptible to complex transformations, such as cyclization, rearrangement, and oxidation. They are the most structurally diverse class of plant-based natural products with a wide range of biological activities and are widely found in nature. In recent years, scholars have conducted abundant studies on the structures and pharmacological properties of components of Curcumae Rhizoma. This article elucidates the chemical structures, medicinal properties, and biological properties of the sesquiterpenoids (a total of 274 compounds) isolated from Curcumae Rhizoma. We summarized extraction and isolation methods for sesquiterpenoids, established a chemical component library of sesquiterpenoids in Curcumae Rhizoma, and analyzed structural variances among sesquiterpenoids sourced from Curcumae Rhizoma of diverse botanical origins. Furthermore, our investigation reveals a diverse array of sesquiterpenoid types, encompassing guaiane-type, germacrane-type, eudesmane-type, elemane-type, cadinane-type, carane-type, bisabolane-type, humulane-type, and other types, emphasizing the relationship between structural diversity and activity. We hope to provide a valuable reference for further research and exploitation and pave the way for the development of new drugs derived from medicinal plants.
Collapse
Affiliation(s)
- Ting Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo-Yu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
11
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Sin SQ, Mohan CD, Goh RMWJ, You M, Nayak SC, Chen L, Sethi G, Rangappa KS, Wang L. Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities. Cancer Metastasis Rev 2023; 42:741-764. [PMID: 36547748 DOI: 10.1007/s10555-022-10071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC's relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.
Collapse
Affiliation(s)
- Shant Qinxiang Sin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Mingliang You
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Institute, Hangzhou, 31002, China
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 31002, China
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Zhong Y, Li MY, Han L, Tai Y, Cao S, Li J, Zhao H, Wang R, Lv B, Shan Z, Zuo HX, Piao L, Jin HL, Xing Y, Jin X, Ma J. Galangin inhibits programmed cell death-ligand 1 expression by suppressing STAT3 and MYC and enhances T cell tumor-killing activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154877. [PMID: 37267692 DOI: 10.1016/j.phymed.2023.154877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The flavonoid galangin (3,5,7-trihydroxyflavone) is derived from the root of Alpinia officinarum Hance, an edible and medicinal herb. Galangin has many biological activities, such as anti-inflammatory, anti-microbial, anti-viral, anti-obesogenic, and anti-oxidant effects. However, the anti-tumor mechanism of galangin remains unclear. PURPOSE To elucidate the anti-tumor mechanisms of galangin in vitro and in vivo. METHODS MTT, western blotting, immunoprecipitation, RT-PCR, and immunofluorescence assays were used to assess the mechanism of galangin inhibiting PD-L1 expression. The effect of galangin on T cell activity was analyzed in Hep3B/T cell co-cultures. Colony formation, EdU, migration, and invasion assays were performed to explore the effect of galangin on cancer progression and metastasis. Anti-tumor effects of galangin were investigated in a xenograft model. RESULTS Galangin inhibited PD-L1 expression dose-dependently, which plays a major role in tumor progression. Moreover, galangin blocked STAT3 activation through the JAK1/JAK2/Src signaling pathway and Myc activation through the Ras/RAF/MEK/ERK signaling pathway. Galangin reduced PD-L1 expression by suppressing STAT3 and Myc cooperatively. Galangin increased the killing effect of T cells on tumor cells in Hep3B/T cell co-cultures. Moreover, galangin inhibited tumor cell proliferation, migration, and invasion through PD-L1. In vivo experiments showed that galangin suppressed tumor growth. CONCLUSION Galangin enhances T-cell activity and inhibits tumor cell proliferation, migration, and invasion through PD-L1. The current study emphasizes the anti-tumor properties of galangin, offering new insights into the development of tumor therapeutics targeting PD-L1.
Collapse
Affiliation(s)
- Yi Zhong
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lizhuo Han
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yi Tai
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shen Cao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jiaxuan Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hanyu Zhao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Run Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Baojiang Lv
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhida Shan
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lianxun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
14
|
Liu G, Wang J, Han M, Li X, Zhou L, Dou T, Liu Y, HuangFu M, Guan X, Wang Y, Tang W, Liu Z, Li L, Ding H, Chen X. RNA-binding domain 2 of nucleolin is important for the autophagy induction of curcumol in nasopharyngeal carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154833. [PMID: 37137203 DOI: 10.1016/j.phymed.2023.154833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND & AIMS Excessive autophagy induces cell death and is regarded as the treatment of cancer therapy. We have confirmed that the anti-cancer mechanism of curcumol is related to autophagy induction. As the main target protein of curcumol, RNA binding protein nucleolin (NCL) interacted with many tumor promoters accelerating tumor progression. However, the role of NCL in cancer autophagy and in curcumol's anti-tumor effects haven't elucidated. The purpose of the study is to identify the role of NCL in nasopharyngeal carcinoma autophagy and reveal the immanent mechanisms of NCL played in cell autophagy. METHODS & RESULTS In the current study, we have found that NCL was markedly upregulated in nasopharyngeal carcinoma (NPC) cells. NCL overexpression effectively attenuated the level of autophagy in NPC cells, and NCL silence or curcumol treatment obviously aggravated the autophagy of NPC cells. Moreover, the attenuation of NCL by curcumol lead a significant suppression on PI3K/AKT/mTOR signaling pathway in NPC cells. Mechanistically, NCL was found to be directly interact with AKT and accelerate AKT phosphorylation, which caused the activation of the PI3K/AKT/mTOR pathway. Meanwhile, the RNA Binding Domain (RBD) 2 of NCL interacts with Akt, which was also influenced by curcumol. Notably, the RBDs of NCL delivered AKT expression was related with cell autophagy in the NPC. CONCLUSION The results demonstrated that NCL regulated cell autophagy was related with interaction of NCL and Akt in NPC cells. The expression of NCL play an important role in autophagy induction and further found that was associated with its effect on NCL RNA-binding domain 2. This study may provide a new perspective on the target protein studies for natural medicines and confirm the effect of curcumol not only regulating the expression of its target protein, but also influencing the function domain of its target protein.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Pharmacognosy, 541199, PR China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, 541001, PR China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi, PR China; Faculty of Basic Medicine, Guilin Medical University, No. 109, 541004 Guilin, PR China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Mengjie HuangFu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xiao Guan
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Yan Wang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Wei Tang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Zhangchi Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Linjun Li
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Hongfang Ding
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China.
| |
Collapse
|
15
|
Zhang X, He C, He X, Fan S, Ding B, Lu Y, Xiang G. HIF-1 inhibitor-based one-stone-two-birds strategy for enhanced cancer chemodynamic-immunotherapy. J Control Release 2023; 356:649-662. [PMID: 36933701 DOI: 10.1016/j.jconrel.2023.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023]
Abstract
Based on its ability to induce strong immunogenic cell death (ICD), chemodynamic therapy (CDT) was elaborately designed to combine with immunotherapy for a synergistic anticancer effect. However, hypoxic cancer cells can adaptively regulate hypoxia-inducible factor-1 (HIF-1) pathways, leading to a reactive oxygen species (ROS)-homeostatic and immunosuppressive tumor microenvironment. Consequently, both ROS-dependent CDT efficacy and immunotherapy are largely diminished, further lowering their synergy. Here, a liposomal nanoformulation co-delivering a Fenton catalyst copper oleate and a HIF-1 inhibitor acriflavine (ACF) was reported for breast cancer treatment. Through in vitro and in vivo experiments, copper oleate-initiated CDT was proven to be reinforced by ACF through HIF-1-glutathione pathway inhibition, thus amplifying ICD for better immunotherapeutic outcomes. Meanwhile, ACF as an immunoadjuvant significantly reduced the levels of lactate and adenosine, and downregulated the expression of programmed death ligand-1 (PD-L1), thereby promoting the antitumor immune response in a CDT-independent manner. Hence, the "one stone" ACF was fully taken advantage of to enhance CDT and immunotherapy (two birds), both of which contributed to a better therapeutic outcome.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing 314001, People's Republic of China.; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuanchuan He
- Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, Zhejiang, China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xuelian He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sijun Fan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing 314001, People's Republic of China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China.
| |
Collapse
|
16
|
Yang Z, Wang S, Hong Y, Gai R, Hong W, Tang B, Lin C, Wang X, Wang Q, Chen C, Wang J, Weng Q. Safety Evaluation of Curcumol by a Repeated Dose 28-Day Oral Exposure Toxicity Study in Rats. TOXICS 2023; 11:114. [PMID: 36850989 PMCID: PMC9965727 DOI: 10.3390/toxics11020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Curcumol, a natural product isolated from the traditional Chinese medicine Rhizoma curcumae, possesses various potential therapeutic values in many diseases. However, evidence of its toxicological profile is currently lacking. In this study, a repeated toxicity study of curcumol was conducted for the first time. SD rats were exposed to doses of 250, 500, 1000 mg/kg in a selected dose formulation for 28 days through oral administration. The potential toxic effects of curcumol on the blood system were observed and further validated in vivo and in vitro. Moreover, other hematology and biochemistry parameters as well as the weight of organs were altered, but no related histopathological signs were observed, indicating these changes were not regarded as toxicologically relevant. Our current findings provide a complete understanding of the safety profile of curcumol, which may contribute to its further study of investigational new drug application.
Collapse
Affiliation(s)
- Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yawen Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Renhua Gai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingbing Tang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunqin Lin
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomeng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojing Wang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Chen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Deciphering the Mechanism of Wogonin, a Natural Flavonoid, on the Proliferation of Pulmonary Arterial Smooth Muscle Cells by Integrating Network Pharmacology and In Vitro Validation. Curr Issues Mol Biol 2023; 45:555-570. [PMID: 36661523 PMCID: PMC9858126 DOI: 10.3390/cimb45010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Wogonin is one of the main active components of Scutellaria baicalensis, which has anti-inflammatory, anti-angiogenesis, and anti-fibrosis effects. Nevertheless, the effect of wogonin on pulmonary hypertension (PH) still lacks systematic research. This study aims to elucidate the potential mechanism of wogonin against PH through network pharmacology and further verify it through biological experiments in pulmonary arterial smooth muscle cells (PASMCs). The potential targets and pathways of wogonin against PH were predicted and analyzed by network pharmacology methods and molecular docking technology. Subsequently, the proliferation of PASMCs was induced by platelet-derived growth factor-BB (PDGF-BB). Cell viability and migration ability were examined. The method of Western blot was adopted to analyze the changes in related signaling pathways. Forty potential targets related to the effect of wogonin against PH were obtained. Based on the protein-protein interaction (PPI) network, gene-ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment, and molecular docking, it was shown that the effect of wogonin against PH is closely related to the proliferation of PASMCs and the hypoxia-inducible factor-1α (HIF-1α) pathway. A variety of results from biological experiments verified that wogonin can effectively inhibit the proliferation, migration, and phenotypic transformation of PDGF-BB-mediated PASMCs. In addition, the anti-proliferation effect of wogonin may be achieved by regulating HIF-1/ NADPH oxidase 4 (NOX4) pathway.
Collapse
|
18
|
Potential of Compounds Originating from the Nature to Act in Hepatocellular Carcinoma Therapy by Targeting the Tumor Immunosuppressive Microenvironment: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010195. [PMID: 36615387 PMCID: PMC9822070 DOI: 10.3390/molecules28010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC), the most prevalent subtype of liver cancer, is the second main reason for cancer-related deaths worldwide. In recent decades, sufficient evidence supported that immunotherapy was a safe and effective treatment option for HCC. However, tolerance and frequent recurrence and metastasis occurred in patients after immunotherapy due to the complicated crosstalk in the tumor immunosuppressive microenvironment (TIME) in HCC. Therefore, elucidating the TIME in HCC and finding novel modulators to target TIME for attenuating immune suppression is critical to optimize immunotherapy. Recently, studies have shown the potentially immunoregulatory activities of natural compounds, characterized by multiple targets and pathways and low toxicity. In this review, we concluded the unique role of TIME in HCC. Moreover, we summarized evidence that supports the hypothesis of natural compounds to target TIME to improve immunotherapy. Furthermore, we discussed the comprehensive mechanisms of these natural compounds in the immunotherapy of HCC. Accordingly, we present a well-grounded review of the naturally occurring compounds in cancer immunotherapy, expecting to shed new light on discovering novel anti-HCC immunomodulatory drugs from natural sources.
Collapse
|
19
|
Yang Z, Sun Q, Wang S, Tang B, Yuan C, Wu Y, Dai J, Yang C, Wang L, Zhou Q, Wang J, Weng Q. Pharmacokinetics, tissue distribution, and plasma protein binding rate of curcumol in rats using liquid chromatography tandem mass spectrometry. Front Pharmacol 2022; 13:1036732. [PMID: 36532730 PMCID: PMC9748077 DOI: 10.3389/fphar.2022.1036732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 01/31/2025] Open
Abstract
Objective: Curcumol is one of the major active ingredients isolated from the traditional Chinese medicine Curcumae Rhizoma and is reported to exhibit various bioactivities, such as anti-tumor and anti-liver fibrosis effects. However, studies of curcumol pharmacokinetics and tissue distribution are currently lacking. This study aims to characterize the pharmacokinetics, tissue distribution, and protein binding rate of curcumol. Methods: Pharmacokinetics properties of curcumol were investigated afte doses of 10, 40, and 80 mg/kg of curcumol for rats and a single dose of 2.0 mg/kg curcumol was given to rats via intravenous administration to investigate bioavailability. Tissue distribution was investigated after a single dose of 40 mg/kg of orally administered curcumol. Plasma protein binding of curcumol was studied in vitro via the rapid equilibrium dialysis system. Bound and unbound curcumol in rat plasma were analyzed to calculate the plasma protein binding rate. A UHPLC-MS/MS method was developed and validated to determine curcumol in rat plasma and tissues and applied to study the pharmacokinetics, tissue distribution, and plasma protein binding in rats. Results: After oral administration of 10, 40, and 80 mg/kg curcumol, results indicated a rapid absorption and quick elimination of curcumol in rats. The bioavailability ranging from 9.2% to 13.1% was calculated based on the area under the curves (AUC) of oral and intravenous administration of curcumol. During tissue distribution, most organs observed a maximum concentration of curcumol within 0.5-1.0 h. A high accumulation of curcumol was found in the small intestine, colon, liver, and kidney. Moreover, high protein binding rates ranging from 85.6% to 93.4% of curcumol were observed in rat plasma. Conclusion: This study characterized the pharmacokinetics, tissue distribution, and protein binding rates of curcumol in rats for the first time, which can provide a solid foundation for research into the mechanisms of curcumol's biological function and clinical application.
Collapse
Affiliation(s)
- Zhaoxu Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingmei Sun
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Bingbing Tang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenxing Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiabin Dai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chen Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lingkun Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Zhou
- Department of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Ma C, Tang X, Tang Q, Wang S, Zhang J, Lu Y, Wu J, Han L. Curcumol repressed cell proliferation and angiogenesis via SP1/mir-125b-5p/VEGFA axis in non-small cell lung cancer. Front Pharmacol 2022; 13:1044115. [PMID: 36467048 PMCID: PMC9716069 DOI: 10.3389/fphar.2022.1044115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2023] Open
Abstract
NSCLC (non-small cell lung cancer) is one of the most common and lethal malignant tumors, with low 5-year overall survival rate. Curcumol showed antitumor activity in several cancers, but evidence about its effect on NSCLC remains unclear. In the present study, we found that Curcumol markedly inhibited NSCLC cells proliferation, migration and invasion. Endothelial cells are an important part of tumor microenvironment. Tube formation assay and wound healing assay indicated that A549 derived conditioned medium affected HUVECs (human umbilical vein endothelial cells). Mechanistically, Curcumol downregulated the expression of SP1 (specificity protein 1) while upregulated miR-125b-5p, followed by decreasing VEGFA expression in NSCLC cells. Furthermore, overexpression of SP1 partially reversed the inhibitory effect of Curcumol on A549 and H1975 cell viability and VEGFA expression. Inhibition of miR-125b-5p presented similar effect. Interestingly, there was mutual modulation between SP1 and miR-125b-5p. Collectively, our study revealed that Curcumol inhibited cell growth and angiogenesis of NSCLC in vitro and in vivo, possibly through SP1/miR-125b-5p/VEGFA regulatory mechanism. These findings may provide effective therapy strategies for NSCLC treatment.
Collapse
Affiliation(s)
- Changju Ma
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Tang
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Central Laboratory, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Qing Tang
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyan Wang
- Department of Emergency, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhong Zhang
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Ling Han
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
22
|
Zhang Z, Hu Y, Chen Y, Chen Z, Zhu Y, Chen M, Xia J, Sun Y, Xu W. Immunometabolism in the tumor microenvironment and its related research progress. Front Oncol 2022; 12:1024789. [PMID: 36387147 PMCID: PMC9659971 DOI: 10.3389/fonc.2022.1024789] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
The tumor immune microenvironment has been a research hot spot in recent years. The cytokines and metabolites in the microenvironment can promote the occurrence and development of tumor in various ways and help tumor cells get rid of the surveillance of the immune system and complete immune escape. Many studies have shown that the existence of tumor microenvironment is an important reason for the failure of immunotherapy. The impact of the tumor microenvironment on tumor is a systematic study. The current research on this aspect may be only the tip of the iceberg, and a relative lack of integrity, may be related to the heterogeneity of tumor. This review mainly discusses the current status of glucose metabolism and lipid metabolism in the tumor microenvironment, including the phenotype of glucose metabolism and lipid metabolism in the microenvironment; the effects of these metabolic methods and their metabolites on three important immune cells Impact: regulatory T cells (Tregs), tumor-associated macrophages (TAM), natural killer cells (NK cells); and the impact of metabolism in the targeted microenvironment on immunotherapy. At the end of this article,the potential relationship between Ferroptosis and the tumor microenvironment in recent years is also briefly described.
Collapse
Affiliation(s)
- Ziheng Zhang
- Medical School, Shaoxing University, Shaoxing, China
| | - Yajun Hu
- Medical School, Shaoxing University, Shaoxing, China
| | - Yuefeng Chen
- Medical School, Shaoxing University, Shaoxing, China
| | - Zhuoneng Chen
- Medical School, Shaoxing University, Shaoxing, China
| | - Yexin Zhu
- Medical School, Shaoxing University, Shaoxing, China
| | - Mingmin Chen
- Medical School, Shaoxing University, Shaoxing, China
| | - Jichu Xia
- Medical School, Shaoxing University, Shaoxing, China
| | - Yixuan Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Wenfang Xu
- Department of Clinical Laboratory, Shaoxing University affiliated Hospital, Shaoxing, China
| |
Collapse
|
23
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022; 154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022] Open
|
24
|
Curcumol Inhibits the Development of Prostate Cancer by miR-125a/STAT3 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9317402. [PMID: 35942374 PMCID: PMC9356804 DOI: 10.1155/2022/9317402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Aim This study aimed to learn the antineoplastic activity of curcumol (Cur) on prostate cancer (PCa) and elucidate its potential molecular mechanism. Methods The proliferation, invasion, and migration of PCa cells (PC3 and 22RV1) were detected by the cell counting kit 8 (CCK8), transwell, and wound healing assay, respectively. The expression of genes and proteins was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB), respectively. The protein expression in tissues and cells was tested through immunohistochemistry (IHC) and immunocytochemistry (ICC). Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify the level of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). The interaction between microRNA125a (miR-125a) and the signal transducer and activator of transcription 3 (STAT3) was confirmed via dual-luciferase reporter assay. Results Cur effectively restrained the proliferation, invasion, and migration of PC3 and 22RV1 cells. After Cur intervention, miR-125a, miR-375, miR-149, miR-183, and miR-106b were all upregulated in PC3 cells, among which miR-125a was the most significantly upregulated. Dual-luciferase reporter assay combined with qRT-PCR and WB experiments confirmed that miR-125a targeted STAT3. Both in vitro and in vivo, Cur enhanced miR-125a expression and suppressed the activation of the STAT3 pathway in PCa. Also, Cur effectively inhibited the growth of PCa. Conclusion Cur inhibited the development of PCa by miR-125a/STAT3 axis. This may provide a potential agent for treating PCa.
Collapse
|
25
|
Wang J, Jin J, Chen T, Zhou Q. Curcumol Synergizes with Cisplatin in Osteosarcoma by Inhibiting M2-like Polarization of Tumor-Associated Macrophages. Molecules 2022; 27:molecules27144345. [PMID: 35889217 PMCID: PMC9318016 DOI: 10.3390/molecules27144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is the most prevalent bone cancer, and chemotherapy is still an indispensable treatment in its clinical practice. Cisplatin (CDDP) has become the most commonly used agent for osteosarcoma, although the outcomes of CDDP chemotherapy remain unsatisfactory because of frequent resistance. Here, we report on a promising combination therapy where curcumol, a bioactive sesquiterpenoid, enhanced CDDP-induced apoptosis to eradicate osteosarcoma cells, and revealed that M2-like macrophages might be the underlying associated mechanisms. First, we observed that curcumol enhanced the CDDP-mediated inhibition of cell proliferation and augmented the apoptosis in osteosarcoma cell lines. Curcumol contributed to preventing the migration of osteosarcoma cells when combined with CDDP. Moreover, this drug combination showed more potent tumor-growth suppression in the orthotopic transplantation of osteosarcoma K7M2 WT cells. We then estimated chemotherapy-associated drug-resistant genes, including ABCB1, ABCC1 and ABCG2, and found that curcumol significantly reversed the mRNA levels of CDDP-induced ABCB1, ABCC1 and ABCG2 genes in the tumor tissue. Moreover, M2-like macrophages were enriched in osteosarcoma tissues, and were largely decreased after curcumol and CDDP treatment. Taken together, these findings suggest that curcumol inhibits the polarization of M2-like macrophages and could be a promising combination strategy to synergize with CDDP in the osteosarcoma.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.J.)
| | - Jialu Jin
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.J.)
- Department of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| | - Ting Chen
- Department of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| | - Qian Zhou
- Department of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
- Correspondence:
| |
Collapse
|
26
|
Gupta M, Chandan K, Sarwat M. Natural Products and their Derivatives as Immune Check Point Inhibitors: Targeting Cytokine/Chemokine Signalling in Cancer. Semin Cancer Biol 2022; 86:214-232. [PMID: 35772610 DOI: 10.1016/j.semcancer.2022.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapy is the new generation and widely accepted form of tumour treatment. It is, however, associated with exclusive challenges which include organ-specific inflammation, and single-target strategies. Therefore, approaches that can enhance the efficiency of existing immunotherapies and expand their indications are required for the further development of immunotherapy. Natural products and medicines are stated to have this desired effect on cancer immunotherapy (adoptive immune-cells therapy, cancer vaccines, and immune-check point inhibitors). They refurbish the immunosuppressed tumour microenvironment, which is the primary location of interaction of tumour cells with the host immune system. Various immune cell subsets, via interaction with cytokine/chemokine receptors, are recruited into this microenvironment, and these subsets have roles in tumour progression and treatment responsiveness. This review summarises cytokine/chemokine signalling, types of cancer immunotherapy and the herbal medicine-derived natural products targeting cytokine/chemokines and immune checkpoints. These natural compounds possess immunomodulatory activities and exert their anti-tumour effect by either blocking the interaction or modulating the expression of the proteins linked with immune checkpoint signaling pathways. Some compounds also show a synergistic effect in combination with existing monoclonal antibody drugs to reverse the tumour microenvironment. Additionally, we have also reported some studies about the derivatives and formulations used to overcome the limitations of natural forms. This review can provide important insights for directing future research.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India.
| |
Collapse
|
27
|
Engineering a curcumol-loaded porphyrinic metal-organic framework for enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces 2022; 214:112456. [PMID: 35290822 DOI: 10.1016/j.colsurfb.2022.112456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT), a non-invasive and safe treatment, is a clinical promising alternative strategy for certain cancers. Although PDT can trigger tumor specific immunity, the immunosuppressive tumor microenvironment severely limits the efficacy of photodynamic immunotherapy. Curcumol (CUR), extracted from essential oils of traditional Chinese medicine, has potential immune activation effect for cancer immunotherapy. Considering the fat solubility and volatility hinder the in vivo application of essential oils, a metal-organic framework system (Named as CuTPyP/F68) composed of porphyrin and Cu2+ was constructed for delivering CUR (Named as CUR@CuTPyP/F68). The in vitro assays proved that CUR@CuTPyP/F68 could directly kill tumor cells by the released CUR and singlet oxygen (1O2) generated under laser irradiation (marked as '+'). Moreover, CUR@CuTPyP/F68 had superior tumor targeting and retention capabilities, which effectively inhibited tumor growth in vivo with only a single dose. Finally, the mechanism of CUR-mediated enhanced PDT had been firstly proposed: (1) CUR@CuTPyP/F68(+)-treated group exhibited more CD4+ and CD8+ T cells infiltration in tumor tissue; (2) CUR@CuTPyP/F68(+)-treated group exhibited high level of IFN-γ, IL-12 and TNF-α in blood. Overall, we believe the PDT-immunotherapy strategy has great potential for the treatment of breast cancer, and this work will provide a reference for the clinical application of essential oils in cancer immunotherapy.
Collapse
|
28
|
Antioxidant Properties and Aldehyde Reactivity of PD-L1 Targeted Aryl-Pyrazolone Anticancer Agents. Molecules 2022; 27:molecules27103316. [PMID: 35630791 PMCID: PMC9143004 DOI: 10.3390/molecules27103316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Small molecules targeting the PD-1/PD-L1 checkpoint are actively searched to complement the anticancer arsenal. Different molecular scaffolds have been reported, including phenyl-pyrazolone derivatives which potently inhibit binding of PD-L1 to PD-1. These molecules are structurally close to antioxidant drug edaravone (EDA) used to treat amyotrophic lateral sclerosis. For this reason, we investigated the capacity of five PD-L1-binding phenyl-pyrazolone compounds (1–5) to scavenge the formation of oxygen free radicals using electron spin resonance spectroscopy with DPPH/DMPO probes. In addition, the reactivity of the compounds toward the oxidized base 5-formyluracil (5fU) was assessed using chromatography coupled to mass spectrometry and photodiode array detectors. The data revealed that the phenyl-pyrazolone derivatives display antioxidant properties and exhibit a variable reactivity toward 5fU. Compound 2 with a N-dichlorophenyl-pyrazolone moiety cumulates the three properties, being a potent PD-L1 binder, a robust antioxidant and an aldehyde-reactive compound. On the opposite, the adamantane derivative 5 is a potent PD-L1 binding with a reduced antioxidant potential and no aldehyde reactivity. The nature of the substituent on the phenyl-pyrazolone core modulates the antioxidant capacity and reactivity toward aromatic aldehydes. The molecular signature of the compound can be adapted at will, to confer additional properties to these PD-L1 binders.
Collapse
|
29
|
Sun S, Huan S, Li Z, Yao Y, Su Y, Xia S, Wang S, Xu X, Shao J, Zhang Z, Zhang F, Fu J, Zheng S. Curcumol alleviates liver fibrosis by inducing endoplasmic reticulum stress-mediated necroptosis of hepatic stellate cells through Sirt1/NICD pathway. PeerJ 2022; 10:e13376. [PMID: 35582617 PMCID: PMC9107784 DOI: 10.7717/peerj.13376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
Liver fibrosis is a repair response process after chronic liver injury. During this process, activated hepatic stellate cells (HSCs) will migrate to the injury site and secrete extracellular matrix (ECM) to produce fibrous scars. Clearing activated HSCs may be a major strategy for the treatment of liver fibrosis. Curcumol isolated from plants of the genus Curcuma can effectively induce apoptosis of many cancer cells, but whether it can clear activated HSCs remains to be clarified. In the present study, we found that the effect of curcumol in treating liver fibrosis was to clear activated HSCs by inducing necroptosis of HSCs. Receptor-interacting protein kinase 3 (RIP3) silencing could impair necroptosis induced by curcumol. Interestingly, endoplasmic reticulum (ER) stress-induced cellular dysfunction was associated with curcumol-induced cell death. The ER stress inhibitor 4-PBA prevented curcumol-induced ER stress and necroptosis. We proved that ER stress regulated curcumol-induced necroptosis in HSCs via Sirtuin-1(Sirt1)/Notch signaling pathway. Sirt1-mediated deacetylation of the intracellular domain of Notch (NICD) led to degradation of NICD, thereby inhibiting Notch signalling pathway to alleviate liver fibrosis. Specific knockdown of Sirt1 by HSCs in male ICR mice further exacerbated CCl4-induced liver fibrosis. Overall, our study elucidates the anti-fibrotic effect of curcumol and reveals the underlying mechanism between ER stress and necroptosis.
Collapse
Affiliation(s)
- Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Huan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Yao
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbo Fu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
Curcumol Targeting PAX8 Inhibits Ovarian Cancer Cell Migration and Invasion and Increases Chemotherapy Sensitivity of Niraparib. JOURNAL OF ONCOLOGY 2022; 2022:3941630. [PMID: 35548853 PMCID: PMC9085303 DOI: 10.1155/2022/3941630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the effects of Curcumol on invasion, migration and epithelial-mesenchymal transformation of IGROV-1 and OVCAR-3 cells in ovarian cancer and its potential mechanism. Meanwhile, the effect of Curcumol on the antitumor activity of Niraparib was analyzed. Methods. Cell Counting Kit 8 (CCK-8) was used to detect the effects of Curcumol on the activity of IGROV-1 and OVCAR 3 cells. In vitro invasion assay (Transwell) was used to test the invasiveness of cells. Cell migration was detected by scratch assay. The inhibitory effect of Curcumol on PAX8 was detected by QRT-PCR. To evaluate the antitumor effect of Curcumol in subcutaneous tumor-bearing animal model. Results. Knockdown of PAX8 could inhibit the proliferation, invasion and migration of ovarian cancer cells. After Curcumol treated IGROV-1 and OVCAR-3 cells, the cell proliferation ability was decreased, the number of invasive cells was significantly reduced, and the scratch closure rate was significantly reduced, in a dose-dependent manner. Mechanism studies showed that Curcumol increased the antitumor activity of Niraparib by inhibiting PAX8. Conclusion. Curcumol can inhibit the invasion, migration and epithelial-mesenchymal transformation of IGROV-1 and OVCAR-3 cells in ovarian cancer, and its mechanism is related to the targeted inhibition of PAX8. Curcumol also increased the sensitivity of Niraparib chemotherapy by inhibiting PAX8.
Collapse
|
31
|
Wang JY, Xing Y, Li MY, Zhang ZH, Jin HL, Ma J, Lee JJ, Zhong Y, Zuo HX, Jin X. Panaxadiol inhibits IL-1β secretion by suppressing zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114715. [PMID: 34648898 DOI: 10.1016/j.jep.2021.114715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of Panax ginseng C.A.Mey. in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Panaxadiol is a triterpenoid sapogenin monomer found in the roots of Panax ginseng C.A.Mey. and has been proven to have various bio-activities such as anti-inflammatory, anti-tumour and neuroprotective effects. AIM OF THE STUDY The present study focuses on investigating the inflammation inhibitory effect and mechanism of panaxadiol by regulating zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. MATERIALS AND METHODS In vitro, the underlying mechanisms by which panaxadiol inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. Recombinant adeno-associated virus (AAV serotype 9) vector was used to establish ZFP91 knockdown mouse. RESULTS We confirmed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91 in macrophages. Further analysis revealed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome. Meanwhile, panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of MAPKs. In vivo, prominent anti-inflammatory effects of panaxadiol were demonstrated in a DSS induced acute colitis mouse model and in an alum-induced peritonitis model by suppressing ZFP91-regulated secretion of inflammatory mediators, consistent with the results of the AAV-ZFP91 knockdown in mice. CONCLUSIONS We report for the first time that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs, providing evidence for anti-inflammation mechanism of panaxadiol treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yi Zhong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
32
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
33
|
Differential Expression of PD-L1 during Cell Cycle Progression of Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222313087. [PMID: 34884892 PMCID: PMC8658507 DOI: 10.3390/ijms222313087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The expression of PD-L1 by tumor cells is mainly associated with its immunosuppressive effect. In fact, PD-1/PD-L1 immune checkpoint inhibitors demonstrated remarkable effects in advanced cancer patients including HNSCC. In this context, irradiation is currently being investigated as a synergistic treatment modality to immunotherapy. However, the majority of HNSCC patients still show little improvement or even hyperprogression. Interestingly, there is increasing evidence for additional cell-intrinsic functions of PD-L1 in tumor cells. In previous studies, we showed that PD-L1 has a strong influence on proliferation, migration, invasion, and survival after irradiation. We demonstrated that cellular expression and localization of PD-L1 differed depending on sensitivity to irradiation. Here, we show that PD-L1 is also differentially expressed during cell cycle progression of HNSCC. Furthermore, cellular localization of PD-L1 also changes depending on a particular cell cycle phase. Moreover, distinct observations occurred depending on the general differentiation status. Overall, the function of PD-L1 cannot be generalized. Rather, it depends on the differentiation status and microenvironment. PD-L1 expression and localization are variable, depending on different factors. These findings may provide insight into why differential response to PD-1/PD-L1 antibody therapy can occur. Detailed understanding of cell-intrinsic PD-L1 functions will further allow antibody-based immunotherapy to be optimized.
Collapse
|
34
|
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci 2021; 286:120057. [PMID: 34662552 DOI: 10.1016/j.lfs.2021.120057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Hypoxia is a known feature of solid tumors and a critical promoter of tumor hallmarks. Hypoxia influences tumor immunity in a way favoring immune evasion and resistance. Extreme hypoxia and aberrant hypoxia-inducible factor-1 (HIF-1) activity in tumor microenvironment (TME) is a drawback for effective immunotherapy. Infiltration and activity of CD8+ T cells is reduced in such condition, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) show high activities. Highly hypoxic TME also impairs maturation and activity of dendritic cell (DCs) and natural killer (NK) cells. In addition, the hypoxic TME positively is linked positively with metabolic changes in cells of immune system. These alterations are indicative of a need for hypoxia modulation as a complementary targeting strategy to go with immune checkpoint inhibitor (ICI) therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
35
|
Xing Y, Wang JY, Li MY, Zhang ZH, Jin HL, Zuo HX, Ma J, Jin X. Convallatoxin inhibits IL-1β production by suppressing zinc finger protein 91-mediated pro-IL-1β ubiquitination and caspase-8 inflammasome activity. Br J Pharmacol 2021; 179:1887-1907. [PMID: 34825365 DOI: 10.1111/bph.15758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE ZFP91 positively regulates IL-1β production in macrophages and may be a potential therapeutic target to treat inflammatory-related diseases. Therefore, we investigated whether this process is modulated by convallatoxin, which is a cardiac glycoside isolated from the traditional Chinese medicinal plant Adonis amurensis Regel et Radde. EXPERIMENTAL APPROACH In vitro, the underlying mechanisms by which convallatoxin inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, liver injury was induced by an intraperitoneal injection of D-GalN and LPS, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. KEY RESULTS We confirmed that convallatoxin inhibited the release of IL-1β by downregulating ZFP91. Importantly, we found that convallatoxin significantly reduced K63-linked polyubiquitination of pro-IL-1β regulated by ZFP91 and decreased the efficacy of pro-IL-1β cleavage. Moreover, convallatoxin suppressed ZFP91-mediated activation of the non-canonical caspase-8 inflammasome and MAPK signaling pathways in macrophages. Furthermore, we showed that ZFP91 promoted the assembly of the caspase-8 inflammasome complex, whereas convallatoxin treatment reversed this result. In vivo studies further demonstrated that convallatoxin ameliorated D-GalN/LPS-induced liver injury, DSS-induced colitis, and alum-induced peritonitis by downregulating ZFP91. CONCLUSION AND IMPLICATIONS We report for the first time that convallatoxin-mediated inhibition of ZFP91 is an important regulatory event that prevents inappropriate inflammatory responses to maintain of immune homeostasis. This mechanism provides new perspectives for the development of convallatoxin as a novel anti-inflammatory drug targeting ZFP91.
Collapse
Affiliation(s)
- Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
36
|
Wang JY, Jiang MW, Li MY, Zhang ZH, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Jin HL, Ma J, Zuo HX, Jin X. Formononetin represses cervical tumorigenesis by interfering with the activation of PD-L1 through MYC and STAT3 downregulation. J Nutr Biochem 2021; 100:108899. [PMID: 34748924 DOI: 10.1016/j.jnutbio.2021.108899] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023]
Abstract
Astragalus membranaceus is a traditional Chinese medicine that regulates blood sugar levels, suppresses inflammation, protects the liver, and enhances immunity. In addition, A. membranaceus is also widely used in diet therapy and is a well-known health tonic. Formononetin is a natural product isolated from A. membranaceus that has multiple biological functions, including anti-cancer activity. However, the mechanism by which formononetin inhibits tumor growth is not fully understood. In this present study, we demonstrated that formononetin suppresses PD-L1 protein synthesis via reduction of MYC and STAT3 protein expression. Furthermore, formononetin markedly reduced the expression of MYC protein via the RAS/ERK signaling pathway and inhibited STAT3 activation through JAK1/STAT3 pathway. Co-immunoprecipitation experiments illustrated that formononetin suppresses protein expression of PD-L1 by interfering with the interaction between MYC and STAT3. Meanwhile, formononetin promoted PD-L1 protein degradation via TFEB and TFE3-mediated lysosome biogenesis. T cell killing assay revealed that formononetin could enhance the activity of cytotoxic T lymphocytes (CTLs) and restore ability to kill tumor cells in a co-culture system of T cells and tumor cells. In addition, formononetin inhibited cell proliferation, tube formation, cell migration, and promoted tumor cell apoptosis by suppressing PD-L1. Finally, the inhibitory effect of formononetin on tumor growth was confirmed in a murine xenograft model. The present study revealed the anti-tumor potential of formononetin, and the findings should support further research and development of anti-cancer drugs for cervical cancer.
Collapse
Affiliation(s)
- Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Wen Jiang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
37
|
Curcumol inhibits malignant biological behaviors and TMZ-resistance in glioma cells by inhibiting long noncoding RNA FOXD2-As1-promoted EZH2 activation. Aging (Albany NY) 2021; 13:24101-24116. [PMID: 34739394 PMCID: PMC8610140 DOI: 10.18632/aging.203662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022]
Abstract
Currently, conventional treatment is not sufficient to improve the survival of glioma patients. Hence, adopting novel personalized treatment programs is imperative. Curcumol, a Chinese herbal medicine extract from the roots of Rhizoma Curcumae, has attracted significant interest due to its beneficial pharmacological activities. The current study revealed that curcumol inhibited the proliferation, metastasis, self-renewal ability, and TMZ resistance in glioma cells in vitro and in vivo. Next, the potential molecular mechanisms of curcumol in inhibiting glioma were investigated. We found that the long non-coding RNA (lncRNA) FOXD2-As1 might contribute to the effects of curcumol on glioma cells. Enforced expression of FOXD2-As1 attenuated the curcumol-induced reduction in glioma cell proliferation, metastasis, self-renewal ability, and TMZ resistance. Moreover, the forced expression of FOXD2-As1 reversed the inhibitory effect of curcumol on the binding ability of EZH2 and H3K27me3 modification in the promoter regions of anti-oncogenes. Our results showed for the first time that curcumol is effective in inhibiting malignant biological behaviors and TMZ-resistance of glioma cells by suppressing FOXD2-As1-mediated EZH2 activation. Our study offers the possibility of exploiting curcumol as a promising therapeutic agent for glioma treatment and may provide an option for the clinical application of this natural herbal medicine.
Collapse
|
38
|
Sheng W, Xu W, Ding J, Li L, You X, Wu Y, He Q. Curcumol inhibits the malignant progression of prostate cancer and regulates the PDK1/AKT/mTOR pathway by targeting miR‑9. Oncol Rep 2021; 46:246. [PMID: 34590156 PMCID: PMC8493056 DOI: 10.3892/or.2021.8197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumol has been reported to exert anti-tumor activity, but its intrinsic molecular mechanism in prostate cancer remains to be elucidated. The present study aimed to analyze the effect of curcumol on prostate cancer and identify its possible internal regulatory pathway using in vitro cell culture and in vivo tumor model experiments. The cytotoxicity of curcumol was detected using a Cell Counting Kit-8 assay and it was found that curcumol had no obvious toxicity or side effects on RWPE-1 cells. Wound healing, Transwell and flow cytometry assays demonstrated that curcumol could affect the activity of PC3 cells. The luciferase reporter assay also indicated that microRNA (miR)-9 could directly target pyruvate dehydrogenase kinase 1 (PDK1). After PC3 cells were transfected with miR-9 inhibitor or treated with curcumol, the expression levels of the PDK1/AKT/mTOR signaling pathway-related proteins [PDK1, phosphorylated (p)-AKT and p-mTOR] were increased or decreased, respectively. Next, the prostate cancer cell xenograft model was established. Tumor size and the expression levels of PDK1/AKT/mTOR signaling pathway-related factors were altered following treatment with curcumol. The in vitro and in vivo experiments collectively demonstrated that curcumol could inhibit the PDK1/AKT/mTOR signaling pathway by upregulating the expression level of miR-9. The present study found that curcumol regulates the PDK1/AKT/mTOR signaling pathway via miR-9 and affects the development of prostate cancer. These findings could provide a possible scientific insight for research into treatments for prostate cancer.
Collapse
Affiliation(s)
- Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wenjing Xu
- Dermatology Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410021, P.R. China
| | - Jin Ding
- Andrology Clinic, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518133, P.R. China
| | - Ling Li
- Medical Basic Teaching Experiment Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xujun You
- Andrology Clinic, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518133, P.R. China
| | - Yongrong Wu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
39
|
Tanaka C, Kobori T, Tameishi M, Urashima Y, Ito T, Obata T. Ezrin Modulates the Cell Surface Expression of Programmed Cell Death Ligand-1 in Human Cervical Adenocarcinoma Cells. Molecules 2021; 26:5648. [PMID: 34577118 PMCID: PMC8469114 DOI: 10.3390/molecules26185648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer cells employ programmed cell death ligand-1 (PD-L1), an immune checkpoint protein that binds to programmed cell death-1 (PD-1) and is highly expressed in various cancers, including cervical carcinoma, to abolish T-cell-mediated immunosurveillance. Despite a key role of PD-L1 in various cancer cell types, the regulatory mechanism for PD-L1 expression is largely unknown. Understanding this mechanism could provide a novel strategy for cervical cancer therapy. Here, we investigated the influence of ezrin/radixin/moesin (ERM) family scaffold proteins, crosslinking the actin cytoskeleton and certain plasma membrane proteins, on the expression of PD-L1 in HeLa cells. Our results showed that all proteins were expressed at mRNA and protein levels and that all ERM proteins were highly colocalized with PD-L1 in the plasma membrane. Interestingly, immunoprecipitation assay results demonstrated that PD-L1 interacted with ERM as well as actin cytoskeleton proteins. Furthermore, gene silencing of ezrin, but not radixin and moesin, remarkably decreased the protein expression of PD-L1 without affecting its mRNA expression. In conclusion, ezrin may function as a scaffold protein for PD-L1; regulate PD-L1 protein expression, possibly via post-translational modification in HeLa cells; and serve as a potential therapeutic target for cervical cancer, improving the current immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan;
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| |
Collapse
|
40
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
41
|
Yang B, Peng F, Zhang Y, Wang X, Wang S, Zheng Y, Zhang J, Zeng Y, Wang N, Peng C, Wang Z. Aiduqing formula suppresses breast cancer metastasis via inhibiting CXCL1-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153628. [PMID: 34247114 DOI: 10.1016/j.phymed.2021.153628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Metastasis is the most common lethal cause of breast cancer-related death. Recent studies have implied that autophagy is closely implicated in cancer metastasis. Therefore, it is of great significance to explore autophagy-related molecular targets involved in breast cancer metastasis and to develop therapeutic drugs. PURPOSE This study was designed to investigate the anti-metastatic effects and autophagy regulatory mechanisms of Aiduqing (ADQ) formula on breast cancer. STUDY DESIGN/METHODS Multiple cellular and molecular experiments were conducted to investigate the inhibitory effects of ADQ formula on autophagy and metastasis of breast cancer cells in vitro. Meanwhile, autophagic activator/inhibitor as well as CXCL1 overexpression or interference plasmids were used to investigate the underlying mechanisms of ADQ formula in modulating autophagy-mediated metastasis. Furthermore, the zebrafish xenotransplantation model and mouse xenografts were applied to validate the inhibitory effect of ADQ formula on autophagy-mediated metastasis in breast cancer in vivo. RESULTS ADQ formula significantly inhibited the proliferation, migration, invasion and autophagy but induced apoptosis of high-metastatic breast cancer cells in vitro. Similar results were also observed in starvation-induced breast cancer cells which exhibited elevated metastatic ability and autophagy activity. Mechanism investigations further approved that either CXCL1 overexpression or autophagic activator rapamycin can significantly abrogated the anti-metastatic effects of ADQ formula, suggesting that CXCL1-mediated autophagy may be the crucial pathway of ADQ formula in suppressing breast cancer metastasis. More importantly, ADQ formula suppressed breast cancer growth, autophagy, and metastasis in both the zebrafish xenotransplantation model and the mouse xenografts. CONCLUSION Our study not only revealed the novel function of CXCL1 in mediating autophagy-mediated metastasis but also suggested ADQ formula as a candidate drug for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Bowen Yang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juping Zhang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yihao Zeng
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China.
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Guan X, Yu D, HuangFu M, Huang Z, Dou T, Liu Y, Zhou L, Li X, Wang L, Liu H, Wang J, Chen X. Curcumol inhibits EBV-positive Nasopharyngeal carcinoma migration and invasion by targeting nucleolin. Biochem Pharmacol 2021; 192:114742. [PMID: 34428442 DOI: 10.1016/j.bcp.2021.114742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/04/2023]
Abstract
Metastasis is a major cause of recurrence and death in patients with EBV-positive Nasopharyngeal carcinoma (NPC). Previous reports documented that curcumol has both anti-cancer and anti-viral effects, but there is little literature systematically addressing the mechanism of curcumol in EBV-positive tumors. Previously we found that nucelolin (NCL) is a target protein of curcumol in CNE2 cells, an EBV-negative NPC, and in this experiment, we reported a critical role for NCL in promoting migration and invasion of C666-1 cells, an EBV-positive NPC, and found that the expression of NCL determined the level of curcumol's efficacy. Mechanistically, NCL interacted with Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) to activate VEGFA/VEGFR1/PI3K/AKT signaling pathway, which in turn promoted NPC cell invasion and metastasis. Moreover, further study showed that the differential expression of NCL and curcumol intervention only had a regulatory effect on the nuclear accumulation of VEGFR1, which strengthened the anti-cancer effect of curcumol mediated through NCL. Our findings indicated that curcumol exerted anti EBV-positive NPC invasion and metastasis by downregulating EBNA1 and inhibiting VEGFA/VEGFR1/PI3K/AKT signaling by targeting NCL, which provides a novel pharmacological basis for curcumol's clinical use in treating patients with EBV-positive NPC.
Collapse
Affiliation(s)
- Xiao Guan
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Yu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Mengjie HuangFu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhiyi Huang
- Pathology Department, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Tong Dou
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yisa Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Luwei Zhou
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Lin Wang
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Haiping Liu
- Science and Technology Department, Guilin Medical University, Guilin 541199, China
| | - Juan Wang
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China.
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
43
|
Lv M, Shao J, Jiang F, Liu J. Curcumol may alleviate psoriasis-like inflammation by inhibiting keratinocyte proliferation and inflammatory gene expression via JAK1/STAT3 signaling. Aging (Albany NY) 2021; 13:18392-18403. [PMID: 34314383 PMCID: PMC8351666 DOI: 10.18632/aging.203287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation and differentiation of keratinocytes. Since curcumol exhibits anti-inflammatory properties in various diseases, we investigated its anti-inflammatory potential in stimulated human keratinocytes. Our data show that curcumol significantly inhibits proliferation and induces cell cycle arrest in NHEK cells stimulated with proinflammatory cytokines (IL-1α, IL-17A, IL-22, oncostatin M, and TNF-α; mix M5). In addition, curcumol markedly ameliorates inflammatory response and promotes differentiation of M5-stimulated NHEK cells. Curcumol inhibits activity of JAK1, resulting in the inhibition of STAT3, downregulation of cyclin D2, and cell cycle arrest in stimulated NHEK cells. Together, our data show that curcumol reduces proliferation and inflammatory gene expression in stimulated keratinocytes by inhibiting the JAK1/STAT3 signaling, suggesting that it might serve as a potential therapeutic option for the treatment of psoriasis.
Collapse
Affiliation(s)
- Mingfen Lv
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| | - Junyi Shao
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| | - Fan Jiang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| | - Jingjing Liu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| |
Collapse
|
44
|
Liu X, Xing Y, Li M, Zhang Z, Wang J, Ri M, Jin C, Xu G, Piao L, Jin H, Zuo H, Ma J, Jin X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113989. [PMID: 33677006 DOI: 10.1016/j.jep.2021.113989] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza glabra L., a traditional medicinal, has a history of thousands of years. It is widely used in clinic and has been listed in Chinese Pharmacopoeia. Licochalcone A is a phenolic chalcone compound and a characteristic chalcone of Glycyrrhiza glabra L. It has many pharmacological activities, such as anti-cancer, anti-inflammatory, anti-viral and anti-angiogenic activities. AIM OF THE STUDY In this study, we explored the anti-tumor activity and potential mechanism of licochalcone A in vitro and in vivo. MATERIALS AND METHODS In vitro, the mechanism of licochalcone A at inhibiting PD-L1 expression was investigated by molecular docking, western blotting, RT-PCR, flow cytometry, immunofluorescence and immunoprecipitation assays. The co-culture model of T cells and tumor cells was used to detect the activity of cytotoxic T lymphocytes. Colony formation, EdU labelling and apoptosis assays were used to detect changes in cellular proliferation and apoptosis. In vivo, anti-tumor activity of licochalcone A was assessed in a xenograft model of HCT116 cells. RESULTS In the present study, we found that licochalcone A suppressed the expression of programmed cell death ligand-1 (PD-L1), which plays a key role in regulating the immune response. In addition, licochalcone A inhibited the expressions of p65 and Ras. Immunoprecipitation experiment showed that licochalcone A suppressed the expression of PD-L1 by blocking the interaction between p65 and Ras. In the co-culture model of T cells and tumor cells, licochalcone A pretreatment enhanced the activity of cytotoxic T lymphocytes and restored the ability to kill tumor cells. In addition, we showed that licochalcone A inhibited cell proliferation and promoted cell apoptosis by targeting PD-L1. In vivo xenograft assay confirmed that licochalcone A inhibited the growth of tumor xenografts. CONCLUSION In general, these results reveal the previously unknown properties of licochalcone A and provide new insights into the anticancer mechanism of this compound.
Collapse
Affiliation(s)
- Xueshuang Liu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Mingyue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhihong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jingying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Chenghua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guanghua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Lianxun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Honglan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hongxiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
45
|
Ding ZN, Dong ZR, Chen ZQ, Yang YF, Yan LJ, Li HC, Liu KX, Yao CY, Yan YC, Yang CC, Li T. Effects of hypoxia-inducible factor-1α and hypoxia-inducible factor-2α overexpression on hepatocellular carcinoma survival: A systematic review with meta-analysis. J Gastroenterol Hepatol 2021; 36:1487-1496. [PMID: 33393670 DOI: 10.1111/jgh.15395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM The role of hypoxia-inducible factor-1α (HIF-1α) and hypoxia-inducible factor-2α (HIF-2α) has been implicated in the clinical prognosis of hepatocellular carcinoma (HCC), but the results remain controversial. We aim to investigate the association of HIF-1α and HIF-2α overexpression with the prognosis and clinicopathological features of HCC. METHODS A systematic search was conducted in PubMed, Embase, Scopus, Web of Science, and Cochrane Library until June 20, 2020. Meta-analysis was conducted to generate combined HRs with 95% confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS). Odds ratios (ORs) with 95% CI were also derived by fixed or random effect model. RESULTS Twenty-two studies involving 3238 patients were included. Combined data suggested that overexpression of HIF-1α in HCC was not only correlated with poorer OS [HR = 1.75 (95% CI: 1.53-2.00)] and DFS [HR = 1.64 (95% CI: 1.34-2.00)] but was also positively associated with vascular invasion [OR = 1.83 (95% CI: 1.36-2.48)], tumor size [OR = 1.36 (95% CI: 1.12-1.66)], and tumor number [1.74 (95% CI: 1.34-2.25)]. In contrast, HIF-2α overexpression was not associated with the prognosis and clinicopathological features of HCC. CONCLUSION Our data provided compelling evidence of a worse prognosis of HCC in HIF-1α overexpression patients but not HIF-2α overexpression ones.
Collapse
Affiliation(s)
- Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Kai-Xuan Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
46
|
Hu D, Gao J, Yang X, Liang Y. A Comprehensive Mini-Review of Curcumae Radix: Ethnopharmacology, Phytochemistry, and Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211020628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumae Radix is an efficacious ingredient with various medicinal properties empirically used in traditional Chinese medicine (TCM) formula for the treatment of cancer, depression, chest pain, dysmenorrhea, epilepsy, and jaundice. However, either phytochemical or pharmacological information of Curcumae Radix underlying its traditionally medicinal uses is rarely summarized and systematically analyzed. To provide evidence for clinical trials, a comprehensive literature review has been prepared of the phytochemicals, and ethnopharmacological and pharmacological mechanisms of this herb. The review approach consisted of searching several web-based scientific databases, including PubMed, Web of Science, and Elsevier. The keywords included “Curcumae Radix,” “ Curcuma wenyujin,” “ Curcuma longa,” “ Curcuma kwangsiensis,” and “ Curcuma phaeocaulis.” Based on the proposed criteria, 57 articles were evaluated in detail. The accumulated data indicate that Curcumae Radix contains a number of bioactive phytochemicals, mainly sesquiterpenes, diarylheptanoids, and diarylpentanoids, which account for a variety of medicinal values, such as anticancer, anti-inflammation, anti-hepatic fibrosis, and antioxidant. A wide range of apoptotic proteins, cell adhesion molecules, inflammatory cytokines, and enzymic and nonenzymic antioxidants could be modulated by either Curcumae Radix or its bioactive compounds, thus underpinning a fundamental understanding for the pharmacological effects of this herb. This review highlights the therapeutic potential of Curcumae Radix to progress the development of versatile adjuvants or therapeutic agents in the future.
Collapse
Affiliation(s)
- Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Henan, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
47
|
Yan Guo F, Ji Zheng C, Wang M, Ai J, Ying Han L, Yang L, Fang Lu Y, Xuan Yang Y, Guan Piao M, Piao HR, Jin CM, Jin CH. Synthesis and Antimicrobial Activity Evaluation of Imidazole-Fused Imidazo[2,1-b][1,3,4]thiadiazole Analogues. ChemMedChem 2021; 16:2354-2365. [PMID: 33738962 DOI: 10.1002/cmdc.202100122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Three series of new imidazole-fused imidazo[2,1-b][1,3,4]thiadiazole analogues (compounds 20 a-g, 21 a-g, and 22 a-g) have been synthesized, and their antibacterial and antifungal activities have been evaluated. All the target compounds showed strong antifungal activity and high selectivity for the test fungus Candida albicans over Gram-positive and -negative bacteria. N-((4-(2-Cyclopropyl-6-(4-fluorophenyl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl)-5-(6-methyl-pyridin-2-yl)-1H-imidazol-2-yl)methyl)aniline (21 a) showed the highest activity against C. albicans (MIC50 =0.16 μg/mL), 13 and three times that of the positive control compounds gatifloxacin and fluconazole, respectively. Compounds 21 a and 20 e did not show cytotoxicity against human foreskin fibroblast-1 cells, and compound 21 a was as safe as the positive control compounds in hemolysis tests. These results strongly suggest that some of the compounds produced in this work have value for development as antifungal agents.
Collapse
Affiliation(s)
- Fang Yan Guo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Chang Ji Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Meiyuan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Jiangping Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Lan Ying Han
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Liu Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Ye Fang Lu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Yu Xuan Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Ming Guan Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Chun-Mei Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| |
Collapse
|
48
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
49
|
Mun H, Townley HE. Nanoencapsulation of Plant Volatile Organic Compounds to Improve Their Biological Activities. PLANTA MEDICA 2021; 87:236-251. [PMID: 33176380 DOI: 10.1055/a-1289-4505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant volatile organic compounds (volatiles) are secondary plant metabolites that play crucial roles in the reproduction, defence, and interactions with other vegetation. They have been shown to exhibit a broad range of biological properties and have been investigated for antimicrobial and anticancer activities. In addition, they are thought be more environmentally friendly than many other synthetic chemicals 1. Despite these facts, their applications in the medical, food, and agricultural fields are considerably restricted due to their volatilities, instabilities, and aqueous insolubilities. Nanoparticle encapsulation of plant volatile organic compounds is regarded as one of the best strategies that could lead to the enhancement of the bioavailability and biological activity of the volatile compounds by overcoming their physical limitations and promoting their controlled release and cellular absorption. In this review, we will discuss the biosynthesis and analysis of plant volatile organic compounds, their biological activities, and limitations. Furthermore, different types of nanoparticle platforms used to encapsulate the volatiles and the biological efficacies of nanoencapsulated volatile organic compounds will be covered.
Collapse
Affiliation(s)
- Hakmin Mun
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Helen E Townley
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Zhang YF, Zhang ZH, Li MY, Wang JY, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Zuo HX, Jin HL, Ma J, Jin X. Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153425. [PMID: 33310309 DOI: 10.1016/j.phymed.2020.153425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which causes tumor cells to escape T cell killing, and promotes tumor cell survival, cell proliferation, migration, invasion, and angiogenesis. Britannin is a natural product with anticancer pharmacological effects. PURPOSE In this work, we studied the anticancer potential of britannin and explored whether britannin mediated its effect by inhibiting the expression of PD-L1 in tumor cells. METHODS In vitro, the mechanisms underlying the inhibition of PD-L1 expression by britannin were investigated by MTT assay, homology modeling and molecular docking, RT-PCR, western blotting, co-immunoprecipitation, and immunofluorescence. The changes in tumor killing activity, cell proliferation, cell cycle, migration, invasion, and angiogenesis were analyzed by T cell killing assays, EdU labeling, colony formation, flow cytometry, wound healing, matrigel transwell invasion, and tube formation, respectively. In vivo, the antitumor activity of britannin was evaluated in the HCT116 cell xenograft model. RESULTS Britannin reduced the expression of PD-L1 in tumor cells by inhibiting the synthesis of the PD-L1 protein but did not affect the degradation of the PD-L1 protein. Britannin also inhibited HIF-1α expression through the mTOR/P70S6K/4EBP1 pathway and Myc activation through the Ras/RAF/MEK/ERK pathway. Mechanistically, britannin inhibited the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. In addition, britannin could enhance the activity of cytotoxic T lymphocytes and inhibit tumor cell proliferation and angiogenesis by inhibiting PD-L1. Finally, in vivo observations were confirmed by demonstrating the antitumor activity of britannin in a murine xenograft model. CONCLUSION Britannin inhibits the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. Moreover, britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by inhibiting PD-L1 in cancer. The current work highlights the anti-tumor effect of britannin, providing insights into the development of cancer therapeutics via PD-L1 inhibition.
Collapse
Affiliation(s)
- Yu Fan Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|