1
|
Li T, Zhao C, Fu Q, Meng F, Liu D, Li M. Freeze-thaw cycles affect hydrothermal and heavy metal transport mechanisms in porous media: Closed and transient flooded system conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178750. [PMID: 39923482 DOI: 10.1016/j.scitotenv.2025.178750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Freeze-thaw cycles (FTCs) are one of the main drivers of soil heavy metals (HMs) migration. Soil hydrothermal and HMs migration are closely related, and the hydrothermal environments studied so far are relatively homogeneous and the effects of stagnant water infiltration during freeze-thaw periods are not sufficiently explored. To overcome this limitation, this study sets up FTCs tests under two conditions, a closed system(W2) and a briefly flooded system(W2f). The results showed that the daily mean concentration change rates of HMs in soil layers 4 and 5 in W2f were greater than those in W2 and peaked after the 8th FTCs, and the concentration change rates of Cr and Cd reached 35.52 (mg/kg)/d and 5.02 (mg/kg)/d, respectively (W2f), as well as 25.34 (mg/kg)/d and 3.74 (mg/kg)/d (W2). In contrast, the rate of change in the daily mean concentration of HMs in layer 6 was significantly lower in W2f than in W2. In addition, frequent freezing and thawing altered the preferential flow characteristics of the soil, leading to a slowdown in the rate of HMs migration with increasing number of FTCs. FTCs had little effect on the lateral migration of HMs, but W2f was able to increase lateral migration proximal to the inundation zone. In conclusion, W2f significantly changed the migration pattern of HMs in soil and affected their enrichment in soil, and this study can provide a theoretical basis for the analysis of the migration process of HMs in cold regions.
Collapse
Affiliation(s)
- Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Joint Laboratory for International Cooperation on Cold Region Black Soil Habitat Health of Ministry of Education, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengye Zhao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Joint Laboratory for International Cooperation on Cold Region Black Soil Habitat Health of Ministry of Education, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Joint Laboratory for International Cooperation on Cold Region Black Soil Habitat Health of Ministry of Education, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fanxiang Meng
- College of water conservancy and electric power, Heilongjiang University Harbin, Heilongjiang 150030, China.
| | - Dong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Joint Laboratory for International Cooperation on Cold Region Black Soil Habitat Health of Ministry of Education, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Joint Laboratory for International Cooperation on Cold Region Black Soil Habitat Health of Ministry of Education, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
2
|
Xu L, Zhao F, Peng J, Ji M, Li BL. A Comprehensive Review of the Application and Potential of Straw Biochar in the Remediation of Heavy Metal-Contaminated Soil. TOXICS 2025; 13:69. [PMID: 39997887 PMCID: PMC11860312 DOI: 10.3390/toxics13020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
With the rapid development of industry and agriculture, soil heavy metal contamination has become an important environmental issue faced today and has gradually attracted widespread attention. Finding a cheap, widely available, and biodegradable material that can promote crop growth and stabilize heavy metals has become a research focus. Crop straw biochar, due to its high specific surface area, rich surface functional groups, and high cation exchange capacity (CEC), has shown good effects on the remediation of inorganic and organic pollutants in the environment. This article reviews recent research on the use of crop straw biochar for soil heavy metal contamination remediation, providing a detailed analysis from the preparation, characteristics, modification of crop straw biochar, mechanisms for reducing the toxicity of heavy metals in soil, and its application and risks in remediating heavy metal-contaminated soils. It also comprehensively discusses the potential application of crop straw biochar in the remediation of heavy metal-contaminated soils. The results show that crop straw biochar can be used as a new type of immobilizing material for the remediation of heavy metal-contaminated soils, but there are issues with the remediation technology that needs to be optimized and innovated, which poses challenges to the widespread application of crop straw biochar. In the future, efforts should be strengthened to optimize and innovate the application technology of crop straw biochar, conduct research on the remediation effects of cheap modified crop straw biochar and the co-application of crop straw biochar with other immobilizing materials on heavy metal-contaminated soils, and carry out long-term monitoring of the effects of crop straw biochar in soil heavy metal remediation in order to achieve the goal of ensuring food safety and the rational use of solid waste.
Collapse
Affiliation(s)
- Lei Xu
- Henan Province Engineering Research Center of Environmental Laser Remote Sensing Technology and Application, Nanyang Normal University, Nanyang 473061, China;
| | - Feifei Zhao
- Henan Province Engineering Research Center of Environmental Laser Remote Sensing Technology and Application, Nanyang Normal University, Nanyang 473061, China;
| | - Jianbiao Peng
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473061, China; (J.P.); (M.J.); (B.L.L.)
| | - Mingfei Ji
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473061, China; (J.P.); (M.J.); (B.L.L.)
| | - B. Larry Li
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473061, China; (J.P.); (M.J.); (B.L.L.)
- Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California–Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Jiao Z, Ge S, Liu Y, Wang Y, Wang Y, Wang Y. Phosphate-enhanced Cd stabilization in soil by sulfur-doped biochar: Reducing Cd phytoavailability and accumulation in Brassica chinensis L. and shaping the microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125375. [PMID: 39581365 DOI: 10.1016/j.envpol.2024.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
To explore the potential of livestock manure-derived biochar for the remediation of Cd-contaminated soil, a pot experiment was conducted to explore the stabilization efficiency of cattle manure biochar (T2, BC), sulfur-doped biochar (T3, SBC), and SBC combined with phosphate (T4, SBC-PF) on Cd in contaminated soil and their effects on Cd accumulation in Chinese cabbage (Brassica chinensis L.) and soil microorganisms. The results showed that soil available phosphorus (AP), available potassium (AK), and organic matter (OM) significantly increased in T3 and T4, and the biomass of Chinese cabbage also increased from 0.46 g/pot to 0.57 and 1.05 g/pot, respectively. The DTPA-extractable Cd in T3 and T4 dramatically reduced by 78.6% and 91.4% (p < 0.05); the acid-soluble Cd decreased by 11.3% and 13.2%; and the residual Cd increased by 30.0% and 10.0%. Most importantly, the Cd contents in T2, T3, and T4 decreased by 2.2%, 89.7%, and 93.1% in the shoots of Chinese cabbage and 21.3%, 82.2%, and 86.2% in the roots of Chinese cabbage, respectively. Moreover, SBC-PF obviously changed the bacterial community and enhanced the interactions among microbes in the soil. Structural equation modeling revealed that microbial interspecific mutualistic relationships were the key factor in the pathway for reducing Cd phytoavailability. Mantel tests and random forest analyses further revealed that biochar enhanced the interactions among microorganisms by increasing the AP content in the soil. These findings demonstrated that SBC combined with phosphate is appropriate for stabilizing Cd and improving soil quality.
Collapse
Affiliation(s)
- Zhiqiang Jiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Shiji Ge
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yifan Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangzhou Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yong Wang
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Deng X, Chen G, Zhang C, Gao X, Sun B, Shan B. Manganese-modified biochar for sediment remediation: Effect, microbial community response, and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125175. [PMID: 39442607 DOI: 10.1016/j.envpol.2024.125175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal sediment pollution has become an increasingly serious problem associated with industrial development, so extensive studies have been conducted concerning their removal. Biochar has recently shown good potential for in-situ remediation of heavy metal-contaminated sediments. The heavy metal adsorption capacity of inexpensive biochar can be improved by loading it with metal oxides. In this study, manganese-modified biochar (MBC) was prepared by KMnO4-modified waste-activated sludge biochar and applied to immobilize Pb and Cd in sediments. Its effects on the sediment microbial community were also investigated. The Results showed that manganese modification of the biochar made it more conducive to the adsorption of heavy metals, owing to its higher specific surface area and graphitization structure, more active sites and oxygen-containing groups, and the presence of Mn2O3 crystal structure on the surface. The maximum adsorption capacities of this material for Pb2+ and Cd2+ in solution were 176.9 mg/g and 44.0 mg/g, respectively. The application of MBC to the remediation of heavy metal-contaminated sediments transformed Pb and Cd in the sediments from exchangeable to residual state. The F4 content of Pb in the sediments increased from 40.52%-42.36% to 49.11%-51.14% after application of 1% MBC, and to 63.94%-64.49% after application of 5% MBC. Correspondingly, the F1 content of Pb in the sediments decreased from 29.09%-30.68% to 17.43%-17.69% after the application of 5% MBC. Furthermore, MBC efficiently enriched the microbial biodiversity and affected the microbial population structure within 60 days. The relative abundance of uncultured f Symbiobacteraceae and Fonticella communities significantly increased after incubation. The results may provide empirical support for the combination of metal oxides and biochar for the remediation of heavy metal-contaminated sediments.
Collapse
Affiliation(s)
- Xudong Deng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guomin Chen
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China; Ecological Environment Bureau of Xiong'an New Area Management Committee of Hebei Province, Baoding, 071799, China
| | - Chao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xueping Gao
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Bowen Sun
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Yan L, Gao G, Lu M, Riaz M, Zhang M, Tong K, Yu H, Yang Y, Hao W, Niu Y. Insight into the Amelioration Effect of Nitric Acid-Modified Biochar on Saline Soil Physicochemical Properties and Plant Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:3434. [PMID: 39683227 DOI: 10.3390/plants13233434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Soil salinization is a major factor threatening global food security. Soil improvement strategies are therefore of great importance in mitigating the adverse effect of salt stress. Our study aimed to evaluate the effect of biochar (BC) and nitric acid-modified biochar (HBC) (1%, 2%, and 3%; m/m) on the properties of salinized soils and the morphological and physiological characteristics of pakchoi. Compared with BC, HBC exhibited a lower pH and released more alkaline elements, reflected in reduced contents of K+, Ca2+, and Mg2+, while its hydrophilicity and polarity increased. Additionally, the microporous structure of HBC was altered, showing a rougher surface, larger pore size, pore volume, specific surface area, and carboxyl and aliphatic carbon content, along with lower aromatic carbon content and crystallinity. Moreover, HBC application abated the pH of saline soil. Both BC and HBC treatments decreased the sodium absorption rate (SAR) of saline soil as their concentration increased. Conversely, both types of biochar enhanced the cation exchange capacity (CEC), organic matter, alkali-hydrolyzable nitrogen, and available phosphorus and potassium content in saline soils, with HBC demonstrating a more potent improvement effect. Furthermore, biochar application promoted the growth-related parameters in pakchoi, and reduced proline and Na+ content, whilst increasing leaf K+ content under salt stress. Biochar also enhanced the activity of key antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) in leaves, and reduced hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. Collectively, modified biochar can enhance soil quality and promote plant growth in saline soils.
Collapse
Affiliation(s)
- Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Guang Gao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mengyang Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkai Land, Dongying 257347, China
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yu Yang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wenjing Hao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Zhu R, Xu M, Huang S, He Z. Experimental study on the adsorption and interaction of P and Cd in polluted sediment from Dongting Lake. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104442. [PMID: 39406106 DOI: 10.1016/j.jconhyd.2024.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
A series of experiments was performed to elucidate the effects of the adsorption and interaction of different concentrations of P and Cd on the availability of P and Cd. First, the sediments before and after maturation were subjected to X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The results revealed that the composition and main components of the sediment were unchanged by maturation. The adsorption results fitted by the Freundlich equation revealed that the maximum concentration of Cd in the sediment changed from 979.12 mg/L to 980.92 mg/L and 1215 mg/L after the addition of 1 mg/L and 2 mg/L P, respectively. The maximum concentration of P in the sediments increased from 397.57 mg/L to 403.19 mg/L and 422.89 mg/L after the addition of Cd concentrations of 5 mg/L and 50 mg/L, respectively. A batch experiment was subsequently performed with multiple groups of P and Cd at the same concentration. The results revealed that the content of available Cd was the highest when the content of P was 180 mg/kg and that the content of available P was the highest when the content of Cd was 1 mg/kg. However, when the concentrations of P and Cd exceeded a certain level, Cd3(PO4)2 precipitated. Finally, the experimental results were reverified by XPS, and the results revealed that the contents of P and Cd in the sediments increased through adsorption and precipitation between P and Cd.
Collapse
Affiliation(s)
- Ruifeng Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Mengya Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shunhong Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Zexin He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
7
|
Li J, Lu X, Wang P, Yu Y, Sun L, Li M. Influence of freeze-thaw process on As migration and microorganisms in aggregates of paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122847. [PMID: 39405878 DOI: 10.1016/j.jenvman.2024.122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
A natural phenomenon known as the seasonal freeze-thaw (FT) cycle happens in cold temperature zone such as high latitude and high altitude regions where the soil frequently freezes and thaws in response to temperature variations. Global warming would increase the number of FT cycles in FT regions. However, the influence of FT process on arsenic (As) migration in paddy soil is seldom investigated. Herein, indoor simulation experiment was conducted to investigate the influence of FT process (60 cycles) on As migration from surface to deep soil and microorganisms in paddy soil column. Compared to non FT treatment groups, the concentrations of As in microaggregates of 8-10 cm depth and 18-20 cm depth in soil column of FT treatment group increased by 3.69 mg/kg and 4.16 mg/kg, respectively; the concentrations of As in macroaggregates of 8-10 cm depth and 18-20 cm depth in soil column of FT treatment group increased by 3.34 mg/kg and 3.94 mg/kg, respectively, indicating that FT process accelerated the As migration from surface to deep soil. FT process affected the microbial community structure by changing the physicochemical properties of the soil, which decreased the diversity and uniformity of bacterial community distribution in the soil. The relative abundance of two As-resistant bacteria, e.g., Sphingomonas and Lysobacter, increased by 8.2% and 11.35% after 60 cycles, respectively; moreover, total As in the soil was significantly (p < 0.05) negatively correlated with the alpha index of the soil microorganisms. This study would provide basic data for future study on determining environmental behavior and risk of metals in farm soils in seasonal FT aeras.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xiaohui Lu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ping Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Long Sun
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
8
|
Ge Q, Dong C, Wang G, Zhang J, Hou R. Production, characterization and environmental remediation application of emerging phosphorus-rich biochar/hydrochar: a comprehensive review. RSC Adv 2024; 14:33649-33665. [PMID: 39444945 PMCID: PMC11497801 DOI: 10.1039/d4ra03333g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Owing to the high carbon and phosphorus contents, large specific surface area and slow P release capacity of P-rich biochar/hydrochar (CHAR), its application in aquatic (or soil) environments and positive effects on heavy metal (HM) adsorption (or immobilization) have drawn global attention. To provide an overall picture of P-rich CHAR, this review includes a systematic analysis of the current knowledge on the preparation methods, characterization techniques, influencing factors and environmental applications of P-rich CHAR reported in the last ten years. The key findings and recommendations from this review are as follows: (1) there is still a knowledge gap concerning the regulatory mechanism of the key active components of P-rich CHAR at the molecular level. The dominant factors influencing these active components should be elucidated. (2) P-rich CHAR has a high capacity to immobilize most HMs (e.g., Cd, Cu, and Pb). However, it performs poorly with several HMs (e.g., As). Future studies should focus on the interactions between P-rich CHAR and HMs found in soil/water. (3) To meet the long-term requirements for plant growth, more attention should be given to improving the slow-release capacity and utilization efficiency of available P. (4) There is a potential risk of P loss (or eutrophication) due to rainfall and runoff, although P-rich CHAR exhibits excellent performance in terms of HM immobilization and carbon retention. Several reasonable suggestions are provided to solve these problems. In summary, P-rich CHAR has promising prospects in environmental remediation if these shortcomings are overcome.
Collapse
Affiliation(s)
- Qilong Ge
- Department of Architecture and Environmental Engineering, Taiyuan University Taiyuan 030032 China
| | - ChunJuan Dong
- Department of Architecture and Environmental Engineering, Taiyuan University Taiyuan 030032 China
| | - GuoYing Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Jing Zhang
- Department of Architecture and Environmental Engineering, Taiyuan University Taiyuan 030032 China
| | - Rui Hou
- South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| |
Collapse
|
9
|
Wu L, Du W, Wang L, Cao Y, Lv J. Effects of freeze-thaw leaching on physicochemical properties and cadmium transformation in cadmium contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116935. [PMID: 39208583 DOI: 10.1016/j.ecoenv.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
This study aims to investigate the effect of the combined method of freeze-thaw and leaching on the removal of cadmium (Cd) in soil and to provide a theoretical basis for the remediation of farmland soil polluted by heavy metals. The removal process and mechanism of Cd were deduced through oscillatory leaching experiments and freeze-thaw leaching simulation experiments, and the influence of the freeze-thaw leaching technology on the soil environment was evaluated. The results of oscillatory leaching showed that a mixture consisting of 0.80 mol/L citric acid and 0.80 mol/L ferric chloride in a 1:19 vol ratio effectively remove 47.75 % of Cd, indicating that the composite leaching agent could effectively remove Cd from the soil. The results of the freeze-thaw leaching simulation experiment showed that although the freeze-thaw leaching treatment increased the total Cd content in the 0-5 cm soil layer, the total Cd content in the 5-10 cm, 10-15 cm, and 15-20 cm soil layers decreased by 5.08 %, 2.39 %, and 5.68 %, respectively. The freeze-thaw leaching increased the content of exchangeable Cd (p<0.05), carbonate bound Cd, but decreased organic bound Cd and residual Cd (p<0.05), thereby increasing the bioavailability of Cd. Freeze-thaw leaching not only increased the competitive adsorption of Cd2+ by decreasing soil pH, cation exchange capacity, and increasing the content of exchangeable calcium and exchangeable magnesium, thus reducing the adsorption of Cd in soil. And the results of XPS and FTIR similarly showed that the freeze-thaw leaching could promote the chelation between Cd2+ and hydroxyl, carboxyl and carbonyl functional groups. Although the freeze-thaw leaching destroyed the large particle structure (0.05-2 mm) and large pores in the soil, and increased the clay content (<0.002 mm) and the proportion of small pores in the soil, the XRD results showed that freeze-thaw leaching had no significant effect on the minerals in the soil. In summary, this study shows that freeze-thaw leaching has a significant effect on the removal of soil heavy metals, suggesting that the synergistic effect of freeze-thaw and leaching should be considered in the process of removing soil pollutants in seasonal freeze-thaw zones, and that this method provides a new insight into the remediation of contaminated soils.
Collapse
Affiliation(s)
- Lulu Wu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Wei Du
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Luping Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yang Cao
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
10
|
Fan J, Liao M, Duan T, Hu Y, Sun J. The Mechanism of Arsenic Release in Contaminated Paddy Soil with Added Biochar: The Role of Dissolved Organic Matter, Fe, and Bacteria. TOXICS 2024; 12:661. [PMID: 39330589 PMCID: PMC11435835 DOI: 10.3390/toxics12090661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
The addition of biochar inevitably modifies the acidity (pH), redox potential (Eh), and dissolved organic matter (DOM) level in the soil. These alterations also have coupled effects on the cycling of iron (Fe) and the composition of bacterial communities, thereby impacting the speciation and availability of arsenic (As) in the soil. This study explored the potential mechanisms through which biochar affects As in paddy soil during flooded cultivation with different pyrolysis temperature biochars (300 °C, 400 °C, and 500 °C) added. The results revealed that the TAs concentration increased in the initial 15 days of soil cultivation with SBC300 or SBC400 addition because increasing the concentration of DOM induced the mobility of As though the formation of As-DOM complexes. Meanwhile, biochar addition elevated the pH, decreased the Eh, and promoted the transformation of specific adsorbed As (A-As) and amorphous iron oxide-bound As (Amo-Fe-As) to supernatant As through enhancing the reductive dissolution of Fe(oxy)(hydr)oxides. Moreover, the biochar altered the relative abundance of As (V)-reducing bacteria (such as Firmicutes) and As (III)-oxidizing bacteria (such as Chloroflex), thereby affecting As speciation. However, these mechanistic effects varied depending on the pyrolysis temperature of the biochar. The microbial composition of SBC300 and SBC400 were similar, with both containing larger populations of Enterobacteriaceae (AsRB) and pseudomonas (FeRB) compared to CK and SBC500. It was proposed that lower pyrolysis temperatures (300 °C and 400 °C) are more favorable for the dissolution of Fe(oxy)(hydr)oxides and the reduction of As (V). However, the biochar from the higher pyrolysis temperature (500 °C) showed environmental impacts akin to the control group (CK). This study demonstrated potential mechanisms of biochar's effect on As and the role of pyrolysis temperature.
Collapse
Affiliation(s)
- Jianxin Fan
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (M.L.); (T.D.); (Y.H.); (J.S.)
| | - Maoyu Liao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (M.L.); (T.D.); (Y.H.); (J.S.)
| | - Ting Duan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (M.L.); (T.D.); (Y.H.); (J.S.)
| | - Ying Hu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (M.L.); (T.D.); (Y.H.); (J.S.)
| | - Jiaoxia Sun
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (M.L.); (T.D.); (Y.H.); (J.S.)
| |
Collapse
|
11
|
Huang L, Chen W, Wei L, Li X, Huang Y, Huang Q, Liu C, Liu Z. Biochar Blended with Alkaline Mineral Can Better Inhibit Lead and Cadmium Uptake and Promote the Growth of Vegetables. PLANTS (BASEL, SWITZERLAND) 2024; 13:1934. [PMID: 39065461 PMCID: PMC11280933 DOI: 10.3390/plants13141934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Three successive vegetable pot experiments were conducted to assess the effects on the long-term immobilization of heavy metals in soil and crop yield improvement after the addition of peanut shell biochar and an alkaline mineral to an acidic soil contaminated with lead and cadmium. Compared with the CK treatment, the change rates of biomass in the edible parts of the three types of vegetables treated with B0.3, B1, B3, B9, R0.2 and B1R0.2 were -15.43%~123.30%, 35.10%~269.09%, 40.77%~929.31%, -26.08%~711.99%, 44.14%~1067.12% and 53.09%~1139.06%, respectively. The cadmium contents in the edible parts of the three vegetables treated with these six additives reduced by 2.08%~13.21%, 9.56%~24.78%, 9.96%~35.61%, 41.96%~78.42%, -4.19%~57.07% and 12.43%~65.92%, respectively, while the lead contents in the edible parts reduced by -15.70%~59.47%, 6.55%~70.75%, 3.40%~80.10%, 55.26%~89.79%, 11.05%~70.15% and 50.35%~79.25%, respectively. Due to the increases in soil pH, soil cation-exchange capacity and soil organic carbon content, the accumulation of Cd and Pb in the vegetables was most notably reduced with a high dosage of 9% peanut shell biochar alone, followed by the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral. Therefore, the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral was the best additive in increasing the vegetable biomass, whereas the addition of 9% peanut shell biochar alone was the worst. Evidently, the addition of 0.2% alkaline mineral can significantly reduce the amount of peanut shell needed for passivating heavy metals in soil, while it also achieves the effect of increasing the vegetable yield.
Collapse
Affiliation(s)
- Lianxi Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Weisheng Chen
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Lan Wei
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Xiang Li
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Yufen Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Qing Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Chuanping Liu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Zhongzhen Liu
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| |
Collapse
|
12
|
Peng Q, Wang P, Yang C, Liu J, Si W, Zhang S. Remediation effect of walnut shell biochar on Cu and Pb co-contaminated soils in different utilization types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121322. [PMID: 38824893 DOI: 10.1016/j.jenvman.2024.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Biochar, with its dual roles of soil remediation and carbon sequestration, is gradually demonstrating great potential for sustainability in agricultural and ecological aspects. In this study, a porous biochar derived from walnut shell wastes was prepared via a facile pyrolysis coupling with in-situ alkali etching method. An incubation study was conducted to investigate its performance in stabilizing copper (Cu) and lead (Pb) co-contaminated soils under different utilization types. The biochar effectively decreased the bioavailable Cu (8.5-91.68%) and Pb (5.03-88.54%), while increasing the pH, CEC, and SOM contents in both soils. Additionally, the results of sequential extraction confirmed that biochar promoted the transformation of the labile fraction of Cu and Pb to stable fractions. The mechanisms of Cu and Pb stabilization were found to be greatly dependent on the soil types. For tea plantation yellow soil, the main approach for stabilization was the complexation of heavy metals with abundant organic functional groups and deprotonation structure. Surface electrostatic adsorption and cation exchange contributed to the immobilization of Cu and Pb in vegetable-cultivated purple soil. This research provides valuable information for the stabilization of Cu and Pb co-contaminated soils for different utilization types using environmentally-friendly biochar.
Collapse
Affiliation(s)
- Qin Peng
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China; College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Chao Yang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China
| | - Jumei Liu
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China
| | - Wantong Si
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, PR China
| | - Sai Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
13
|
Graça J, Kwapinska M, Murphy B, Duggan T, Leahy JJ, Kelleher B. Pyrolysis, a recovery solution to reduce landfilling of residual organic waste generated from mixed municipal waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30676-30687. [PMID: 38613758 PMCID: PMC11512856 DOI: 10.1007/s11356-024-33282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Despite policies to restrict the mixing of organic waste with other general waste and improve its separation at source, municipal solid waste still contains a high proportion of organic waste. The residual organic waste is generated as a by-product of the mechanical treatment of municipal solid waste (MSW) and is mainly disposed in landfills after composting. Its reuse and recovery status varies across European countries. Most countries restrict the use of biostabilised residual waste (BSRW) to landfill cover, whereas others have regulated it as marketable compost. Crucially, BSRW is set to lose its "recycled" status under the revised European Union waste framework, with probably tighter restrictions and increased costs imposed for the landfilling of organic waste. Our research aimed to investigate pyrolysis as an alternative technology to treat the 10-40 mm fraction of BSRW (representing 50% of BSRW generated). Pyrolysis at 700 °C was carried out and feedstock and pyrolysis products were characterized. Mass and energy balances showed that pyrolysis produced hot vapour/gas whose combustion may render the pyrolysis process energetically sustainable. Biochar comprises 30-50% of BRSW mass after removal of glass, metal and stones. Our results indicate that pyrolysis has the potential to create options for contributing to reduce the landfilling of BSRW; however, the presence of residual impurities may limit biochar applications.
Collapse
Affiliation(s)
- Jessica Graça
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Marzena Kwapinska
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Brian Murphy
- Enrich Environmental Ltd, Larch Hill, Kilcock, Co Meath, Ireland
| | - Tim Duggan
- Enrich Environmental Ltd, Larch Hill, Kilcock, Co Meath, Ireland
| | - James J Leahy
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Brian Kelleher
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
14
|
Chen Q, Wu L, Zhou C, Liu G, Yao L. A study of environmental pollution and risk of heavy metals in the bottom water and sediment of the Chaohu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19658-19673. [PMID: 38361101 DOI: 10.1007/s11356-024-32141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Most of the existing research for heavy metals in water at present is focusing on surface water. However, potential environmental risk of heavy metals in the bottom water of lakes cannot be ignored. In this study, the content, distribution, and speciation of nine heavy metals (As, V, Cr, Co, Ni, Cu, Zn, Cd, and Pb) in the bottom water and sediment of Chaohu Lake were studied. Some pollution assessment methods were used to evaluate the environmental effect of heavy metals. Positive matrix factorization was conducted to investigate the potential sources of heavy metals in sediment. The contents of heavy metals in the bottom water of Chaohu Lake mean that its environmental pollution can be ignored. In sediment, Cd and Zn have showed stronger ecological risk. pH and redox potential are more likely to affect the stability of heavy metals in the bottom water of Chaohu Lake during the dry reason. Industrial sources (16%) are no longer the largest source of heavy metal pollution; traffic sources (33.6%) and agricultural sources (23.4%) have become the main sources of pollution at present. This study can provide some support and suggestions for the treatment of heavy metals in lakes.
Collapse
Affiliation(s)
- Qiang Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lei Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei, 230061, Anhui, China.
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Gang Liu
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| | - Long Yao
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| |
Collapse
|
15
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
16
|
Serrano MF, López JE, Henao N, Saldarriaga JF. Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS OMEGA 2024; 9:3574-3587. [PMID: 38284006 PMCID: PMC10809702 DOI: 10.1021/acsomega.3c07433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Soil contamination with heavy metals (HM) poses significant challenges to food security and public health, requiring the exploration of effective remediation strategies. This study aims to evaluate the remediation process of soils contaminated with Cd, Cr, and Pb using Lolium perenne assisted by four types of biochar: (i) activated coffee husk biochar (BAC), (ii) nonactivated biochar coffee husk (BSAC), (iii) activated sugar cane leaf biochar (BAA), and (iv) nonactivated biochar sugar cane leaf (BSAA). Biochar, loaded with phosphorus (P), was applied to soils contaminated with Cd, Cr, and Pb. L. perenne seedlings, averaging 2 cm in height, were planted. The bioavailability of P and heavy metals (HM) was monitored every 15 days until day 45, when the seedlings reached an average height of 25 cm. At day 45, plant harvesting was conducted and stems and roots were separated to determine metal concentrations in both plant parts and the soil. The study shows that the combined application of biochar and L. perenne positively influences the physicochemical properties of the soil, resulting in an elevation of pH and electrical conductivity (EC). The utilization of biochar contributes to an 11.6% enhancement in the retention of HM in plant organs. The achieved bioavailability of heavy metals in the soil was maintained at levels of less than 1 mg/kg. Notably, Pb exhibited a higher metal retention in plants, whereas Cd concentrations were comparatively lower. These findings indicate an increase in metal immobilization efficiencies when phytoremediation is assisted with P-loaded biochar. This comprehensive assessment highlights the potential of biochar-assisted phytoremediation as a promising approach for mitigating heavy metal contamination in soils.
Collapse
Affiliation(s)
- María F Serrano
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034 Medellín, Colombia
| | - Nancy Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| |
Collapse
|
17
|
Das SK. Conversion of biobased substances into biochar to enhances nutrient adsorption and retention capacity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:142. [PMID: 38212573 DOI: 10.1007/s10661-024-12317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Reducing the environmental issues brought on by nutrients especially nitrogen pollution and loss is important. Owing to its unique composition and physico-chemical characteristics, biomass-derived biochar exhibits varying degrees of adsorption and interception for all types of soil nutrients. Thus, a novel way to improve nutrient absorption in the soil is to include biomass derived biochar into it. Various biomass-derived biochar from locally available biobased substances was synthesized through low-cost portable charring kiln. It has been quantified the influence of four biobased substances and three pyrolysis temperature on different morphomineralogical characteristics of biochar for utilizing as low-cost sorbent to manage nutrient adsorption and retention capacity. The morphomineralogical characteristics were principally manipulated by feedstocks rather than pyrolysis temperature. Higher porosity and surface area of biomass-derived biochar illustrated its soil structural modification and nutrient retention capacity along with their utilization for adsorbents. With increase in pyrolysis temperature, the adsorption capacity of biochar for NH4+-N and NO3--N was gradually weakened and gradually enhanced respectively. The adsorption process of ammonia nitrogen and nitrate nitrogen conformed to the Langmuir model and the fitted KL value was less than 1 indicating that the adsorption process was uniform monolayer adsorption and the adsorption of biochar was favorable adsorption. With increase in biochar application rate the leaching of NO3--N decreased having higher at 2.5 t ha-1 application rate followed by 5 t ha-1 and lower at 7.5 t ha-1. In packed soil column, the NH4+-N in leachate was maximum in T7 (18.6), followed by T4 (17.9), T13 (17.3) and minimum in T10 (17.2) at same application rate of manures and biochar. Finally, results also revealed that packed soil column performed better as compared with intact soil column to retain soil nutrient and hence, leaching potential of nutrient was less in packed column than intact soil column. In conclusion, biomass-derived biochar can enhance the amount of nutrient that is absorbed into the soil while decreasing the loss of nutrient from the soil in the form of ammonia and nitrate. To sum up, biomass-derived biochar can increase the adsorption amount of the nitrogen and reduce the loss of ammonia nitrogen and nitrate nitrogen in the soil, thus retaining the nitrogen.
Collapse
Affiliation(s)
- Shaon Kumar Das
- ICAR Research Complex for NEH Region, Sikkim Centre, Tadong, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
18
|
Oliveira VH, Fonte BA, Costa F, Sousa AI, Henriques B, Pereira E, Dolbeth M, Díez S, Coelho JP. The effect of Zostera noltei recolonization on the sediment mercury vertical profiles of a recovering coastal lagoon. CHEMOSPHERE 2023; 345:140438. [PMID: 37852379 DOI: 10.1016/j.chemosphere.2023.140438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Mercury's extreme toxicity and persistence in the environment justifies a thorough evaluation of its dynamics in ecosystems. Aveiro Lagoon (Portugal) was for decades subject to mercury effluent discharges. A Nature-based Solution (NbS) involving Zostera noltei re-colonization is being tested as an active ecosystem restoration measure. To study the effect of Zostera noltei on the sediment contaminant biogeochemistry, seasonal (summer/winter) sediment, interstitial water and labile mercury vertical profiles were made in vegetated (Transplanted and Natural seagrass meadows) and non-vegetated sites (Bare-bottom area). While no significant differences (p > 0.05) were observed in the sedimentary phase, Zostera noltei presence reduced the reactive/labile mercury concentrations in the top sediment layers by up to 40% when compared to non-vegetated sediment, regardless of season. No differences were found between vegetated meadows, highlighting the fast recovery of the contaminant regulation ecosystem function provided by the plants after re-colonization and its potential for the rehabilitation of historically contaminated ecosystems.
Collapse
Affiliation(s)
- V H Oliveira
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| | - B A Fonte
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - F Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - A I Sousa
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - B Henriques
- LAQV-REQUIMTE- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - E Pereira
- LAQV-REQUIMTE- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Dolbeth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício Do Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - S Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - J P Coelho
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| |
Collapse
|
19
|
Liu J, Sun S, Zhang H, Kong Q, Li Q, Yao X. Remediation materials for the immobilization of hexavalent chromium in contaminated soil: Preparation, applications, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 237:116918. [PMID: 37611786 DOI: 10.1016/j.envres.2023.116918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Hexavalent chromium is a toxic metal that can induce severe chromium contamination of soil, posing a potential risk to human health and ecosystems. In recent years, the immobilization of Cr(VI) using remediation materials including inorganic materials, organic materials, microbial agents, and composites has exhibited great potential in remediating Cr(VI)-contaminated soil owing to the environmental-friendliness, short period, simple operation, low cost, applicability on an industrial scale, and high efficiency of these materials. Therefore, a systematical summary of the current progress on various remediation materials is essential. This work introduces the production (sources) of remediation materials and examines their characteristics in detail. Additionally, a critical summary of recent research on the utilization of remediation materials for the stabilization of Cr(VI) in the soil is provided, together with an evaluation of their remediation efficiencies toward Cr(VI). The influences of remediation material applications on soil physicochemical properties, microbial community structure, and plant growth are summarized. The immobilization mechanisms of remediation materials toward Cr(VI) in the soil are illuminated. Importantly, this study evaluates the feasibility of each remediation material application for Cr(VI) remediation. The latest knowledge on the development of remediation materials for the immobilization of Cr(VI) in the soil is also presented. Overall, this review will provide a reference for the development of remediation materials and their application in remediating Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Shuyu Sun
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, China
| | - Qian Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, Shandong, 261000, China
| | - Xudong Yao
- Project Department, Shandong Luqiao Detection Technology Co., Ltd., Rizhao, Shandong, 276800, China
| |
Collapse
|
20
|
Nguyen TB, Sherpa K, Bui XT, Nguyen VT, Vo TDH, Ho HTT, Chen CW, Dong CD. Biochar for soil remediation: A comprehensive review of current research on pollutant removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122571. [PMID: 37722478 DOI: 10.1016/j.envpol.2023.122571] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Biochar usage in soil remediation has turned out to be an enticing topic recently. Biochar, a product formed by pyrolysis of organic waste, which is rich in carbon, has the aptitude to ameliorate climate change by sequestering carbon while also enhancing soil quality and crop yields. Two-edged implications of biochar on soil amendment are still being discussed yet, clarity on the long-term implications of biochar on soil health and the environment is not yet achieved. As a result, it is crucial to systematically uncover the pertinent information regarding biochar remediation, as this can serve as a roadmap for future research on using biochar to remediate contaminated soils in mining regions. This review endeavors to bring forth run thoroughly the latest state of research on the use of biochar in soil remediation, along with its potential benefits, limitations, challenges, and future scope. By synthesizing existing literature on biochar soil remediation, this review aims to provide insights into the potential of biochar as a sustainable solution for soil remediation. Specifically, this review will highlight the key factors that influence the effectiveness of biochar for soil remediation and the potential risks associated with its use, as well as the current gaps in knowledge and future research directions.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Kamakshi Sherpa
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Hien-Thi-Thanh Ho
- Faculty of Environment, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan, ROC
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan, ROC.
| |
Collapse
|
21
|
Liberati D, Ahmed SW, Samad N, Mugnaioni R, Shaukat S, Muddasir M, Marinari S, De Angelis P. Biochar amendment for reducing the environmental impacts of reclaimed polluted sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118623. [PMID: 37481915 DOI: 10.1016/j.jenvman.2023.118623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/03/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Dredging activities produce large amounts of polluted sediments that require adequate management strategies. Sediment reuse and relocation can involve several environmental issues, such as the release of CO2 and nitrogen compounds in the environment, the transfer of metals to plant tissues and the persistence of phytotoxic compounds. In this framework, the aim of the present work is to evaluate the use of biochar at different doses, in combination with plant growth, to reduce the environmental impacts polluted dredged sediments. Irrespective to the plant treatment, the amendment of the sediment with the lowest dose of biochar (3%) reduced by 25% the CO2 emissions of the substrate, by 89% the substrate carbon loss and by 35% the amount of nitrogen released into the environment (average values of the three plant treatments). The negative priming effect of biochar on organic matter mineralization can be responsible for the beneficial reduction of carbon and nitrogen release in the environment. The lack of similar effects observed at the higher biochar doses can depend on the low albedo of the biochar particles, causing the substrate warming (+1 °C for highest biochar dose) and accelerating the organic matter mineralization. Finally, shrub growth in combination with 3% biochar was able to offset the CO2 emission of the sediment and to reduce the amount of nitrogen lost. This work provides new insight on the potential benefit related to the biochar amendment of organic matter-rich dredged sediments, suggesting that the use of moderate dose of wood biochar in combination with shrub plantation can reduce the release of CO2 and nitrogen compounds in the environment.
Collapse
Affiliation(s)
- Dario Liberati
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
| | - Syed Wasif Ahmed
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Nafeesa Samad
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Euro-Mediterranean Center on Climate Change (CMCC), Italy
| | - Roberta Mugnaioni
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Sundas Shaukat
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Italy
| | - Muhammad Muddasir
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Sara Marinari
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Paolo De Angelis
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| |
Collapse
|
22
|
Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1221434. [PMID: 37662164 PMCID: PMC10470012 DOI: 10.3389/fpls.2023.1221434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wasim Javed
- Punjab Bioenergy Institute (PBI), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
23
|
Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Asghar RMA, Imtiaz M, Ullah N, Li WD, Ditta A. A systematic review on the bioremediation of metal contaminated soils using biochar and slag: current status and future outlook. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:961. [PMID: 37454303 DOI: 10.1007/s10661-023-11561-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Heavy metals contaminated soils are posing severe threats to food safety worldwide. Heavy metals absorbed by plant roots from contaminated soils lead to severe plant development issues and a reduction in crop yield and growth. The global population is growing, and the demand for food is increasing. Therefore, it is critical to identify soil remediation strategies that are efficient, economical, and environment friendly. The use of biochar and slag as passivators represents a promising approach among various physicochemical and biological strategies due to their efficiency, cost-effectiveness, and low environmental impact. These passivators employ diverse mechanisms to reduce the bioavailability of metals in contaminated soils, thereby improving crop growth and productivity. Although studies have shown the effectiveness of different passivators, further research is needed globally as this field is still in its early stages. This review sheds light on the innovative utilization of biochar and slag as sustainable strategies for heavy metal remediation, emphasizing their novelty and potential for practical applications. Based on the findings, research gaps have been identified and future research directions proposed to enable the full potential of passivators to be utilized effectively and efficiently under controlled and field conditions.
Collapse
Affiliation(s)
- Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Waqas Ahmed
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Mohsin Mahmood
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | | | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Naseer Ullah
- Environmental Chemistry Laboratory, Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, China
| | - Wei-Dong Li
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
24
|
Chen L, Nakamura K, Hama T. Review on stabilization/solidification methods and mechanism of heavy metals based on OPC-based binders. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117362. [PMID: 36716545 DOI: 10.1016/j.jenvman.2023.117362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Stabilization/solidification (S/S) with ordinary portland cement (OPC)-based binders is a suitable method to remediate heavy metal (HM)-contaminated soil and reuse resources of industrial wastes. In industrial wastes, alkaline wastes such as red mud (RM), soda residue (SR), pulverized fly ash (PFA), and alkalinity granulated blast furnace slag (GGBS) can immobilize HM ions (Pb2+, Zn2+, Cd2+, Cr3+, and Cu2+) by precipitation. However, some HM ions (such as AsO43-) would redissolve within the strong alkali environment. In this case, PFA, GGBS, metakaolin (MK), and incinerated sewage sludge ash (ISSA) which have low pH, can be used to immobilize HM ions or added to the OPC-based binders to adjust the pH in the soil products. Moreover, the calcium silicate hydrate (CSH), calcium aluminum silicate hydrate (CASH), ettringite (AFt), and calcium monosulfoalumiante hydrates (AFm) generated during the pozzolanic reaction can also immobilize HM ions by adsorption on the surface, ion exchange, and encapsulation. SR and GGBS can be used to immobilize the HMs (such as CrO42- and AsO43-), which are mainly affected by AFt and AFm. For those not affected by AFt and AFm but related to immobilization by precipitating (such as Mn2+), other wastes except SR and GGBS are suitable for treating contaminated soil. Nevertheless, the formation of AFt is also instrumental for soil product strength. There are several factors affecting soil product strength. In the future, the influence of different hydration products on the S/S effects, competitive adsorption of HM ions, effects on long-term HM stabilization, and novel materials are worth being explored by researchers.
Collapse
Affiliation(s)
- Liyuan Chen
- Graduate School of Agriculture, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan.
| | - Kimihito Nakamura
- Graduate School of Agriculture, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan.
| | - Takehide Hama
- Graduate School of Agriculture, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan.
| |
Collapse
|
25
|
Yang X, Xiong H, Li D, Li Y, Hu Y. Disproportional erosion of the middle-lower Yangtze River following the operation of the Three Gorges Dam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160264. [PMID: 36402336 DOI: 10.1016/j.scitotenv.2022.160264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The operation of the Three Gorges Dam (TGD) modifies downstream flow and sediment regimes, triggering disproportional fluvial responses at different distances downstream. However, our understanding of the downstream geomorphic changes in the middle-lower Yangtze River remains incomplete due to the complexity of the river responses across temporal and spatial scales. Here, we leverage data on discharge, suspended sediment concentration (SSC), riverbed grain size, cross-sectional profiles and high-resolution channel bathymetric maps at different locations downstream of the TGD to investigate geomorphic responses. The results show that the magnitude of fluvial erosion decreases downstream, with the Yichang-Luoshan Reach (the first ~500 km downstream) experiencing the most severe erosion in 2003-2020 (~9.05 × 104 t/km/yr). Local changes in riverbed morphology include channel bar erosion, channel incision (~0.43 m/yr in CS1 near the dam site over 2002-2019), riverbank retreat and bed material coarsening (an increase in D50 from 0.175 to 43.1 mm at Yichang station from 2002 to 2017). Such marked erosion is caused by the sharply reduced SSC in the dominant discharge range (10,000-30,000 m3/s) and the extended duration of this dominant discharge range. The sediment erosive magnitude in the Luoshan-Datong Reach is relatively small (3.85 × 104 t/km/yr) in 2002-2020. The Luoshan-Hukou Reach (~500-1000 km downstream) exhibits moderate channel incision, minor bed material coarsening and moderate mid-channel bar lateral erosion. The Hukou-Datong Reach (below 1000 km downstream) experienced minor geomorphic change without significant evidence of bed material coarsening. The relatively small impact of the TGD on the lower reach from Luoshan to Datong can be mainly attributed to the progressive SSC recovery along the river induced by upstream channel erosion providing sediment replenishment. These findings have significant implications for estimating geomorphic changes in response to upstream damming and thus could inform better river management and ecological assessment in other similar alluvial rivers.
Collapse
Affiliation(s)
- Xuhai Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| | - Haibin Xiong
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
| | - Dongfeng Li
- Department of Geography, National University of Singapore, Kent Ridge 117570, Singapore
| | - Yitian Li
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Yong Hu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Wang M, Ren J, Ding A, Zhao W, Zhao X, Liu W, Bai Y, Ren L, Wang S, Wen Y, Yang B. Water quality degradation drives the release and fractionation transformation of trace metals in sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159504. [PMID: 36265645 DOI: 10.1016/j.scitotenv.2022.159504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The behavior and stability of trace metals in sediment are important to the ecology of rivers. Deteriorated water quality from domestic wastewater discharge has been studied extensively, but the effect of domestic wastewater on trace metals in sediment is poorly understood. To investigate this, we simulated the water quality degradation process through leaching experiments using domestic wastewater as the leaching solution. The results indicated that domestic wastewater does not negatively influence the stability and fractionation of trace metals in this experimental model, the existence of phosphate was the pacing factor for this phenomenon. Single-factor control treatment groups showed that a leaching solution with pH < 6, NaCl, NH4Cl, NaNO3, and humic acid promoted the dissolution of trace metals from sediment, whereas NaH2PO4 inhibited this process and increased their stability in sediment. The response of trace metals behavior to NaCl, NH4Cl, and extreme pH levels was more sensitive than NaNO3 and HA. Chloride ions can form relatively stable compounds with trace metals, reducing the activity of trace metals in the solution and promoting the release of trace metals from sediment, but it has positive effect on Pb and Zn stability and negative effect on Cu. Extreme pH conditions (pH > 10) and higher concentrations of leaching solutions (NaCl, NH4Cl, NaNO3, and HA) led to an increase in the Cu leaching concentration from sediment and the transformation to unstable fractions, while the impact on the stability of Zn and Pb was beneficial or had little effect. These experiment groups indicated that phosphate is beneficial to the stability of trace metals even at the condition of water degradation and can decrease the ecological risk caused by trace metals.
Collapse
Affiliation(s)
- Mingming Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wende Zhao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xiaojing Zhao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Weijiang Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yijuan Bai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Liangsuo Ren
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Sen Wang
- Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environmental Monitoring Institute, Shijiazhuang 050021, China
| | - Yi Wen
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Bin Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
27
|
Liang S, Wang SN, Zhou LL, Sun S, Zhang J, Zhuang LL. Combination of Biochar and Functional Bacteria Drives the Ecological Improvement of Saline-Alkali Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:284. [PMID: 36678996 PMCID: PMC9864812 DOI: 10.3390/plants12020284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The addition of functional bacteria (FB) is low-cost and is widely applied in saline-alkali soil remediation, which may gradually become ineffective due to inter-specific competition with indigenous bacteria. To improve the adaptability of FB, the target FB strains were isolated from local saline-alkali soil, and the combined effects of FB and biochar were explored. The results showed that FB isolated from local soil showed better growth than the purchased strains under high saline-alkali conditions. However, the indigenous community still weakened the function of added FB. Biochar addition provided a specific niche and increased the relative abundance of FB, especially for Proteobacteria and Bacteroidota. As a result, the co-addition of 10% biochar and FB significantly increased the soil available phosphorus (AP) by 74.85% and available nitrogen (AN) by 114.53%. Zea Mays's growth (in terms of height) was enhanced by 87.92% due to the decreased salinity stress and extra nutrients provided.
Collapse
Affiliation(s)
- Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Sheng-Nan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lu-Lu Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuo Sun
- Baiyangdian Basin Eco-environmental Support Center, Shijiazhuang 050000, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
28
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
29
|
Yang Y, Tan X, Almatrafi E, Ye S, Song B, Chen Q, Yang H, Fu Q, Deng Y, Zeng Z, Zeng G. Alfalfa biochar supported Mg-Fe layered double hydroxide as filter media to remove trace metal(loid)s from stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156835. [PMID: 35750170 DOI: 10.1016/j.scitotenv.2022.156835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Polluted stormwater (PSW) treatment is becoming increasingly important because of the existence of multiple pollutants from non-point pollution sources. Alfalfa biochar loaded with Mg/Fe layered double hydroxide (AF-LDH) was successfully synthesized to remove trace metal(loid)s from stormwater. The adsorption kinetics and isotherms of metal(loid)s in a mono-component system and the reusability of the composite materials was investigated in this study. The result showed that the maximum removal efficiency for Pb(II), Cu(II), Zn(II), Cd(II), As(V), and Cr(VI) were 98.98 %, 98.11 %, 97.88 %, 97.71 %, 98.81 %, and 50.89 %, respectively, when added calcined AF-LDH (AF-LDO) composite material to the multi-component solution. The AF-LDH and AF-LDO could efficiently remove trace pollutants (10-100 μg/L) from multi-component solution, especially for AF-LDO, which could completely remove the tested six trace metal(loid)s. Furthermore, Fourier transform infrared spectra and X-ray diffraction characterizations supported the Mg/Fe layered double hydroxide reconstruction. The main mechanisms of Pb(II), Cu(II), Zn(II), and Cd(II) (cationic metals) removal were ion exchange and surface precipitation, whereas As(V) and Cr(VI) (anionic metals) were mainly dislodged through the formation of surface complexation, electrostatic attraction, and interlayer anion exchange, concerning the -OH and -COOH of AF-LDH. Importantly, the results of the column experiment demonstrated that AF-LDO was superior to AF-LDH for anionic metal removal from stormwater. In this study, we synthesized AF-LDH and AF-LDO for trace metal(loid) removal and proposed a new and practical approach for stormwater purification.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shujing Ye
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Biao Song
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qiang Chen
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Hailan Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qianmin Fu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuanyuan Deng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Guangming Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
30
|
Zhang W, Mi Y, Jiao W. Study on the migration mechanisms of water-soluble agents in high-pressure rotary jetting remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74038-74050. [PMID: 35633461 DOI: 10.1007/s11356-022-21024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
High-pressure rotary jetting (HPRJ) remediation is a recent-applied technology for in situ remediation of contaminated soils. The effectiveness of remediation depends upon the migration and distribution of the injected agents in the soil. However, the corresponding migration mechanisms have received little attention. In this study, laboratory HPRJ tests and numerical simulations were performed using chlorine (Cl-) as a tracer to investigate the transport during HPRJ and the subsequent advection and diffusion. The test results showed that the HPRJ transported Cl- into the mixing zone by eroding the sand, and the radius of the mixing zone could be reasonably predicted by the erosion model. The Cl- concentration decreased linearly along the radial direction in the mixing zone. In addition, the Cl- transport distance increased with the increase in nozzle diameter, jetting times, especially injection pressure, and decreased with an increasing rotation speed. The Cl- concentration and radial uniformity were correlated positively with rotation speed, particularly nozzle diameter and jetting times. Numerical simulation showed that part of Cl- migrated from the mixing zone to diffusion zone by advection-diffusion after rotary jetting, which contributed positively to the agent distribution distance and uniformity. The Cl- migration was dominated by advection in the initial stage (30 days), while diffusion became more important thereafter.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Mechanics and Engineering Science, Shanghai University, 200444, Shanghai, People's Republic of China.
| | - Yongbao Mi
- School of Mechanics and Engineering Science, Shanghai University, 200444, Shanghai, People's Republic of China
| | - Weiguo Jiao
- Department of Civil Engineering, Guizhou Institute of Technology, 550003, Guiyang, People's Republic of China
| |
Collapse
|
31
|
Abid AA, Zhang G, He D, Wang H, Batool I, Di H, Zhang Q. Combined effects of Bacillus sp. M6 strain and Sedum alfredii on rhizosphere community and bioremediation of cadmium polluted soils. FRONTIERS IN PLANT SCIENCE 2022; 13:913787. [PMID: 36212314 PMCID: PMC9533712 DOI: 10.3389/fpls.2022.913787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Concerns regarding inevitable soil translocation and bioaccumulation of cadmium (Cd) in plants have been escalating in concomitance with the posed phytotoxicity and threat to human health. Exhibiting a Cd tolerance, Bacillus sp. M6 strain has been reported as a soil amendment owing to its capability of reducing metal bioavailability in soils. The present study investigated the rhizospheric bacterial community of the Cd hyperaccumulator Sedum alfredii using 16S rRNA gene sequencing. Additionally, the Cd removal efficiency of strain Bacillus sp. M6 was enhanced by supplementing with biochar (C), glutamic acid (G), and rhamnolipid (R) to promote the phytoremediation effect of hyperaccumulator S. alfredii. To the best of our knowledge, this is the first time the amendments such as C, G, and R together with the plant-microbe system S. alfredii-Bacillus sp. M6 has been used for Cd bioremediation. The results showed that soil CaCl2 and DTPA (Diethylenetriamine penta-acetic acid) extractable Cd increased by 52.77 and 95.08%, respectively, in all M6 treatments compared to unamended control (CK). Sedum alfredii with Bacillus sp. M6 supplemented with biochar and rhamnolipid displayed a higher phytoremediation effect, and the removal capability of soil Cd (II) reached up to 16.47%. Moreover, remediation of Cd polluted soil by Bacillus sp. M6 also had an impact on the soil microbiome, including ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and cadmium transporting ATPase (cadA) genes. Quantitative PCR analysis confirmed the Bacillus sp. M6 strain increased the abundance of AOB and cadA in both low Cd (LC) and high Cd (HC) soils compared to AOA gene abundance. Besides, the abundance of Proteobacteria and Actinobacteria was found to be highest in both soils representing high tolerance capacity against Cd. While Firmicutes ranked third, indicating that the additionof strain could not make it the most dominant species. The results suggested the presence of the hyperaccumulator S. alfredii and Cd tolerant strain Bacillus sp. M6 supplemented with biochar, and rhamnolipid, play a unique and essential role in the remediation process and reducing the bioavailability of Cd.
Collapse
Affiliation(s)
- Abbas Ali Abid
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Gengmiao Zhang
- Zhuji Agricultural Technology Extension Center, Zhuji, China
| | - Dan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Huanhe Wang
- Zhuji Economic Speciality Station, Zhuji, China
| | - Itrat Batool
- Institute of Food Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Bailon MX, Chaudhary DK, Jeon C, Ok YS, Hong Y. Impact of sulfur-impregnated biochar amendment on microbial communities and mercury methylation in contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129464. [PMID: 35999716 DOI: 10.1016/j.jhazmat.2022.129464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
S-impregnation of biochar through elemental S streaming is known to increase its sorption performance against Hg and methyl mercury (MeHg). However, the effects of %S-loading on biochar's mechanism and sorption capacities for MeHg, and its consequent impact when used as an amendment material for Hg-contaminated sediments, are poorly understood, and thus, were investigated in this work. Our results showed that a minimum sulfur loading of 1% was the most effective in reducing MeHg levels in sediments. At higher %S-loading (3-20%), the reduction in surface area, pore blockage due to unreacted sulfur particles, and presence of poorly bound sulfur species resulted in lowered effectiveness for MeHg control. Increasing S-functionalization during impregnation shifted the sorption process of MeHg from Hg-O to Hg-S in S-impregnated biochar (BCS). Our 60-day slurry experiment showed a significant reduction in pore water THg (40-70%) and MeHg (30-55%), as well as sediment MeHg (50-60%) in biochar-amended sediments. The reduction in the bioavailable Hg resulted in lowered Hg methylation, as supported by the suppression of both the Fe- and SO42--reduction activities in the amended sediments. The microbial community structure in BCS-amended sediments showed a shift towards sulfur-consuming, iron-reducing, thiosulfate-oxidizing, and sulfate-reducing bacterial populations. At the genus level, the overall relative abundance of principal Hg methylators was also lower in the BCS treatment than in the unamended sediments. This study highlights the application of BCS as a promising strategy for remediation of Hg-contaminated sediments.
Collapse
Affiliation(s)
- Mark Xavier Bailon
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, South Korea; Department of Science and Technology - Philippines, Philippine Science High School - Central Luzon Campus, Lily Hill, Clark Freeport Zone, Mabalacat City, Pampanga 2010, Philippines
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, South Korea
| | - Cheolho Jeon
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, South Korea.
| |
Collapse
|
33
|
Batool M, Rahman SU, Ali M, Nadeem F, Ashraf MN, Harris M, Du Z, Khan WUD. Microbial-assisted soil chromium immobilization through zinc and iron-enriched rice husk biochar. Front Microbiol 2022; 13:990329. [PMID: 36171745 PMCID: PMC9511223 DOI: 10.3389/fmicb.2022.990329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Soil chromium toxicity usually caused by the tannery effluent compromises the environment and causes serious health hazards. The microbial role in strengthening biochar for its soil chromium immobilization remains largely unknown. Hence, this study evaluated the effectiveness of zinc and iron-enriched rice husk biochar (ZnBC and FeBC) with microbial combinations to facilitate the chromium immobilization in sandy loam soil. We performed morphological and molecular characterization of fungal [Trichoderma harzianum (F1), Trichoderma viride (F2)] and bacterial [Pseudomonas fluorescence (B1), Bacillus subtilis (B2)] species before their application as soil ameliorants. There were twenty-five treatments having ZnBC and FeBC @ 1.5 and 3% inoculated with bacterial and fungal isolates parallel to wastewater in triplicates. The soil analyses were conducted in three intervals each after 20, 30, and 40 days. The combination of FeBC 3%+F2 reduced the soil DTPA-extractable chromium by 96.8% after 40 days of incubation (DAI) relative to wastewater. Similarly, 92.81% reduction in chromium concentration was achieved through ZnBC 3%+B1 after 40 DAI compared to wastewater. Under the respective treatments, soil Cr(VI) retention trend increased with time such as 40 > 30 > 20 DAI. Langmuir adsorption isotherm verified the highest chromium adsorption capacity (41.6 mg g−1) with FeBC 3% at 40 DAI. Likewise, principal component analysis (PCA) and heat map disclosed electrical conductivity-chromium positive, while cation exchange capacity-chromium and pH-organic matter negative correlations. PCA suggested the ZnBC-bacterial while FeBC-fungal combinations as effective Cr(VI) immobilizers with >70% data variance at 40 DAI. Overall, the study showed that microbes + ZnBC/FeBC resulted in low pH, high OM, and CEC, which ultimately played a role in maximum Cr(VI) adsorption from wastewater applied to the soil. The study also revealed the interrelation and alternations in soil dynamics with pollution control treatments. Based on primitive soil characteristics such as soil metal concentration, its acidity, and alkalinity, the selection criteria can be set for treatments application to regulate the soil properties. Additionally, FeBC with Trichoderma viride should be tested on the field scale to remediate the Cr(VI) toxicity.
Collapse
Affiliation(s)
- Masooma Batool
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Shafeeq ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, China
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Muhammad Ali
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Faisal Nadeem
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Nadeem Ashraf
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Harris
- Department of Environmental Sciences, University of Lahore, Lahore, Pakistan
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang, China
- *Correspondence: Waqas-ud-Din Khan
| | - Waqas-ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
- Zhenjie Du
| |
Collapse
|
34
|
Wang W, Lu T, Liu L, Yang X, Li X, Qiu G. Combined remediation effects of biochar, zeolite and humus on Cd-contaminated weakly alkaline soils in wheat farmland. CHEMOSPHERE 2022; 302:134851. [PMID: 35533934 DOI: 10.1016/j.chemosphere.2022.134851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Threats posed by Cd-contaminated arable soils to food security have attracted increasing attention. The combination of organic and inorganic amendments has been extensively applied to immobilize Cd in paddy soils. However, the regulatory mechanism of Cd fractionation under these combined amendments and the effect on wheat Cd accumulation remain unclear in upland soils. In this work, different combinations of organic and inorganic amendments were prepared with biochar, zeolite and humus, and the Cd-immobilization mechanism was also investigated in field experiments. The results demonstrated that the mixture of biochar, zeolite and humus had excellent Cd immobilization performance in highly Cd-contaminated (4.26 ± 1.25 mg kg-1) weakly alkaline soils, resulting in 76.5-84.8% decreases in soil available Cd. The contribution of single components to Cd immobilization in the combined amendment follows the order of humus > biochar > zeolite. The combined amendment converted the acid soluble Cd to the Cd bound to the reducible fraction with higher stability, thereby decreasing Cd bioavailability. The maximum Cd decrease rate in wheat roots, straw and grains could reach 68.2%, 45.0% and 59.3%, respectively, and the Cd content in grains (0.098 mg kg-1) was lower than the food security standards of China (0.1 mg kg-1). Wheat planting for two successive years in a large-scale field further verified the superior Cd immobilization performance and stability of the combined amendment in moderately to slightly Cd-contaminated soil. The present study provides references for the remediation of Cd-contaminated weakly alkaline upland soils and certain guidance for safe food production.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
35
|
Al-Lami MK, Oustriere N, Gonzales E, Burken JG. Phytomanagement of Pb/Zn/Cu tailings using biosolids-biochar or -humus combinations: Enhancement of bioenergy crop production, substrate functionality, and ecosystem services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155676. [PMID: 35523335 DOI: 10.1016/j.scitotenv.2022.155676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 05/22/2023]
Abstract
The extreme characteristics of mine tailings generally prohibit microbial processes and natural plant growth. Consequently, vast and numerous tailings sites remain barren for decades and highly susceptible to windblown dust and water erosion. Amendment-assisted phytostabilization is a cost-effective and ecologically productive approach to mitigate the potential transport of residual metals. Due to the contrasting and complementary characteristics of biosolids (BS) and biochar (BC), co-application might be more efficient than individually applied. Studies considering BS and BC co-application for multi-metal tailings revegetation are scarce. As tailings revegetation is a multidimensional issue, clearly notable demand exists for a study that provides a comprehensive understanding on the co-application impact on interrelated properties of physicochemical, biological, mineral nitrogen availability, metal immobilization, water-soil interactions, and impacts on plant cultivation and biomass production. This 8-month greenhouse study aimed at investigating the efficacy of co-application strategies targeting BS and carbon-rich amendments (BC or humic substances (HS)) to phytomanage a slightly alkaline Pb/Zn/Cu tailings with bioenergy crops (poplar, willow, and miscanthus). A complementary assessment linking revegetation effectiveness to ecosystem services (ES) provision was also included. Owing to their rich nutrient and organic matter contents, BS had the most pronounced influence on most of the measured properties including physicochemical, enzyme activities, NH4+-N and NO3--N availability, immobilization of Zn, Cu, and Cd, and biomass production. Co-applying with BC exhibited efficient nutrient release and was more effective than BS alone in reducing metal bioavailability and uptake particularly Pb. Poplar and willow exhibited more superior phytostabilization efficiency compared to miscanthus which caused acidification-induced metal mobilization, yet BC and BS co-application was effective in ameliorating this effect. Enhancement of ES and substrate quality index mirrored the positive effect of amendment co-application and plant cultivation. Co-applying HS with BS resulted in improved nutrient cycling while BC enhanced water purification and contamination control services.
Collapse
Affiliation(s)
- Mariam K Al-Lami
- Department of Civil, Architectural and Environmental Engineering, Missouri Univ. of Science and Technology, Rolla, MO 65409, United States of America.
| | - Nadège Oustriere
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France; JUNIA, Health & Environment, Team Environment, F-59000 Lille, France
| | - Eva Gonzales
- Department of Biology, Saint Louis Univ., Saint Louis, MO 63103, United States of America.
| | - Joel G Burken
- Department of Civil, Architectural and Environmental Engineering, Missouri Univ. of Science and Technology, Rolla, MO 65409, United States of America.
| |
Collapse
|
36
|
Qu J, Zhang X, Guan Q, Kong L, Yang R, Ma X. Effects of biochar underwent different aging processes on soil properties and Cd passivation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57885-57895. [PMID: 35359207 DOI: 10.1007/s11356-022-19867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
This study aims to determine the efficacy of biochar underwent different aging process including freeze-thaw cycling aging (FB), acidified aging (AB), and microbial aging (MB) on soil physicochemical properties and Cd passivation. The Cd-contaminated soil (3 mg·kg-1) amended with the three kinds of aging biochar (at 4% w:w) were subjected to 56-day incubation. The application of FB and MB in soil increased the soil pH (0.82-1.04, 0.27-9.36), CEC (1.06-2.53 cmol·kg-1, 1.66-2.59 cmol·kg-1), and organic matter content (2.28-4.67 g·kg-1, 3.70-5.48 g·kg-1). FB performed best in stabilizing Cd (17.06-23.65%). On the contrary, AB decreased the soil pH and CEC by 0.82-1.04 and 1.32-2.40 cmol·kg-1 and activated Cd by 11.6-19.24%. In conclusion, the efficacy of biochar on soil remediation and Cd passivation varied with aging method and cycle, and freeze-thaw treatment is an effective approach to improve the performance of biochar.
Collapse
Affiliation(s)
- Juanjuan Qu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Utilization and Protection of Black Soil in Cold Region, Harbin, 150030, China
| | - Xu Zhang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qingkai Guan
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Linghui Kong
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xianfa Ma
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
37
|
Hong SH, Lee CG, Park SJ. Application of calcium-rich mineral under nonwoven fabric mats and sand armor as cap layer for interrupting N and P release from river sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59444-59455. [PMID: 35381927 DOI: 10.1007/s11356-022-19998-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
This work investigates the applicability of thermally treated calcium-rich minerals (CRMs), such as sepiolite (SPL), attapulgite (ATT), and dolomite (DLM) to hinder the nitrogen (N) and phosphorus (P) release from river sediments. A non-woven fabric mat (NWFM) or a sand layer were also capped as armor layers, i.e., placed over CRMs to investigate the capping impact on the N/P release. The capping efficiency was evaluated in a cylindrical reactor, consisting of CRMs, armor layers, sediments, and sampled water. We monitored N/P concentrations, dissolved oxygen (DO), oxidation reduction potential, pH, and electric conductivity in overlying water over 70 days. The DO concentrations in the uncapped and capped conditions were preserved for 30 days and 70 days (until the end of experiment duration), respectively. ATT showed higher efficiency for NH4-N and T-N than the other two materials, and the capping efficiency of NH4-N was measured as 96.4%, 93.7%, and 61.6% when capped with 2-cm sand layer, 1-cm sand layer, and NWFM layer, respectively. DLM showed a superior rejection capability of PO4-P to ATT and SPL, reported as 97.2% when capped with 2-cm sand armor. The content of weakly adsorbed-P was lower in the uncapped condition than in the capping condition. It can be concluded that ATT and DLM can be used as capping agents to deactivate N and P, respectively, to reduce water contamination from sediments of the eutrophic river.
Collapse
Affiliation(s)
- Seung-Hee Hong
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
38
|
Bai X, Lin J, Zhang Z, Zhan Y. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51793-51814. [PMID: 35254614 DOI: 10.1007/s11356-022-19506-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The objective of this work was to determine the effect of dosage on the immobilization of lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), and zinc (Zn) in sediment by red mud (RM). To achieve this aim, the adsorption characteristics and mechanism of Pb, Cu, Cd, Ni, and Zn from aqueous solution on RM were studied at first, and then the influence of the RM dosage on the fractionation and leaching potential of Pb, Cu, Cd, Ni, and Zn in sediment was investigated. The results showed that RM possessed high adsorption capacities for Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) in aqueous solution. The maximum monolayer Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) adsorption capacities for RM derived from the Langmuir isotherm model were found to be 296, 39.2, 70.2, 46.0, and 50.7 mg/g, respectively. The addition of RM into sediment could effectively reduce the toxicity characteristic leaching procedure (TCLP)-leachable concentrations of Pb, Cu, Cd, Ni, and Zn in the sediment. The added RM could effectively immobilize the mobile (exchangeable, reducible, and oxidizable fractions) Pb in sediment by the conversion of the exchangeable and reducible fractions into the residual fraction, and it could effectively immobilize the mobile Cu, Cd, Ni, and Zn in sediment by the conversion of the exchangeable fraction into the residual fraction. The quantities of mobile Pb, Cu, Cd, and Ni immobilized by RM had a good linear relationship with the added RM. The above results suggest that RM is a promising amendment for the immobilization of mobile Pb, Cu, Cd, Ni, and Zn in sediment, and the linear relationship between the RM dosage and the quantities of immobilized Pb, Cu, Cd, and Ni by RM can be employed to determine the RM dosage required for the immobilization of mobile Pb, Cu, Cd, and Ni in sediment.
Collapse
Affiliation(s)
- Xianshang Bai
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China.
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| |
Collapse
|
39
|
Ibrahim EA, El-Sherbini MA, Selim EMM. Effects of biochar on soil properties, heavy metal availability and uptake, and growth of summer squash grown in metal-contaminated soil. SCIENTIA HORTICULTURAE 2022; 301:111097. [DOI: 10.1016/j.scienta.2022.111097] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
40
|
Yin S, Zhang X, Suo F, You X, Yuan Y, Cheng Y, Zhang C, Li Y. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. CHEMOSPHERE 2022; 298:134191. [PMID: 35248596 DOI: 10.1016/j.chemosphere.2022.134191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Soil acidification has become a major environmental and economic concern worldwide. Char materials (e.g biochar, hydrochar) have attracted considerable attention as soil amendments to restore degraded soil. However, the comparative study of biochar and hydrochar on plant growth in acidified soil is limited. In this study, a microcosmic experiment was used to compare the effect of biochar and hydrochar from cow manure (CBC, CHC) and reed straw (RBC, RHC) on the growth of lettuce in the acidified soil. CBC and RHC significantly increased and decreased the biomass of lettuce by 18.7% and 32.5% in the acidified soil, respectively. The increase of the lettuce growth by CBC primarily attributed to the enhancement of soil properties (SOM and pH) and soil nutrient content (Olsen-P, K, Ca, Mg, Zn, Fe and Mn). Moreover, CBC enhanced the microbial activity and complexity and increased the abundance of beneficial genera like Gemmatimonas, Ramlibacter and Haliangium, which improved soil health and might indirectly benefited the lettuce growth. Our findings highlighted the priority of char materials feedstock and preparation technology for remediating the acidified soil.
Collapse
Affiliation(s)
- Shaojing Yin
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
41
|
Li R, Zhang X, Wang G, Kong L, Guan Q, Yang R, Jin Y, Liu X, Qu J. Remediation of cadmium contaminated soil by composite spent mushroom substrate organic amendment under high nitrogen level. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128345. [PMID: 35149508 DOI: 10.1016/j.jhazmat.2022.128345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) contamination in soil poses a serious threat to ecological environment and crop quality, especially under high nitrogen level. Here, the efficiency of composite organic amendment (spent mushroom substrate and its biochar) on remediation of Cd contaminated soil under high nitrogen level has been studied through a 42 days' soil incubation experiment. The results showed: (i) the application of composite organic amendment minimized the repercussions of high nitrogen and significantly reduced the exchangeable Cd proportion by 28.3%-29.5%, especially for Ca(NO3)2 treatment; (ii) the application of composite organic amendment improved the physicochemical properties of soil, such as pH, CEC and organic matter content increased by 0.63-0.99 unit, 39.69%-45.00% and 7.77%-11.47%, and EC decreased by 16.21%-44.47% compared with non-amendment Cd-contaminated soil, respectively; (iii) the application of composite organic amendment significantly increased the soil enzyme activities and microbial biomass, among which urease activity was increased most by 12.06-16.42 mg·g-1·d-1, and the copy number of AOA was decreased by 30.6%- 92.0%, and the copy number of AOB was increased most by about 45 times. In brief, the composite organic amendment can alleviate the adverse effects of Cd and nitrogen on the soil, but its long-term efficacy needs to be verified in further field study.
Collapse
Affiliation(s)
- Rui Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guoliang Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Linghui Kong
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
42
|
Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14095309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent decades, minimization and recycling/reuse policies were introduced to reduce the quantities of generated waste and for alternative waste recovery. Organic wastes represent 46% of total global solid waste. Possible uses of organic wastes include using it as fertilizer and amendment for soil, for energy recovery and for the production of chemical substances. Sewage sludge disposal and reuse are identified as future problems concerning waste. The total amount of sludge generated in the entire world has increased dramatically, and this tendency is expected to increase significantly in the years to come. In most developed countries, special attention is given to sewage sludge treatment in order to improve the quality and safety of using it on the ground surface. Sewage sludge pyrolysis is considered an acceptable method, from an economic and ecological perspective, for the beneficial reuse of sewage sludge. This method has many advantages because, during the pyrolysis process, the sludge volume is reduced by 80%, pathogenic agents and hazardous compounds from sewage sludge are eliminated, metals are immobilized in solid residue and organic and inorganic fractions are immobilized in a stabilized form of pyrolytic residues (biochar). The biochar generated by sewage sludge pyrolysis does not contain pathogenic agents and is rich in carbon and nutrients.
Collapse
|
43
|
Simultaneous adsorption of As(III) and Cd(II) by ferrihydrite-modified biochar in aqueous solution and their mutual effects. Sci Rep 2022; 12:5918. [PMID: 35396518 PMCID: PMC8993855 DOI: 10.1038/s41598-022-09648-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
A simply synthetic ferrihydrite-modified biochar (Fh@BC) was applied to simultaneously remove As(III) and Cd(II) from the aqueous solution, and then to explore the mutual effects between As(III) and Cd(II) and the corresponding mechanisms. The Langmuir maximum adsorption capacities of As(III) and Cd(II) in the single adsorbate solution were 18.38 and 18.18 mg g−1, respectively. It demonstrated that Fh@BC was a potential absorbent material for simultaneous removal of As(III) and Cd(II) in aqueous solution. According to the XRF, SEM–EDS, FTIR, XRD, and XPS analysis, the mechanisms of simultaneous removal of As(III) and Cd(II) by Fh@BC could be attributable to the cation exchange, complexation with R-OH and Fe-OH, and oxidation. Moreover, the mutual effect experiment indicated that Cd(II) and As(III) adsorption on Fh@BC in the binary solution exhibited competition, facilitation and synergy, depending on their ratios and added sequences. The mechanisms of facilitation and synergy between Cd(II) and As(III) might include the electrostatic interaction and the formation of both type A or type B ternary surface complexes on the Fh@BC.
Collapse
|
44
|
Martino LJ, Fernández San Juan MR, Angelo CD. Potential phytoremediation system using macrophyte Limnobium laevigatum to remove in situ Cr from contaminated bottom sediments. ENVIRONMENTAL TECHNOLOGY 2022:1-11. [PMID: 35184699 DOI: 10.1080/09593330.2022.2044916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The contamination of aquatic environments with heavy metals is an important issue, and in turn, it is crucial to study remediation techniques that can be applied in situ. In this work, the use of a containment system with macrophytes Limnobium laevigatum is explored in the laboratory to evaluate the remotion of Cr in contaminated sediments. The roots of the plants were placed in contact with the bottom sediment through a containment system. The concentration of Cr in macrophyte and sediment samples exposed to different exposure times (1, 4 and 7 days) was determined by laser-induced breakdown spectroscopy technique. The initial concentration of Cr in the sediment was 112 ± 5 mg/kg and decreased by 65% to the control (p < 0.05) after 24 h of exposure. The removal continued throughout the study time until reaching values of 23 ± 1 mg/kg. In macrophytes, the Cr concentration increased from 20 ± 5 mg/kg to 2066 ± 216 mg/kg after seven days of exposure. The correlation coefficient between Cr concentrations in both matrices was -0.96. Finally, the bioaccumulation factor of Cr in L. laevigatum was 95.22 ± 8.51. Therefore, the system studied could be a potential tool to remedy the bottom sediments of streams and lakes contaminated with heavy metals in situ.
Collapse
Affiliation(s)
- Lucila J Martino
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN) CIC-CONICET-UNICEN, Tandil, Argentina
| | - M Rocío Fernández San Juan
- Laboratorio de Ecotoxicología y Biología Celular, Centro de Investigación Veterinaria Tandil (CIVETAN) CONICET-UNICEN, Tandil, Argentina
| | - Cristian D' Angelo
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN) CIC-CONICET-UNICEN, Tandil, Argentina
| |
Collapse
|
45
|
Qian W, Liang JY, Zhang WX, Huang ST, Diao ZH. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil. J Environ Sci (China) 2022; 113:231-241. [PMID: 34963531 DOI: 10.1016/j.jes.2021.06.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
Risk associated with heavy metals in soil has been received widespread attention. In this study, a porous biochar supported nanoscale zero-valent iron (BC-nZVI) was applied to immobilize cadmium (Cd) and lead (Pb) in clayey soil. Experiment results indicated that the immobilization of Cd or Pb by BC-nZVI process was better than that of BC or nZVI process, and about 80% of heavy metals immobilization was obtained in BC-nZVI process. Addition of BC-nZVI could increase soil pH and organic matter (SOM). Cd or Pb immobilization was inhibited with coexisting organic compound 2,4-dichlorophenol (2,4-DCP), but 2,4-DCP could be removed in a simultaneous manner with Cd or Pb immobilization at low concentration levels. Simultaneous immobilization of Cd and Pb was achieved in BC-nZVI process, and both Cd and Pb availability significantly decreased. Stable Cd species inculding Cd(OH)2, CdCO3 and CdO were formed, whereas stable Pb species such as PbCO3, PbO and Pb(OH)2 were produced with BC-nZVI treatment. Simultaneous immobilization mechanism of Cd and Pb in soil by BC-nZVI was thereby proposed. This study well demonstrates that BC-nZVI has been emerged as a potential technology for the remediation of multiple heavy metals in soil.
Collapse
Affiliation(s)
- Wei Qian
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jing-Yi Liang
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen-Xuan Zhang
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shi-Ting Huang
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zeng-Hui Diao
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
46
|
Bailon MX, Park M, Solis KL, Na Y, Chaudhary DK, Kim S, Hong Y. Reduction in mercury bioavailability to Asian clams (Corbicula fluminea) and changes in bacterial communities in sediments with activated carbon amendment. CHEMOSPHERE 2022; 291:132700. [PMID: 34710454 DOI: 10.1016/j.chemosphere.2021.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/23/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Activated carbon (AC) amendment is considered as one of the alternatives for managing and remediating mercury (Hg) contaminated sediments because of its high sorptive capacity and potential to immobilize the contaminant. For this study, the underlying mechanisms that control the reduction of Hg bioavailability in AC-amended estuarine sediments were investigated in box microcosm set-ups with 28-day Asian clam bioassay experiments. The application of diffusive gradients in thin film technique (DGT) revealed that the total mercury and methylmercury levels in sediment pore water decreased by 60%-75% in 1%-3% AC-amended sediments. This decrease subsequently led to a linear reduction in the Hg body burden in Asian clams, even at 1% sorbent mixing. These observations implied that AC amendment reduced the net flux of Hg into the pore water and overlying water, resulting in reduced Hg bioaccumulation in benthic organisms. The addition of AC to sediment also led to reduced dissolved organic carbon and several biogeochemical indicators (HS-, Mn, and Fe) in the pore water. Furthermore, the 16 S rRNA gene amplicon sequencing analysis revealed noticeable alterations in the microbial communities after AC amendment. The predominant phylum was Firmicutes in control sediment, Bacteroidetes in 1% AC-amended sediment, and Proteobacteria in both 2% and 3% AC-amended sediment samples. The genera-level analysis showed that the relative abundance of the Hg-methylators decreased as the level of AC amendment increased. These observations suggested that AC amendment decreased Hg bioavailability not only by physicochemical sorption but also by changing geochemical species and shifting the microbial community composition.
Collapse
Affiliation(s)
- Mark Xavier Bailon
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea; Department of Science and Technology, Philippine Science High School - Central Luzon Campus, Lily Hill, Clark Freeport Zone, Mabalacat City, Pampanga, 2010, Philippines
| | - Minoh Park
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Kurt Louis Solis
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Yeong Na
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Sungpyo Kim
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea.
| |
Collapse
|
47
|
Chen M, Wang D, Xu X, Zhang Y, Gui X, Song B, Xu N. Biochar nanoparticles with different pyrolysis temperatures mediate cadmium transport in water-saturated soils: Effects of ionic strength and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150668. [PMID: 34597543 DOI: 10.1016/j.scitotenv.2021.150668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/28/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Biochar is advocated as an environment-friendly and cost-effective material for removing both heavy metals and organic contaminants in soil remediation. However, our understandings on the cotransport potential of contaminants with the nanoscale biochar downward along soil profiles (e.g., potential environmental risks towards groundwater) remain largely unknown. This study investigated the effects of wheat straw-derived biochar nanoparticles pyrolyzed at 350 °C and 500 °C (BNP350 and BNP500) on the transport of cadmium (Cd(II)) in water-saturated soil packed columns. Different ionic strengths (ISs) without/with humic acid (HA) were tested to mimic the scenarios during soil remediation. BNPs could act as a vehicle mediating Cd(II) transport in soils. At a low IS (1.0 mM KCl), compared to the limited transport of individual Cd(II), BNP500 enhanced (69 times) Cd(II) transport (Cd(II) mass recovery (M) = 7.59%) in soils, which was greater than that by BNP350 (54 times, M = 5.92%), likely due to the higher adsorption of Cd(II) onto BNP500. HA further increased the Cd(II) transport by BNPs (M = 8.40% for BNP350 and M = 11.95% for BNP500), which was mainly due to the increased mobility of BNPs carrying more absorbed Cd(II). In contrast, at a high IS (10 mM KCl), BNP500 dramatically inhibited the transport of Cd(II) (M = 12.9%), decreasing by about 61.6%, compared to the BNPs absence (M = 33.6%). This is because a large amount of BNP500-Cd(II) was retained in soils at a high IS. This inhibition effect of Cd(II) transport by BNPs was reinforced with the presence of HA. Our findings suggest that the pyrolysis temperature of biochar should be carefully considered when applying biochar for in-situ remediation of soils contaminated by heavy metals such as Cd(II) under various organic matter and IS conditions.
Collapse
Affiliation(s)
- Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingqing Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
48
|
Ji M, Wang X, Usman M, Liu F, Dan Y, Zhou L, Campanaro S, Luo G, Sang W. Effects of different feedstocks-based biochar on soil remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118655. [PMID: 34896220 DOI: 10.1016/j.envpol.2021.118655] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/19/2021] [Accepted: 12/05/2021] [Indexed: 05/22/2023]
Abstract
As a promising amendment, biochar has excellent characteristics and can be used as a remediation agent for diverse types of soil pollution. Biochar is mostly made from agricultural wastes, forestry wastes, and biosolids (eg, sewage sludge), but not all the biochar has the same performance in the improvement of soil quality. There is a lack of guidelines devoted to the selection of biochar to be used for different types of soil pollution, and this can undermine the remediation efficiency. To shed light on this sensitive issue, this review focus on the following aspects, (i) how feedstocks affect biochar properties, (ii) the effects of biochar on heavy metals and organic pollutants in soil, and (iii) the impact on greenhouse gas emissions from soil. Generally, the biochars produced from crop residue and woody biomass which are composed of lignin, cellulose, and hemicellulose are more suitable for organic pollution remediation and greenhouse gas emission reduction, while biochar with high ash content are more suitable for cationic organic pollutant and heavy metal pollution (manure and sludge, etc.). Additionally, the effect of biochar on soil microorganisms shows that gram-negative bacteria in soil tend to use WB biochar with high lignin content, while biochar from OW (rich in P, K, Mg, and other nutrients) is more able to promote enzyme activity. Finally, our recommendations on feedstocks selection are presented in the form of a flow diagram, which is precisely intended to be used as a support for decisions on the crucial proportioning conditions to be selected for the preparation of biochar having specific properties and to maximize its efficiency in pollution control.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Department of Biology, University of Padua, 35131, Padova, Italy
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | | | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
49
|
Zanganeh F, Heidari A, Sepehr A, Rohani A. Bioaugmentation and bioaugmentation-assisted phytoremediation of heavy metal contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Portulaca oleracea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6040-6059. [PMID: 34432211 DOI: 10.1007/s11356-021-16061-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, soil contamination with heavy metals has become an environmental crisis due to their long-term stability and adverse biological effects. Therefore, bioremediation is an eco-friendly technology to remediate contaminated soil, which the efficiency requires further research. This study was designed to comparatively investigate two strategies: bioaugmentation by using a cyanobacterial species (Oscillatoria sp.) and bioaugmentation-assisted phytoremediation by using Oscillatoria sp. and purslane (Portulaca oleracea L.) for the bioremediation of soil contaminated by heavy metals (Cr (III), Cr (VI), Fe, Al, and Zn). Various quantities of biochar (0.5, 2, and 5% (w/w)) were used as an amendment in the experiments to facilitate the remediation process. The results of the bioaugmentation test showed that applying biochar and cyanobacteria into contaminated soil significantly increased the chlorophyll a, nitrogen, and organic carbon contents. In contrast, the extractable fractions of Cr (III), Cr (VI), Zn, Al, and Fe declined compared with those of the control treatment. The highest reduction content (up to 87 %) in the extractable portion was obtained for Cr (VI). The development of longer root and hypocotyl lengths and vigour index from lettuces and radish seeds grown in the remediated soil confirmed the success of remediation treatments. Moreover, the findings of the bioaugmentation-assisted phytoremediation test displayed a reduction in the bioavailable fraction of Cr (III), Cr (VI), Zn, Al, and Fe. Cr (III) presented the highest reduction (up to 90 %) in metal bioavailability. With cyanobacteria inoculation and biochar addition, the shoot and root lengths of purslane grew 4.6 and 3-fold while the heavy metal accumulation decreased significantly. Besides, these treatments enhanced the tolerance index (TI) quantities of purslane whereas diminished its bioaccumulation coefficient (BAC) and bioconcentration factor (BCF) values. For all heavy metals (except Zn), translocation factor (TF) and BAC values were found to be less than 1.0 at all treatments, indicating the successful phytoextraction by the purslane. These results suggest that the purslane can be considered an excellent phytoextracting agent for soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Fahimeh Zanganeh
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ava Heidari
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Adel Sepehr
- Department of Desert and Arid Zones Management, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Rohani
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
50
|
Ma W, Sun T, Xu Y, Zheng S, Sun Y. In‒situ immobilization remediation, soil aggregate distribution, and microbial community composition in weakly alkaline Cd‒contaminated soils: A field study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118327. [PMID: 34634410 DOI: 10.1016/j.envpol.2021.118327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Biochar has advantages of a large specific surface area and micropore structure, which is beneficial for immobilization remediation of heavy metal‒contaminated soils. A field experiment was conducted to investigate the effects of rice husk biochar (BC) (7.5, 15, and 15 t hm-2) on Cd availability in soils and accumulation in maize (Zea mays L), soil aggregate structure, and microbial community abundance. The results show that BC treatment promoted the formation of large aggregates (5-8 and 2-5 mm) and enhanced aggregate stability, whereas it decreased the proportion of ≤0.25 mm soil aggregates. The geometric mean diameter and mean weight diameter under BC‒treated soils increased by 9.9%-40.5% and 3.6%-32.7%, respectively, indicating that the stability of soil aggregates increased. Moreover, BC facilitated the migration of Cd from large particles (>0.5 mm aggregates) to small particles (<0.25 mm aggregates). The application of BC decreased diethylenetriamine pentaacetic acid ‒extractable Cd by 17.6%-32.12% in contrast with the control. The amount of Cd in maize was reduced by 56.7%-81.1% for zhengdan958, 52.4%-85.9% for Sanbei218, and 73.7%-90.4% for Liyu16. When compared with the control groups, BC addition significantly (P < 0.05) increased the number of Ace observed, Shannon diversity indices, and the relative abundances of Proteobacteria, Acidobacteria, and Bacteroidetes. Therefore, rice husk BC exhibited a certain feasibility in immobilizing remediation of weakly alkaline Cd‒contaminated soils.
Collapse
Affiliation(s)
- Wenyan Ma
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Tong Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing, 100125, China
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|