1
|
Qu T, Zhang N, Li C, Liu X, Yun K, An Q. Network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification analysis to reveal the action mechanism of RenShen Guipi Wan in the treatment of anemia. Biotechnol Lett 2025; 47:43. [PMID: 40237838 DOI: 10.1007/s10529-025-03580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE To explore the action mechanisms of RGW that may treat anemia through the integration of network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification. RESULT In particular, Ginsenoside Rg4, Ginsenoside Rg1, 3,3',4,4'-Tetrahydroxy 2-methoxychalcone, Ginsenoside F1, Glycyrol, Chalconaringenin 4'-glucoside, Licochalcone B, 4',7-Dihydroxyflavone, Glycycoumarin, and Ginsenoside Rh1 were the core components, while TP53, STAT3, PIK3R1, SRC, HIF-1α were the core targets. The GO and KEGG analyses indicated that RGW may modulate multiple biological processes and pathways, including the PI3K-Akt, HIF-1, and NF-kappa B signaling pathways, as well as EGFR tyrosine kinase inhibitor resistance. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of RGW, with stable binding within 100 nano seconds. Experiment verification revealed RGW could improve the routine blood markers of mice, and decrease the level of HIF-1α significantly. CONCLUSION RGW may treat anemia by regulating the PI3K-Akt and HIF-1 signaling pathways. It demonstrates the potential pharmacological mechanism of RGW in the treatment of anemia and provides a reference for clinical application of this formula.
Collapse
Affiliation(s)
- Tingli Qu
- China Institute for Radiation Protection, Taiyuan, China
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Nan Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Chen Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Xuyuan Liu
- Department of Pharmaceutical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, China.
| | - Quan An
- China Institute for Radiation Protection, Taiyuan, China
| |
Collapse
|
2
|
Pan SY, Ou SC, Chang TT. Integrating traditional Chinese medicine in managing neutropenic fever during chemotherapy for pediatric lymphoma: A case report. Explore (NY) 2025; 21:103166. [PMID: 40273657 DOI: 10.1016/j.explore.2025.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Neutropenic fever (NF) is a critical complication in pediatric oncology patients undergoing chemotherapy. While Western medicine provides standardized management, the role of Traditional Chinese Medicine (TCM) as an adjunctive therapy in pediatric cases remains underexplored. CASE PRESENTATION We report the case of a 14-year-old female diagnosed with diffuse large B-cell lymphoma (DLBCL) who developed persistent NF following chemotherapy. Despite broad-spectrum antimicrobial therapy, her fever remained high, reaching 42.2 °C with a WBC count of 70/µL. Given concerns over liver function abnormalities (AST/ALT = 70/229 IU/L) and chemotherapy-related side effects, adjunctive TCM treatment was initiated. The treatment strategy evolved through different therapeutic phases, including resolving dampness and supporting gastrointestinal and hepatic functions, followed by alleviating heat with Sweet-Warm Approach-a TCM method aimed at dispelling Yin Fire-and later a strategy transitioned to a treatment strategy focusing on regulating lung Qi to relieve respiratory symptoms. Clinical improvements were observed, with liver function normalization on July 12th (AST/ALT = 23/26 IU/L) and eventual resolution of fever. CONCLUSION This case highlights the potential role of TCM as a complementary approach in managing chemotherapy-related complications in pediatric patients. The tailored use of TCM strategies may offer additional benefits in supporting immune function and alleviating systemic imbalances in NF. Further studies are warranted to explore its broader application in pediatric oncology.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Department of Chinese medicine, China Medical University Hospital, No.2, Yude Rd. North Dist., Taichung City 404327, Taiwan
| | - Shi-Chen Ou
- Department of Chinese medicine, China Medical University Hospital, No.2, Yude Rd. North Dist., Taichung City 404327, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City, 404333, Taiwan
| | - Tung-Ti Chang
- Department of Chinese medicine, China Medical University Hospital, No.2, Yude Rd. North Dist., Taichung City 404327, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City, 404333, Taiwan.
| |
Collapse
|
3
|
Gao X, Qian B, Yuan T, Pan D, Liang Z, Yin Y, Liu S, Li X, Zhao D, Zhang H. Ginseng extract and total ginsenosides protect the function of hematopoietic stem cells by activating the Notch and Wnt signal pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119798. [PMID: 40216043 DOI: 10.1016/j.jep.2025.119798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer (ginseng), a traditional Chinese medicine, is famous for "Qi-tonifying" effect and widely used for healthcare and therapeutic effects in China. Modern pharmacology showed that Ginseng had a potential impact on hematopoietic stem cells (HSCs) that promote the regeneration of all blood cells in the bone marrow. The "Qi-tonifying" effect of ginseng might have close correlation with hematopoietic function. However, the protective effect of ginseng on HSCs has been rarely studied. AIM OF THE STUDY To elucidate the difference of chemical composition and the effects of ginseng extract (GE), total ginsenosides (TG) and total polysaccharides (TP) on HSCs of cyclophosphamide (CYP)-induced mice. MATERIALS AND METHODS The ginsenosides, monosaccharide and molecular distribution of GE, TG, and TP were detected. We established the mouse myelosuppression model induced by CYP. Eight ginsenosides in mice plasma were detected with high-performance liquid chromatography-mass spectrometer (MS)/MS in GE and TG group. Blood cell parameters (red blood cell, hemoglobin, reticulocyte, platelet, white blood cell, neutrophil, and lymphocyte) of plasma, oxidative stress indicators (superoxide dismutase, catalase, glutathione peroxidase, lactate dehydrogenase, malondialdehyde, and myeloperoxidase) of liver, cell differentiation marker (CD33, and GR-1) and colony forming of HSCs were detected. Ribonucleic acid (RNA)-sequencing analysis was performed on purified HSCs to find differentially expressed genes (DEGs). And the expression of DEGs was verified by quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemical (IHC). RESULTS Our results showed that 24 and 34 ginsenosides were detected in the GE and TG, and the total sugar content was 72.28 %, 4.68 %, and 89.79 % in GE, TG and TP, respectively. The weight-average molar mass/number-average molar mass (Mw/Mn) values of GE and TP were 2.96 and 1.23. TP showed homogeneous polysaccharide. The results of animal experiments showed that Rb1, Rc, Rb2, Rb3, and Rd of mouse serum in TG group was 22.91, 11.64, 10.73, 9.36, and 8.61 times in GE group, respectively. GE, TG and TP obviously elevated the numbers of blood cells, and improved oxidative stress indicator of liver. The results of RNA-sequencing analysis showed that DEGs in GE, TG and TP groups were primarily focused on signaling pathways related to HSCs. GE and TG obviously promoted the expression of Notch1, Notch2 and Jag1, and inhibited the expression of Hes1 of HSCs in model mice via activating Notch signal pathway. Meanwhile, GE and TG also obviously promoted the expression of Wnt7b, Wnt10b, and Fzd6 of HSCs by activating Wnt signal pathway. However, TP hardly activated the expression of these genes in Notch and Wnt signal pathways. Moreover, TG significantly increased the expression of CD33, CD38, CD14, CD4, CD19 and Gp1bα, and GE remarkably increased the expressions of CD34, CD14, CD4, and Gp1bα. GE and TG significantly increased the Gr-1hi and decreased the Gr-1neg. However, TP played less role in HSCs. CONCLUSIONS This study found that TG and GE showed a strong protection on HSCs in model mice induced by CYP via activating the Notch and Wnt signal pathways, however, TP could not activate HSCs. Therefore, we think that ginsenosides from GE and TG are important chemical components in protecting the function of HSCs by activating the Notch and Wnt signal pathways.
Collapse
Affiliation(s)
- Xiang Gao
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Benxin Qian
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Tongyi Yuan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Zuguo Liang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yifei Yin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Songyan Liu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
4
|
Liao H, Hu X, Chen S, Fan Z, Xiao J. Red ginseng prevents niraparib-induced myelosuppression in C57BL/6 mice via inhibiting p53-mediated upregulation of p21 and p27. J Nat Med 2025; 79:381-390. [PMID: 39739292 PMCID: PMC11880060 DOI: 10.1007/s11418-024-01866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025]
Abstract
Myelosuppression is a serious and common complication of targeted therapy for cancer patients, and there are few studies exploring the efficacy of natural drugs in this condition. Niraparib is a widely used targeted therapy for the treatment of advanced ovarian cancer. As a poly (ADP-ribose) polymerase (PARP) inhibitor, niraparib significantly improves progression-free and overall survival in patients. We aimed to explore the potential effect of red ginseng (RG) on niraparib-induced myelosuppression and to further reveal its possible molecular mechanism. Female C57BL/6 mice were divided into control, tumor, model, and RG groups (n = 6). After receiving ID8 ovarian cancer cell inoculation, the mice received niraparib treatment (80 mg/kg) for 3 days. Meanwhile, RG groups (100 and 200 mg/kg) were intragastrically treated with RG extract for 7 days. Compared with the model group, RG extract increased the counts of peripheral blood cells and enhanced the hematopoietic function of bone marrow. Furthermore, RG extract increased the colony yield of hematopoietic progenitor cells (HPCs), facilitated DNA damage repair, alleviated the G0/G1 phase cell cycle arrest, and significantly reversed the increased expression levels of p53, p21, and p27, while stimulating cyclinE1 expression levels. These findings indicate that RG might have therapeutic potential on niraparib-induced myelosuppression, which encourages further clinical trials. This study is the first to explore the efficacy and mechanism of RG in preventing myelosuppression induced by niraparib.
Collapse
Affiliation(s)
- Huiyan Liao
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510140, People's Republic of China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiangdan Hu
- Department of Gynecologic Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, People's Republic of China.
| | - Shenming Chen
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zhaofeng Fan
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jing Xiao
- Department of Gynecologic Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
5
|
Li C, Wang Z, Xing T, Shen M, Zhang X, Chen D, Wang Y, Jiang H, Jiang Q, Huang X, Kong Y. HSPG2 could promote normal haematopoiesis in acute myeloid leukaemia patients after complete remission by repairing bone marrow endothelial progenitor cells. Clin Transl Med 2025; 15:e70220. [PMID: 39914998 PMCID: PMC11802241 DOI: 10.1002/ctm2.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Even after achieving complete remission (CR), many acute myeloid leukaemia (AML) patients suffer from poor haematopoietic recovery after chemotherapy. Previous studies have shown that the damage of bone marrow endothelial progenitor cell (BM EPC) hinders haematopoietic recovery after chemotherapy in mice. Therefore, elucidation of the mechanism and repair strategy of chemotherapy-induced BM EPC damage is urgent needed. METHODS The prospective case-control study enrolled 40 AML patients after CR (CR patients), who received idarubicin and cytarabine (IA) regimen (n = 20), or homoharringtonine, aclarubicin and cytarabine (HAA) regimen (n = 20) as induction chemotherapy, and their age-matched healthy controls (HCs, n = 20). The HSPG2 expression level in BM EPCs and BM plasma were determined via flow cytometry and enzyme-linked immunosorbent assays. The BM EPC's functions were evaluated by apoptosis, reactive oxygen species (ROS) level, migration and tube formation assays. The haematopoiesis-supporting ability and leukaemia cell-supporting ability of BM EPCs were assessed through coculture assay. Moreover, RNA sequencing and qPCR were performed to further explore the underlying mechanism. RESULTS HSPG2 levels decreased in both the BM plasma and BM EPCs of CR patients after IA and HAA induction chemotherapy. Moreover, the BM EPC's functions of CR patients were reduced. In vitro experiments demonstrated that the HSPG2 gene knockdown or cytosine arabinoside treatment led to BM EPC dysfunction, whereas the HSPG2 treatment promoted repair of the BM EPC function in vitro. In addition, we found that the HSPG2 treatment restored the BM EPC function from CR patients without affecting their leukaemia cell-supporting ability. Mechanistically, BM EPC functions and haematopoietic regulation-related genes were significantly decreased after the HSPG2 gene knockdown. CONCLUSION Our findings demonstrate a significant role of HSPG2 in BM EPC functions. This discovery uncovers that HSPG2 is a potential therapeutic target for promoting the BM EPC function of AML-CR patients after chemotherapy. HIGHLIGHTS The HSPG2 level in the BM EPCs of AML-CR patients was decreased, which was related to the reduced BM EPC function. HSPG2 knockdown or Ara-C intervention reduced the HSPG2 level and led to BM EPC dysfunction, which could be restored by HSPG2 treatment in vitro. HSPG2 treatment restored the BM EPC function of AML-CR patients without affecting their leukaemia cell-supporting ability.
Collapse
Affiliation(s)
- Chen‐Yuan Li
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Zhen‐Kun Wang
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Tong Xing
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Meng‐Zhu Shen
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Xin‐Yan Zhang
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Dan‐Dan Chen
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Yu Wang
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Hao Jiang
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Qian Jiang
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| | - Xiao‐Jun Huang
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Yuan Kong
- Peking University People's HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationCollaborative Innovation Center of HematologyPeking UniversityBeijingChina
| |
Collapse
|
6
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Golshekan M, Abedinzade M, Ahmadi E, Neha S, Najafi M. Revolutionizing Cancer Treatment: Harnessing the Power of Mesenchymal Stem Cells for Precise Targeted Therapy in the Tumor Microenvironment. Curr Top Med Chem 2025; 25:243-262. [PMID: 38797895 DOI: 10.2174/0115680266299112240514103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
In recent years, mesenchymal stem cells (MSCs) have emerged as promising anti-- cancer mediators with the potential to treat several cancers. MSCs have been modified to produce anti-proliferative, pro-apoptotic, and anti-angiogenic molecules that could be effective against a variety of malignancies. Additionally, customizing MSCs with cytokines that stimulate pro-tumorigenic immunity or using them as vehicles for traditional chemical molecules with anti-cancer characteristics. Even though the specific function of MSCs in tumors is still challenged, promising outcomes from preclinical investigations of MSC-based gene therapy for a variety of cancers inspire the beginning of clinical trials. In addition, the tumor microenvironment (TME) could have a substantial influence on normal tissue stem cells, which can affect the treatment outcomes. To overcome the complications of TME in cancer development, MSCs could provide some signs of hope for converting TME into unequivocal therapeutic tools. Hence, this review focuses on engineered MSCs (En-MSCs) as a promising approach to overcoming the complications of TME.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Golshekan
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Medical Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Ahmadi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Singh Neha
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Feng J, Zhang M, Ren H, Ren Y, Hao Z, Bian S, Cui J, Li S, Xu J, Daniel MM, Ren F, Xu Z, Tan Y, Chen X, Zhang Y, Chang J, Wang H. Human umbilical cord mesenchymal stem cells improve bone marrow hematopoiesis through regulation of bone marrow adipose tissue. Mol Cell Biochem 2024:10.1007/s11010-024-05156-0. [PMID: 39613944 DOI: 10.1007/s11010-024-05156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/02/2024] [Indexed: 12/01/2024]
Abstract
Bone marrow adipose tissue (BMAT) exhibits a multitude of biological functionalities and influences hematopoiesis. The adiposity status of the bone marrow may play a role in the decline of hematopoietic function. Mesenchymal stem cells (MSCs) constitute crucial regulators within the bone marrow microenvironment; however, their precise role in modulating BMAT and the subsequent implications for hematopoiesis remain poorly understood. We conducted in vivo studies to observe the effects of human umbilical cord mesenchymal stem cells (hucMSCs) on BMAT accumulation and restoration of hematopoietic function in mice with drug-induced hematopoietic impairment. Concurrently, in vitro co-culture experiments were used to investigate the impact of hucMSCs on preadipocytes and mature adipocytes, and the potential subsequent consequences for hematopoietic cells. Moreover, we explored the potential mechanisms underlying these interactions. Our findings reveal that hucMSCs concomitantly mitigate BMAT accumulation and facilitate the recovery of hematopoietic function in mouse models with drug-induced hematopoietic impairment. In vitro, hucMSCs potentially impede adipogenic differentiation of 3T3-L1 preadipocytes through interference with the JAK2/STAT3 signaling pathway and affect the functionality of mature adipocytes, thus mitigating the detrimental effects of adipocytes on hematopoietic stem cells (HSCs). Furthermore, we demonstrate that hucMSCs may protect hematopoietic cells from adipocyte-induced damage by protecting antioxidative mechanisms. These results suggest that hucMSCs exhibit an inhibitory effect on the excessive expansion of adipose tissue and modulate adipose tissue function, which may potentially contribute to the regulation of the bone marrow microenvironment and favorably influence hematopoietic function improvement.
Collapse
Affiliation(s)
- Jingyi Feng
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Miao Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Huanying Ren
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yan Ren
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhuanghui Hao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Sicheng Bian
- Department of Medicine, The MetroHealth System, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Jiangxia Cui
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Shuo Li
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jing Xu
- Department of Medical Cell Biology and Genetics, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Muteb Muyey Daniel
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Fanggang Ren
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhifang Xu
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yanhong Tan
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xiuhua Chen
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yaofang Zhang
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jianmei Chang
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Hongwei Wang
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
8
|
Sana SS, Chandel AKS, Raorane CJ, Aly Aly Saad M, Kim SC, Raj V, Sangkil Lee. Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156007. [PMID: 39276537 DOI: 10.1016/j.phymed.2024.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | | | - Mohamed Aly Aly Saad
- Department of Electrical and Computer Engineering, Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Nian Q, Liu R, Zeng J. Unraveling the pathogenesis of myelosuppression and therapeutic potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155810. [PMID: 38905848 DOI: 10.1016/j.phymed.2024.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Myelosuppression is a serious and common complication of radiotherapy and chemotherapy in cancer patients and is characterized by a reduction of peripheral blood cells. This condition not only compromises the efficacy of treatment but also increases the risk of patient death. Natural products are emerging as promising adjuvant therapies due to their antioxidant properties, ability to modulate immune responses, and capacity to stimulate haematopoietic stem cell proliferation. These therapies demonstrate significant potential in ameliorating myelosuppression. METHODS A systematic review of the literature was performed utilizing the search terms "natural products," "traditional Chinese medicine," and "myelosuppression" across prominent databases, including Google Scholar, PubMed, and Web of Science. All pertinent literature was meticulously analysed and summarized. The objective of this study was to perform a pertinent analysis to elucidate the mechanisms underlying myelosuppression and to categorize and synthesize information on natural products and traditional Chinese medicines employed for the therapeutic management of myelosuppression. RESULTS Myelosuppression resulting from drug and radiation exposure, viral infections, and exosomes is characterized by multiple underlying mechanisms involving immune factors, target genes, and the activation of diverse signalling pathways, including the (TGF-β)/Smad pathway. Recently, traditional Chinese medicine monomers and compounds, including more than twenty natural products, such as Astragalus and Angelica, have shown promising potential as therapeutics for ameliorating myelosuppression. These natural products exert their effects by modulating haematopoietic stem cells, immune factors, and critical signalling pathways. CONCLUSIONS Understanding the various mechanisms of myelosuppression facilitates the exploration of natural product therapies and biological target identification for evaluating herbal medicine efficacy. This study aimed to establish a foundation for the clinical application of natural products and provide methodologies and technical support for exploring additional treatments for myelosuppression.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Guo M, Zeng J, Li J, Jiang L, Wu X, Ren Z, Hu Z. Pharmacological Components and Mechanism Research on the Treatment of Myelosuppression after Chemotherapy with Danggui Jixueteng Decoction Based on Spectrum-Effect Relationships and Transcriptome Sequencing. ACS OMEGA 2024; 9:28926-28936. [PMID: 38973888 PMCID: PMC11223127 DOI: 10.1021/acsomega.4c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Danggui Jixueteng decoction (DJD) has been used to treat anemia for many years and has been shown to be effective. However, the mechanism of action and effective components are yet unknown. We want to search for pharmacodynamic components in DJD with therapeutic effects on myelosuppression after chemotherapy (MAC), utilizing a spectrum-effect connection study based on gray relational analysis and partial least-squares regression analysis. Transcriptome sequencing (RNA-Seq) was used to investigate the mechanism by which DJD treats MAC. In this study, fingerprints of different batches of DJD (S1-S10) were established by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), after which the resulting shared peaks were screened and identified. A total of 21 common peaks were screened through the fingerprints of different batches of DJD, and the similarity of each profile was greater than 0.92. The 21 shared peaks were identified by comparison with the standard sample and searching on a MassLynx 4.1 workstation. The rat model of MAC was established by intraperitoneal injection of cyclophosphamide, and DJD treatment was carried out in parallel with the establishment of the model. White blood cell count, red blood cell count, platelet count, interleukin-3, hemoglobin concentration, granulocyte-macrophage colony-stimulating factor, and nucleated cell count were used as efficacy indicators. Pharmacodynamic results indicated that DJD could effectively improve the pharmacodynamic indices of MAC rats. The results of gray relational analysis demonstrated eight peaks with high correlation with efficacy, which were 2, 7, 10, 14, 15, 16, 18, and 21, and the partial least-squares regression analysis showed four peaks with variable importance in projection values greater than 1, which were 10, 12, 13, and 19. RNA-Seq was used to identify DEGs in rat bone marrow cells, Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were performed. The genes related to the effects of DJD on MAC were mainly involved in the phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K-Akt) signaling pathway, the mitogen-activated protein kinase signaling pathway, actin cytoskeleton regulation, focal adhesion, and Rap1 signaling pathways. The results of the RNA-Seq study were confirmed by a qPCR experiment. The effective compounds of DJD against MAC include albiflorin, paeoniflorin, gallopaeoniflorin, salvianolic acid H/I, albiflorin R1, salvianolic acid B, salvianolic acid E, benzoylpaeoniflorin, and C12H18N5O4. The mechanism by which DJD prevents and treats MAC might involve the control of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Mingxin Guo
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Jiaqi Zeng
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Jing Li
- Zibo
Central Hospital, Zibo 255000, China
| | - Luyao Jiang
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Xia Wu
- Guangdong
Pharmaceutical University, Guangzhou 516006, China
| | - Zhanyun Ren
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Zhiqiang Hu
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| |
Collapse
|
11
|
Conti V, Polcaro G, De Bellis E, Donnarumma D, De Rosa F, Stefanelli B, Corbi G, Sabbatino F, Filippelli A. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J Pers Med 2024; 14:685. [PMID: 39063939 PMCID: PMC11278393 DOI: 10.3390/jpm14070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Natural Health Products (NHPs) have long been considered a valuable therapeutic approach for the prevention and treatment of various diseases, including cancer. However, research on this topic has led to inconclusive and often controversial results. This review aims to provide a comprehensive update of the effects and mechanisms related to the use of NHPs, to describe the results of randomized clinical trials (RCTs) on their effects in cancer patients, and to critically discuss factors influencing clinical outcomes. RCTs available in the literature, even those studying the same NHP, are very heterogeneous in terms of indications, doses, route and timing of administration, and outcomes evaluated. Silymarin, ginsenoside, and vitamin E appear to be useful in attenuating adverse events related to radiotherapy or chemotherapy, and curcumin and lycopene might provide some benefit in patients with prostate cancer. Most RCTs have not clarified whether NHP supplementation provides any real benefit, while harmful effects have been shown in some cases. Overall, the available data suggest that although there is some evidence to support the benefits of NHPs in the management of cancer patients, further clinical trials with the same design are needed before their introduction into clinical practice can be considered.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| | - Giovanna Polcaro
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Emanuela De Bellis
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Danilo Donnarumma
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Federica De Rosa
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Francesco Sabbatino
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
12
|
Ma B, Hou P, Liu R, Cang A, Zhao L. Exploration of the Active Component and Mechanisms of Shengyu Decoction Against Myelosuppression Using Network Pharmacology and in vitro Experimental Validation. Drug Des Devel Ther 2024; 18:2405-2420. [PMID: 38915868 PMCID: PMC11195678 DOI: 10.2147/dddt.s458953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Background Chemotherapy-induced myelosuppression (CIM) is a common adverse reaction with a high incidence rate that seriously affects human health. Shengyu Decoction (SYD) is often used to treat CIM. However, its pharmacodynamic basis and therapeutic mechanisms remain unclear. Purpose This study aimed to clarify the active components and mechanisms of SYD in CIM. Methods LC-QTOF/MS was used to identify the absorbable components of SYD. A series of network pharmacology methods have been applied to explore hub targets and potential mechanisms. Molecular docking was used to identify the binding ability of potential active ingredients and hub targets. Finally, in vitro experiments were performed to validate these findings. Results In this study, 33 absorbable prototype components were identified using LC-QTOF/MS. A total of 62 possible targets of SYD in myelosuppression were identified. KEGG pathway enrichment analyses showed that some signaling pathways such as PI3K-Akt and HIF-1 may be the mechanisms by which it functions. Among them, we verified the PI3K-Akt pathway. 6 Hub proteins were screened by Protein-protein interaction (PPI) network analysis. Molecular docking results showed that four absorbable components in SYD showed good binding with six Hub targets. The effectiveness of the four predicted compounds and the mechanism were verified in vitro. It has also been shown that the active component could promote the proliferation of bone marrow stromal cells (BMSCs) and block apoptosis of BMSCs, which may be related to the PI3K-Akt pathway. This result is consistent with the network pharmacology approach and molecular docking predictions. Conclusion Our results provided not only the candidate active component of SYD, but also a new insights into mechanism of SYD in the treatment of CIM.
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Pharmacy, People’s Hospital of Liaoning Province, Shenyang, 110010, People’s Republic of China
| | - Pengyi Hou
- SCIEX Analytical Instrument Trading Co, Shanghai, 200000, People’s Republic of China
| | - Ran Liu
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, 518000, People’s Republic of China
| | - Aijun Cang
- Department of Pharmacy, People’s Hospital of Liaoning Province, Shenyang, 110010, People’s Republic of China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110010, People’s Republic of China
| |
Collapse
|
13
|
Ali M, Manjula SN, Mohiuddin I, Mruthunjaya K, Shakeel F, Mir SA, Wani SUD. Noni enhances the anticancer activity of cyclophosphamide and suppresses myelotoxicity and hepatotoxicity in tumor-bearing mice. J Cancer Res Clin Oncol 2024; 150:212. [PMID: 38662247 PMCID: PMC11045611 DOI: 10.1007/s00432-024-05734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND AIM Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Sri Adichunchanagiri University, B.G Nagar, Bellur, Karnataka, 571418, India.
| | - S N Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Ishfaq Mohiuddin
- Department of Zoology, Annamalai University, Annamalainagar, 608 002, India
| | - K Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
14
|
Gao Y, Zhang Y, Liu W, Zhang N, Gao Q, Shangguan J, Li N, Zhao Y, Jia Y. Danggui Buxue decoction alleviates cyclophosphamide-induced myelosuppression by regulating β-hydroxybutyric acid metabolism and suppressing oxidative stress. PHARMACEUTICAL BIOLOGY 2023; 61:710-721. [PMID: 37096658 PMCID: PMC10132245 DOI: 10.1080/13880209.2023.2201606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Danggui Buxue Decoction (DBD) is an effective complementary medicine in alleviating myelosuppression after chemotherapy (MAC). However, its mechanism of action is elusive. OBJECTIVE To illustrate that regulating β-hydroxybutyric acid (β-OHB) metabolism and suppressing oxidative stress could be a potential mechanism of action for DBD in alleviating MAC. MATERIALS AND METHODS After HPLC quantification and dose testing (3, 6 and 10 g/kg, gavage) of DBD, Sprague-Dawley rats were divided into control, cyclophosphamide (CTX) (30 mg/kg CTX for 5 days, intraperitoneal administration) and CTX + DBD groups (6 g/kg DBD for 14 days, gavage). Blood cell counts, thigh bone histological examination, β-OHB levels, oxidative stress indices and HDAC1 activity were tested. The biological function of β-OHB was verified in vitro (hBMSC cells were incubated in culture mediums that contained 40 μM CTX and β-OHB in 0, 1, 2.5, 5, 10 mM) and in vivo (MAC rat model, 3 g/kg β-OHB for 14 days, gavage). RESULTS Rats in the CTX + DBD group showed upregulated blood cell counts (118-243%), β-OHB levels (495 nmol/mL in blood, 122 nmol/mg in marrow supernatant) and downregulated HDAC1 activity (59%), and oxidative stress indices (60-85%). In vitro, 5 mM β-OHB improved hBMSC cell migration (123%) and proliferation (131%). In vivo, rats treated with 3 g/kg β-OHB showed upregulated blood cell counts (121-182%) and downregulated HDAC1 activity (64%) and oxidative stress indices (65-83%). DISCUSSION AND CONCLUSIONS DBD, a traditional Chinese medicine, alleviates MAC by intervening in β-OHB metabolism and oxidative stress.
Collapse
Affiliation(s)
- Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
- CONTACT Yiqiao Gao
| | - Yixin Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Wei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
| | - Nan Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
| | | | - Na Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Yanlong Jia School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan453003, P. R. China
| |
Collapse
|
15
|
Liu L, Yang B, Yuan H, Yu N, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. Human Serum Albumin Nanoparticles as a Carrier of 20( S)-Protopanaxadiol via Intramuscular Injection to Alleviate Cyclophosphamide-Induced Myelosuppression. Mol Pharm 2023; 20:5125-5134. [PMID: 37647098 DOI: 10.1021/acs.molpharmaceut.3c00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Myelosuppression is a prevalent and potentially life-threatening side effect during chemotherapy. As the main active component of ginseng, 20(S)-protopanaxadiol (PPD) is capable of relieving myelosuppression by restoring hematopoiesis and immunity. In this study, PPD was encapsulated in human albumin nanoparticles (PPD-HSA NPs) by nanoparticle albumin-bound (Nab) technology for intramuscular injection to optimize its pharmacokinetic properties and promote recovery of myelosuppression. The prepared PPD-HSA NPs had a particle size of about 280 nm with a narrow size distribution. PPD dispersed as an amorphous state within the PPD-HSA NPs, and the NPs exhibited in vitro sustained release behavior. PPD-HSA NPs showed a favorable pharmacokinetic profile with high absolute bioavailability, probably due to the fact that NPs entered into the blood circulation via lymphatic circulation and were eliminated slowly. In vivo distribution experiments demonstrated that PPD-HSA NPs were mainly distributed in the liver and spleen, but a strong fluorescence signal was also found in the inguinal lymph node, indicating drug absorption via a lymph route. The myelosuppressive model was established using cyclophosphamide as the inducer. Pharmacodynamic studies confirmed that PPD-HSA NPs were effective in promoting the level of white blood cells. Moreover, the neutrophil and lymphocyte counts were significantly higher in the PPD-HSA NPs group compared with the control group. This preliminary investigation revealed that PPD-HSA NPs via intramuscular administration may be an effective intervention strategy to alleviate myelosuppression.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Bing Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haoyang Yuan
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Nini Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupeng Feng
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yu Zhang
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Jingxin Gou
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Xing Tang
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| |
Collapse
|
16
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Li J, Wang L, Yu X, Guan Y, Wang X. Panaxadiol targeting IL2 inducible T cell kinase promotes T cell immunity in radiotherapy. Anticancer Drugs 2023; 34:705-714. [PMID: 36730497 DOI: 10.1097/cad.0000000000001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ginseng, as a traditional Chinese medicine, has a good protective effect against radiotherapy, but its mechanism in radiotherapy still needs to be further explored. The active ingredients of Ginseng were analyzed according to pharmacodynamics in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and the target genes of active ingredients were screened by UniProt, PubChem and Swiss target prediction database. The differentially expressed genes of GSE6871 and GSE20162 were analyzed from the GEO database. Further, cluster analysis and enrichment analysis were carried out through protein-protein interaction network to determine hub gene. Next, build the drug-disease target network, conduct molecular docking simulation, and determine the key ingredients and targets of Ginseng on radiotherapy. We screened 16 active ingredients of Ginseng and 747 target genes from the TCMSP database. Eighty-two common differentially expressed genes were obtained by the GEO database. After topological analysis, we finally determined CD28, FYN, IL2 inducible T cell kinase (ITK), MYC and CD247 as hub genes. After integrating the drug-disease target network and molecular docking, we found that Panaxadiol, as an active ingredient of Ginseng, can target ITK to participate in T cell signal receptor pathway and act on radiotherapy. Panaxadiol can act on the key target ITK of radiotherapy, participate in T cell signal receptor pathway, and then affect the proliferation, differentiation and immune response of radiotherapy T cells, so as to reduce the side effects of radiotherapy.
Collapse
Affiliation(s)
- Jiuwei Li
- College of Second Clinical Medical, Shandong University of Traditional Chinese Medicine
| | - Lu Wang
- Office of Academic Research, School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine
| | - Xiaodan Yu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan
| | - Yong Guan
- Gaoxinyuan Experimental School of Zhucheng, Weifang
| | - Xue Wang
- Pharmacology of Traditional Chinese Medical Formulae, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Yao J, Liu J, He Y, Liu L, Xu Z, Lin X, Liu N, Kai G. Systems pharmacology reveals the mechanism of Astragaloside IV in improving immune activity on cyclophosphamide-induced immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116533. [PMID: 37100262 DOI: 10.1016/j.jep.2023.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myelosuppression, also known as bone marrow suppression (BMS), is a pathological phenomenon of the decrease in the production of blood cells and further lead to immune homeostasis disorder. Astragalus mongholicus Bunge (AM, checked with The World Flora Online, http://www.worldfloraonline.org, updated on January 30, 2023) is a traditional Chinese medicine with efficacy of tonifying Qi and strengthening body immunity in thousands of years of clinical practice in China. Astragaloside IV (AS-IV) is a major active ingredient of AM, which plays an important role in regulating immune system through different ways. AIM OF THE STUDY This study was aimed to investigate the protective effect and mechanism of AS-IV on macrophages in vitro and cyclophosphamide (CTX)-induced immunosuppressive mice in vivo, and to provide experimental basis for the prevention and treatment of AS-IV in myelosuppression. MATERIALS AND METHODS Based on network pharmacology and molecular docking technology, the core targets and signaling pathways of saponins of AM against myelosuppression were screened. And then, the immunoregulatory effect of AS-IV on RAW264.7 cells was investigated by cellular immune activity and cellular secretion analysis in vitro. In this way, the effects of AS-IV on the main potential targets of HIF-1α/NF-κB signaling pathway were analyzed by qRT-PCR and Western blot methods. Furthermore, comprehensive analysis of the effects of AS-IV against CTX-induced mice were conducted on the basis of immune organs indices analysis, histopathological analysis, hematological analysis, natural killer cell activity analysis and spleen lymphocyte transformation activity analysis. In order to further verify the relationship between active ingredients and action targets, drug inhibitor experiments were finally conducted. RESULTS AS-IV, as a potential anti-myelosuppressive compound, was screened by systematic pharmacological methods to act on target genes including HIF1A and RELA together with the HIF-1α/NF-κB signaling pathway. Further studies by molecular docking technology showed that AS-IV had good binding activity with HIF1A, RELA, TNF, IL6, IL1B and other core targets. Besides, cellular and animal experiments validation results showed that AS-IV could enhance the migration and phagocytosis of RAW264.7 cells, and protect the immune organs such as spleen and thymus together with bone tissues from damage. By this means, immune cell function including spleen natural killer cell and lymphocyte transformation activity were also enhanced. In addition, white blood cells, red blood cells, hemoglobin, platelets and bone marrow cells were also significantly improved in the suppressed bone marrow microenvironment (BMM). In kinetic experiments, the secretion of cytokines such as TNF-α, IL-6 and IL-1β were increased, and IL-10, TGF-β1 were decreased. The key regulatory proteins such as HIF-1α, NF-κB, PHD3 in HIF-1α/NF-κB signaling pathway were also regulated in the results of upregulated expression of HIF-1α, p-NF-κB p65 and PHD3 at the protein or mRNA level. Finally, the inhibition experiment results suggested that AS-IV could significantly improve protein response in immunity and inflammation such as HIF-1α, NF-κB and PHD3. CONCLUSION AS-IV could significantly relieve CTX-induced immunosuppressive and might improve the immune activity of macrophages by activating HIF-1α/NF-κB signaling pathway, and provide a reliable basis for the clinical application of AS-IV as a potentially valuable regulator of BMM.
Collapse
Affiliation(s)
- Jiaxiong Yao
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Junqiu Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yining He
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zonghui Xu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xianming Lin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Na Liu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
19
|
The Application of Ethnomedicine in Modulating Megakaryocyte Differentiation and Platelet Counts. Int J Mol Sci 2023; 24:ijms24043168. [PMID: 36834579 PMCID: PMC9961075 DOI: 10.3390/ijms24043168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Megakaryocytes (MKs), a kind of functional hematopoietic stem cell, form platelets to maintain platelet balance through cell differentiation and maturation. In recent years, the incidence of blood diseases such as thrombocytopenia has increased, but these diseases cannot be fundamentally solved. The platelets produced by MKs can treat thrombocytopenia-associated diseases in the body, and myeloid differentiation induced by MKs has the potential to improve myelosuppression and erythroleukemia. Currently, ethnomedicine is extensively used in the clinical treatment of blood diseases, and the recent literature has reported that many phytomedicines can improve the disease status through MK differentiation. This paper reviewed the effects of botanical drugs on megakaryocytic differentiation covering the period 1994-2022, and information was obtained from PubMed, Web of Science and Google Scholar. In conclusions, we summarized the role and molecular mechanism of many typical botanical drugs in promoting megakaryocyte differentiation in vivo, providing evidence as much as possible for botanical drugs treating thrombocytopenia and other related diseases in the future.
Collapse
|
20
|
Peng SY, Yen CY, Lan TH, Jeng JH, Tang JY, Chang HW. Combined Treatment (Ultraviolet-C/Physapruin A) Enhances Antiproliferation and Oxidative-Stress-Associated Mechanism in Oral Cancer Cells. Antioxidants (Basel) 2022; 11:2227. [PMID: 36421413 PMCID: PMC9686797 DOI: 10.3390/antiox11112227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Physapruin A (PHA), a Physalis peruviana-derived withanolide, exhibits antiproliferation activity against oral and breast cancer cells. However, its potential antitumor effects in combined treatments remain unclear. This investigation focused on evaluating the impact of the combined treatment of ultraviolet-C with PHA (UVC/PHA) on the proliferation of oral cancer cells. The UVC-caused antiproliferation was enhanced by combination with PHA in oral cancer (Ca9-22 and CAL 27) but not normal cells (SG), as evidenced by ATP detection, compared with UVC or PHA alone. UVC/PHA showed a greater extent of subG1 increase, G2/M arrest, annexin-V-assessed apoptosis, caspase 3/7 activation, and reactive oxygen species (ROS) in the UVC or PHA treatment of oral cancer compared to normal cells. Moreover, the mitochondrial functions, such as mitochondrial superoxide bursts and mitochondrial membrane potential destruction, of oral cancer cells were also enhanced by UVC/PHA compared to UVC or PHA alone. These oxidative stresses triggered γH2AX and 8-hydroxyl-2'-deoxyguanosine-assessed DNA damage to a greater extent under UVC/PHA treatment than under UVC or PHA treatment alone. The ROS inhibitor N-acetylcysteine reversed all these UVC/PHA-promoted changes. In conclusion, UVC/PHA is a promising strategy for decreasing the proliferation of oral cancer cells but shows no inhibitory effect on normal cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Hsun Lan
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
21
|
Effect of Shenqi Fuzheng Injection on Leukopenia and T-cell Subsets in Patients with Non-small Cell Lung Cancer Undergoing Radiotherapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2832739. [PMID: 35966722 PMCID: PMC9374546 DOI: 10.1155/2022/2832739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Purpose The aim of this study is to evaluate the effect of Shenqi fuzheng injection on leukopenia and T-cell subsets in patients with non-small cell lung cancer (NSCLC) undergoing radiotherapy. Methods A total of 124 patients with advanced NSCLC treated in the oncology department of our hospital from January 2017 to January 2019 were included and assigned at a ratio of 1 : 1 to receive conventional radiotherapy (control group, n = 62) or conventional radiotherapy plus Shenqi Fuzheng injection (study group, n = 62) via the random number table method. Results The study group showed a significantly higher objective response rate (ORR) and a lower incidence of leukopenia versus the control group (P < 0.05). After the treatment, Shenqi Fuzheng injection resulted in significantly lower levels of carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) in the study group versus conventional treatment given to the control group. After the treatment, the control group showed significantly decreased ratios of CD3+ T cells, CD4+ T cells, and CD4+/CD8+, and an increased ratio of CD8+ T cells, and significant differences when compared with the study group. The T-cell subsets of the patients in the study group showed no significant changes than those between the treatment. The median OS was 20.0 months in the control group and 23.5 months in the study group. The differences between the two groups in terms of OS did not come up to the statistical standard. Conclusion Shenqi Fuzheng injection for NSCLC patients undergoing radiotherapy elevates the number of white blood cells, regulates T-cell immune function, reduces tumor markers, and enhances clinical efficacy. Further clinical trials are, however, required prior to clinical promotion.
Collapse
|
22
|
Wang Y, Ni W, Jin X, Li J, Yu Y. Vitexin-2-O-rhamnoside improves immunosuppression, oxidative stress, and phosphorylation of PI3K/Akt signal pathway in cyclophosphamide treated mice. Eur J Pharmacol 2022; 925:174999. [PMID: 35525311 DOI: 10.1016/j.ejphar.2022.174999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Vitexin-2-O-rhamnoside (VR) is an important active substance in hawthorn, which is widely used as a food or functional food raw material; however, its immunomodulatory activities have not been extensively studied. In this study, BALB/c mice immunocompromised by cyclophosphamide (CY) were used as models to explore the effects of VR on the immunity and antioxidant capacity of mice. The results revealed that VR can restore weight to the immunosuppressed mice to varying degrees, improve spleen and thymus injury, and restore peripheral blood levels. Furthermore, it can effectively promote the proliferation of T and B lymphocytes, natural killer (NK) and cytotoxic T lymphocyte (CTL) cell activities, and the secretion and mRNA expression of cytokines IFN-γ, IL-2, IL-6, and IL-12 to 0.36, 0.34, 50.25%, 45.74%, 28.36 pg/mL or 0.68, 31.81 pg/mL or 0.74, 20.40 pg/mL or 0.75, and 19.81 pg/mL or 0.55, respectively. Moreover, it can upregulate the phosphorylation level of PI3K/Akt signaling pathway in mice immunosuppressed by CY, increase the activities of glutathione peroxidase (GSH-Px), chloramphenicol acetyltransferase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and decrease the level of malondialdehyde (MDA). This study provides a theoretical and experimental basis for the research and development of health products with targeted efficacy, and the development of diversified products in the hawthorn deep-processing industry.
Collapse
Affiliation(s)
- Yilun Wang
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Wan Ni
- College of Food Science and Engineering, Jinzhou Medical College, Jinzhou, 121013, Liaoning Province, China
| | - Xin Jin
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Jingshuang Li
- College of Veterinary, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Yang Yu
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China.
| |
Collapse
|
23
|
Wang JY, Xing Y, Li MY, Zhang ZH, Jin HL, Ma J, Lee JJ, Zhong Y, Zuo HX, Jin X. Panaxadiol inhibits IL-1β secretion by suppressing zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114715. [PMID: 34648898 DOI: 10.1016/j.jep.2021.114715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of Panax ginseng C.A.Mey. in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Panaxadiol is a triterpenoid sapogenin monomer found in the roots of Panax ginseng C.A.Mey. and has been proven to have various bio-activities such as anti-inflammatory, anti-tumour and neuroprotective effects. AIM OF THE STUDY The present study focuses on investigating the inflammation inhibitory effect and mechanism of panaxadiol by regulating zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. MATERIALS AND METHODS In vitro, the underlying mechanisms by which panaxadiol inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. Recombinant adeno-associated virus (AAV serotype 9) vector was used to establish ZFP91 knockdown mouse. RESULTS We confirmed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91 in macrophages. Further analysis revealed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome. Meanwhile, panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of MAPKs. In vivo, prominent anti-inflammatory effects of panaxadiol were demonstrated in a DSS induced acute colitis mouse model and in an alum-induced peritonitis model by suppressing ZFP91-regulated secretion of inflammatory mediators, consistent with the results of the AAV-ZFP91 knockdown in mice. CONCLUSIONS We report for the first time that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs, providing evidence for anti-inflammation mechanism of panaxadiol treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yi Zhong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
24
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
25
|
Dan H, Haichao Z, Ziyang Y, Di Z, Shuihan Z. Protective effects of Fufang Ejiao Jiang against aplastic anemia assessed by network pharmacology and metabolomics strategy. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Hong T, Liu X, Zhou Q, Liu Y, Guo J, Zhou W, Tan S, Cai Z. What the Microscale Systems "See" In Biological Assemblies: Cells and Viruses? Anal Chem 2021; 94:59-74. [PMID: 34812604 DOI: 10.1021/acs.analchem.1c04244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xing Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Guo
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
27
|
Wang S, Zhang Y, Meng W, Dong Y, Zhang S, Teng L, Liu Y, Li L, Wang D. The Involvement of Macrophage Colony Stimulating Factor on Protein Hydrolysate Injection Mediated Hematopoietic Function Improvement. Cells 2021; 10:2776. [PMID: 34685756 PMCID: PMC8534652 DOI: 10.3390/cells10102776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Protein hydrolysate injection (PH) is a sterile solution of hydrolyzed protein and sorbitol that contains 17 amino acids and has a molecular mass of 185.0-622.0 g/mol. This study investigated the effect of PH on hematopoietic function in K562 cells and mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction. In these myelosuppressed mice, PH increased the number of hematopoietic cells in the bone marrow (BM) and regulated the concentration of several factors related to hematopoietic function. PH restored peripheral blood cell concentrations and increased the numbers of hematopoietic stem cells and progenitor cells (HSPCs), B lymphocytes, macrophages, and granulocytes in the BM of CTX-treated mice. Moreover, PH regulated the concentrations of macrophage colony stimulating factor (M-CSF), interleukin (IL)-2, and other hematopoiesis-related cytokines in the serum, spleen, femoral condyle, and sternum. In K562 cells, the PH-induced upregulation of hematopoiesis-related proteins was inhibited by transfection with M-CSF siRNA. Therefore, PH might benefit the BM hematopoietic system via the regulation of M-CSF expression, suggesting a potential role for PH in the treatment of hematopoietic dysfunction caused by cancer therapy.
Collapse
Affiliation(s)
- Shimiao Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Yuchong Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
| | - Yihao Dong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Sujie Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| |
Collapse
|
28
|
Zhang Q, Li X, Gao X, Cao C, Hu Y, Guo H. Total saponins from stems and leaves of Panax quinquefolius L. ameliorate podophyllotoxin-induced myelosuppression and gastrointestinal toxicity. Biomed Chromatogr 2021; 36:e5266. [PMID: 34648200 DOI: 10.1002/bmc.5266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Podophyllotoxin (POD), a natural lignan distributed in podophyllum species, possesses significant antitumor and antiviral activities. But POD often causes serious side effects, such as myelosuppression, gastrointestinal toxicity, neurotoxicity, hepatic and renal dysfunction, and even death, which not only hinder its clinical application but also threaten the patient's health. Therefore, an effective treatment against POD-induced toxicity is important. Our preliminary study found that the total saponins from the stems and leaves of Panax quinquefolius L. (PQS) could significantly reduce the death of mice caused by POD. To reveal how PQS can alleviate POD-induced toxicity, further study was needed. Peripheral blood cell analysis, diarrhea score, and histological examination demonstrated that PQS could relieve myelosuppression and gastrointestinal side effects induced by POD. Then, metabolomics was performed to investigate the possible protective mechanism of PQS on POD-induced myelosuppression and gastrointestinal toxicity. Metabolomics analysis showed that metabolic changes caused by POD could be reversed by PQS to some extent; 23 metabolites altered significantly after POD exposure, and 11 metabolites significantly reversed by PQS pretreatment. Metabolic pathway analysis suggested that PQS might exhibit its protective effects by rebalancing disordered arginine, glutamine, and unsaturated fatty acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China.,School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xuemei Li
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Xiaoxin Gao
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Chunran Cao
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Yuchi Hu
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Hongzhu Guo
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Peng SY, Tang JY, Li RN, Huang HW, Wu CY, Chiu CC, Chang FR, Zhang HW, Lee YJ, Sheu JH, Chang HW. Oxidative Stress-Dependent Synergistic Antiproliferation, Apoptosis, and DNA Damage of Ultraviolet-C and Coral-Derived Sinularin Combined Treatment for Oral Cancer Cells. Cancers (Basel) 2021; 13:cancers13102450. [PMID: 34070049 PMCID: PMC8158103 DOI: 10.3390/cancers13102450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Combined treatment is increasingly used to improve cancer therapy. Non-ionizing radiation ultraviolet-C (UVC) and sinularin, a coral Sinularia flexibilis-derived cembranolide, were separately reported to provide an antiproliferation function to some kinds of cancer cells. However, an antiproliferation function using the combined treatment of UVC/sinularin has not been investigated as yet. This study aimed to examine the combined antiproliferation function and explore the combination of UVC/sinularin in oral cancer cells compared to normal oral cells. Regarding cell viability, UVC/sinularin displays the synergistic and selective killing of two oral cancer cell lines, but remains non-effective for normal oral cell lines compared to treatments in terms of MTS and ATP assays. In tests using the flow cytometry, luminescence, and Western blotting methods, UVC/sinularin-treated oral cancer cells exhibited higher reactive oxygen species production, mitochondrial superoxide generation, mitochondrial membrane potential destruction, annexin V, pan-caspase, caspase 3/7, and cleaved-poly (ADP-ribose) polymerase expressions than that in normal oral cells. Accordingly, oxidative stress and apoptosis are highly induced in a combined UVC/sinularin treatment. Moreover, UVC/sinularin treatment provides higher G2/M arrest and γH2AX/8-hydroxyl-2'deoxyguanosine-detected DNA damages in oral cancer cells than in the separate treatments. A pretreatment can revert all of these changes of UVC/sinularin treatment with the antioxidant N-acetylcysteine. Taken together, UVC/sinularin acting upon oral cancer cells exhibits a synergistic and selective antiproliferation ability involving oxidative stress-dependent apoptosis and cellular DNA damage with low toxic side effects on normal oral cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ruei-Nian Li
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Hong-Wei Zhang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yun-Jou Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|