1
|
Öncü T, Yüksel B, Binay E, Şen N. LC-MS/MS Investigation of nitrosamine impurities in certain Sartan group medicinal products available in Istanbul, Türkiye. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:72-83. [PMID: 37567559 DOI: 10.1016/j.pharma.2023.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Nitrosamines (NAs) are molecules that include the nitroso functional group. In 2018, the US Food and Drug Administration (FDA) received its first report of NAs in pharmaceuticals. The fact that NA impurities are likely human carcinogens is relevant to these compounds. Furthermore, prolonged exposure to NA contaminants above safe limits may raise the risk of cancer. The goal of this article was to assess the amounts of six different NAs in Sartan group medicines purchased from formal pharmacies in Istanbul, Türkiye, using a validated LC-MS/MS assay. An LC-MS/MS-based analytical assay was undertaken. The separation was performed with a HR ODS 150mm×3.0mm and 5-analytical columns, providing effective separation of major peaks from NA impurities. In mobile phase A, formic acid was 0.10% in water, while in mobile phase B, formic acid was 0.10% in methanol. The flow rate was 0.4mL/minute, and the total runtime was 18minutes with the gradient elution mode. The validation was conducted in line with ISO/IEC 17025 requirements. Up to 100μg/L, linearity was determined using correlation coefficients (r2>0.995) for all NAs. The limit of quantification values for all NAs analyses were below 1.0μg/L. The mean recovery value obtained during the spike experiment was 95.18%, demonstrating the accuracy of the procedure. In addition, the accuracy was shown by a certified reference analysis, which yielded relative standard deviation and relative error values of 1.82% and 3.34%, respectively. During the intermediate precision testing, bias and relative standard deviation were 0.96 and 2.87%, respectively. Of the 75 study samples involving Sartan group medical products, no nitrosamine impurities were detected, demonstrating that pharmaceutical companies have adequate medication safety precautions in place in accordance with FDA and European Medicines Agency (EMA) regulations published to prevent NA contaminants in human medicinal products.
Collapse
Affiliation(s)
- Tuna Öncü
- Shimadzu Middle East Africa, Kadıköy, Istanbul, Turkey
| | | | - Emrullah Binay
- Istanbul University, Faculty of Pharmaceutical Science, Istanbul, Turkey
| | - Nilgün Şen
- Turkish National Police Academy, Institute of Forensic Sciences, Ankara, Turkey
| |
Collapse
|
2
|
Wichitnithad W, Nantaphol S, Noppakhunsomboon K, Rojsitthisak P. An update on the current status and prospects of nitrosation pathways and possible root causes of nitrosamine formation in various pharmaceuticals. Saudi Pharm J 2023; 31:295-311. [PMID: 36942272 PMCID: PMC10023554 DOI: 10.1016/j.jsps.2022.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Over the last two years, global regulatory authorities have raised safety concerns on nitrosamine contamination in several drug classes, including angiotensin II receptor antagonists, histamine-2 receptor antagonists, antimicrobial agents, and antidiabetic drugs. To avoid carcinogenic and mutagenic effects in patients relying on these medications, authorities have established specific guidelines in risk assessment scenarios and proposed control limits for nitrosamine impurities in pharmaceuticals. In this review, nitrosation pathways and possible root causes of nitrosamine formation in pharmaceuticals are discussed. The control limits of nitrosamine impurities in pharmaceuticals proposed by national regulatory authorities are presented. Additionally, a practical and science-based strategy for implementing the well-established control limits is notably reviewed in terms of an alternative approach for drug product N-nitrosamines without published AI information from animal carcinogenicity testing. Finally, a novel risk evaluation strategy for predicting and investigating the possible nitrosation of amine precursors and amine pharmaceuticals as powerful prevention of nitrosamine contamination is addressed.
Collapse
Key Words
- AI, acceptable intake
- APIs, active pharmaceutical ingredients
- ARBs, angiotensin II receptor blockers
- AZBC, 4′-(azidomethyl)-[1.1′-biphenyl]-2-carbonitile
- AZBT, 5-(4′-(azidomethyl)-[1,1′-biphenyl]-2-yl)-1H-tetrazole
- AZTT, 5-(4′-((5-(azidomethyl)-2-butyl-4-chloro-1H-imidazol-1-yl) methyl)-[1,1′-biphenyl]-2-yl)-1H-tetrazole
- CDER, center for drug evaluation and research
- CPNP, 1-cyclopentyl-4-nitrosopiperazine
- Control limits
- DBA, N,N-dibutylamine
- DEA, N,N-diethylamine
- DIPEA, N,N-diisopropylethylamine
- DMA, dimethylamine
- DMF, N,N-dimethyl formamide
- DPA, N,N-dipropylamine
- EMA, European Medicines Agency
- EPA, Environmental Protection Agency
- FDA, Food and Drug Administration
- HSA, Health Sciences Authority
- IARC, International Agency for Research on Cancer
- ICH, International Council for Harmonisation
- LD50, median lethal dose
- MBA, N-methylamino-N-butyric acid
- MDD, maximum daily dose
- MNP, 1-methyl-4-nitrosopiperazine
- NAP, nitrosation assay procedure
- NDBA, N-nitrosodibutylamine
- NDEA, N-nitrosodiethylamine
- NDIPA, N-nitrosodiisopropylamine
- NDMA, N-nitrosodimethylamine
- NDSRIs, Nitrosamine drug substance-related impurities
- NEIPA, N-nitroso ethylisopropylamine
- NMBA, N-nitroso-N-methyl-4-aminobutyric acid
- NMP, N-methyl pyrrolidinone
- NOCs, N-nitroso compounds
- Nitrosamines
- Nitrosation
- PPRs, proportionate reporting ratios
- Ranitidine
- SARs, structure–activity relationships
- Sartans
- TD50, median toxic dose
- TEA, triethylamine
- TMA, trimethylamine
- TTC, threshold of toxicological concern
- USFDA, United States Food Drug and Administration
- USP, United States Pharmacopoeia
- WHO, World Health Organization
Collapse
Affiliation(s)
- Wisut Wichitnithad
- Department of Analytical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
- Department of Clinical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
| | - Siriwan Nantaphol
- Department of Clinical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
| | | | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author at: Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330 Thailand.
| |
Collapse
|
3
|
Zeytün E, Altıntop MD, Sever B, Özdemir A, Ellakwa DE, Ocak Z, Ciftci HI, Otsuka M, Fujita M, Radwan MO. A New Series of Antileukemic Agents: Design, Synthesis, In Vitro and In Silico Evaluation of Thiazole-Based ABL1 Kinase Inhibitors. Anticancer Agents Med Chem 2021; 21:1099-1109. [PMID: 32838725 DOI: 10.2174/1871520620666200824100408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND After the approval of imatinib, more than 25 antitumor agents targeting kinases have been approved, and several promising candidates are at various stages of clinical evaluation. OBJECTIVES Due to the importance of the thiazole scaffold in targeted anticancer drug discovery, the goal of this work is to identify new thiazolyl hydrazones as potent ABL1 kinase inhibitors for the management of Chronic Myeloid Leukemia (CML). METHODS New thiazolyl hydrazones (2a-p) were synthesized and investigated for their cytotoxic effects on the K562 CML cell line. Compounds 2h, 2j and 2l showed potent anticancer activity against K562 cell line. The cytotoxic effects of these compounds on other leukemia (HL-60, MT-2 and Jurkat) and HeLa human cervical carcinoma cell lines were also investigated. Furthermore, their cytotoxic effects on Mitogen-Activated Peripheral Blood Mononuclear Cells (MA-PBMCs) were evaluated to determine their selectivity. Due to its selective and potent anticancer activity, compound 2j was benchmarked for its apoptosis-inducing potential on K562 cell line and inhibitory effects on eight different Tyrosine Kinases (TKs), including ABL1 kinase. In order to investigate the binding mode of compound 2j into the ATP binding site of ABL1 kinase (PDB: 1IEP), a molecular docking study was conducted using MOE 2018.01 program. The QikProp module of Schrödinger's Molecular modelling package was used to predict the pharmacokinetic properties of compounds 2a-p. RESULTS 4-(4-(Methylsulfonyl)phenyl)-2-[2-((1,3-benzodioxol-4-yl)methylene)hydrazinyl]thiazole (2j) showed antiproliferative activity against K562 cell line with an IC50 value of 8.87±1.93 μM similar to imatinib (IC50= 6.84±1.11μM). Compound 2j was found to be more effective than imatinib on HL-60, Jurkat and MT-2 cells. Compound 2j also showed cytotoxic activity against HeLa cell line similar to imatinib. The higher selectivity index value of compound 2j than imatinib indicated that its antiproliferative activity was selective. Compound 2j also induced apoptosis in K562 cell line more than imatinib. Among eight TKs, compound 2j showed the strongest inhibitory activity against ABL1 kinase enzyme (IC50= 5.37±1.17μM). According to molecular docking studies, compound 2j exhibited high affinity to the ATP binding site of ABL1 kinase, forming significant intermolecular interactions. On the basis of in silico studies, this compound did not violate Lipinski's rule of five and Jorgensen's rule of three. CONCLUSION Compound 2j stands out as a potential orally bioavailable ABL1 kinase inhibitor for the treatment of CML.
Collapse
Affiliation(s)
- Ebru Zeytün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Doha E Ellakwa
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Zeynep Ocak
- Department of Microbiology, Kocaeli State Hospital, Kocaeli 41300, Turkey
| | - Halil I Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| |
Collapse
|
4
|
Mingle D, Ospanov M, Radwan MO, Ashpole N, Otsuka M, Ross SA, Walker L, Shilabin AG, Ibrahim MA. First In Class ( S, E)-11-[2-(Arylmethylene)Hydrazono]-PBD Analogs As Selective CB2 Modulators Targeting Neurodegenerative Disorders. Med Chem Res 2021; 30:98-108. [PMID: 33776384 DOI: 10.1007/s00044-020-02640-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Newly designed pyrrolo[2,1-c][1,4]benzodiazepines tricyclic skeleton has shown potential clusters of cannabinoid receptors CB1/CB2 selective ligands. CB2 plays a critical role in microglial-derived neuroinflammation, where it modulates cell proliferation, migration, and differentiation into M1 or M2 phenotypes. Beginning with computer-based docking studies accounting the recently discovered X-ray crystal structure of CB2, we designed a series of PBD analogs as potential ligands of CB2 and tested their binding affinities. Interestingly, computational studies and theoretical binding affinities of several selected (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs, have revealed the presence of potential selectivity in binding attraction towards CB1 and CB2. Reported here is the discovery of the first representatives of this series of selective binding to CB2. Preliminary data showed that this class of molecules display potential binding efficacy towards the cannabinoid receptors tested. Intriguingly, initial cannabinoid binding assay showed a selective binding affinity of 4g and 4h showed K i of 0.49 and 4.7 μM towards CB2 receptors while no binding was observed to CB1. The designed leads have shown remarkable stability pattern at the physiological pH magnifying their therapeutic values. We hypothesize that the PBD tricyclic structure offers the molecule an appropriate three-dimensional conformation to fit snugly within the active site of CB2 receptors, giving them superiority over the reported CB2 agonists/inverse agonists. Our findings suggested that the attachment of heterocyclic ring through the condensation of diazepine hydrazone and S- or N-heterocyclic aldehydes enhances the selectivity of CB2 over CB1.
Collapse
Affiliation(s)
- David Mingle
- Department of Chemistry, East Tennessee State University, Johnson City, TN 37614, USA
| | - Meirambek Ospanov
- National Center for Natural Products Research, University of Mississippi, University, MS 38677
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Nicole Ashpole
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Samir A Ross
- National Center for Natural Products Research, University of Mississippi, University, MS 38677
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Larry Walker
- National Center for Natural Products Research, University of Mississippi, University, MS 38677
| | - Abbas G Shilabin
- Department of Chemistry, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed A Ibrahim
- National Center for Natural Products Research, University of Mississippi, University, MS 38677
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
5
|
Seid MG, Chung J, Choe J, Cho K, Hong SW. Role of ranitidine in N-nitrosodimethylamine formation during chloramination of competing micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144156. [PMID: 33302063 DOI: 10.1016/j.scitotenv.2020.144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Ranitidine (RNT) is a widely known precursor of N-nitrosodimethylamine (NDMA) as evinced by the self-catalytic formation of NDMA during chloramination. In the present study, the NDMA formation potentials (NDMA-FP) of 26 micropollutants were assessed, particularly when mixed with RNT. 11 compounds were identified as individual precursors, including trimebutine and cimetidine, which exhibited substantial NDMA-FP, with up to 10% molar yield. In addition, nitrosamines, other than NDMA, namely N-nitrosodiethylamine and N-nitrosomethylamine, were observed from diethylamine-containing precursors, such as metoclopramide. In a 1:1 mixture of RNT and a competitor, the change in NDMA-FP was mostly comparable (within 20% deviation), while antagonistic interactions were observed for competitors, such as diethylhydroxylamine. The scattered overall NDMA-FP should be considered as a product of competition among the precursors for core substrates and intermediates for NDMA formation. The co-existence of either trimebutine or metoclopramide with RNT led to an exceptionally synergetic NDMA generation. Degradation kinetics and chlorination/nitrosation experiments combined with mass spectroscopy analyses indicated that RNT would accelerate both the initial chlorination and nitrosation of trimebutine and metoclopramide, leading to N-nitroso complexes, which have well-understood NDMA formation pathways, i.e., amination with subsequent aminyl radical generation. This work demonstrates a wide array of precursors with NDMA-FP, suggesting that nitrosamine formation is potentially underestimated in field environments.
Collapse
Affiliation(s)
- Mingizem Gashaw Seid
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea; Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jaewan Choe
- Department of Civil Engineering, Gwangju University, Gwangju 61743, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 406-840, Republic of Korea.
| | - Seok Won Hong
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea; Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
6
|
Yoon HJ, Kim JH, Seo GH, Park H. Risk of Cancer Following the Use of N-Nitrosodimethylamine (NDMA) Contaminated Ranitidine Products: A Nationwide Cohort Study in South Korea. J Clin Med 2021; 10:E153. [PMID: 33466237 PMCID: PMC7795144 DOI: 10.3390/jcm10010153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
N-nitrosodimethylamine (NDMA), a known carcinogenic agent, was recently detected in some products of ranitidine. Several studies have investigated the detectability of NDMA, in drugs and their risks. However, only a few epidemiological studies have evaluated cancer risk from the use of such individual drugs. This study investigates the risk of cancer in ranitidine users. We conducted an observational population-based cohort study using the Health Insurance Review and Assessment databases, which contain information about the use of medicines in South Korea. The primary study cohort consisted of ranitidine users (n = 88,416). For controls, we enrolled users of famotidine, another H2-receptor antagonist in which no NDMA has been detected. A 4:1 matched cohort was constructed to compare cancer outcomes of the two groups. Our matched cohort comprised of 40,488 ranitidine users and 10,122 famotidine users. There was no statistical difference in the overall cancer risk between the ranitidine and famotidine groups (7.45% vs. 7.56%, HR 0.99, 95% CI 0.91-1.07, p = 0.716). Additionally, no significant differences were observed in the analysis of 11 single cancer outcomes. We found no evidence that exposure to NDMA through ranitidine increases the risk of cancer.
Collapse
Affiliation(s)
- Hong Jin Yoon
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan-si, Chungcheongnam-do 330-921, Korea;
| | - Jie-Hyun Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea;
| | - Gi Hyeon Seo
- Health Insurance Review and Assessment Service, 60, Hyeoksin-ro, Wonju-si, Gangwon-do 26465, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea;
| |
Collapse
|
7
|
El-Shaheny R, Radwan MO, Belal F, Yamada K. Pentabromobenzyl-RP versus triazole-HILIC columns for separation of the polar basic analytes famotidine and famotidone: LC method development combined with in silico tools to follow the potential consequences of famotidine gastric instability. J Pharm Biomed Anal 2020; 186:113305. [PMID: 32353682 DOI: 10.1016/j.jpba.2020.113305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/07/2020] [Accepted: 04/07/2020] [Indexed: 01/13/2023]
Abstract
The competence of hydrophilic interaction (HILIC) and reversed phase liquid chromatography (RPLC) modes, employing two new stationary phases: triazole- and pentabromobenzyl-bonded silica (PBr), respectively, was inspected for separation of two polar basic analytes: famotidine (FAM) and its acidic degradant famotidone (FON). Comparison of the chromatographic efficiency, greenness, and economy aspects showed that the RPLC is superior to the HILIC. Hence, the RPLC method was adopted and validated adhering to the FDA guidelines showing excellent linearity for FAM (1.0-20.0 μg/mL) with a detection limit of 0.14 μg/mL. The method was applied to study the behavior of FAM in simulated gastric juice (SGJ), where it exhibited rapid degradation yielding FON. This degradation pathway is a probable major reason for the poor bioavailability of FAM. The kinetic study of the gastric degradation of FAM in SGJ demonstrated pseudo-first order reaction with a rate constant of 8.1 × 10-3 min-1. Moreover, FAM degradation has been proven to be pH-dependent and catalyzed by the gastric juice components. Hence, in situ buffered dosage form is recommended to overcome or decrease this problem. Molecular docking study shows that FON is missing a crucial stabilizing interaction with the key amino acid Asp98 causing a reduced activity at hH2R receptor relative to FAM. Moreover, ADMET properties prediction revealed some differences in the toxicity, pharmacokinetics, metabolism, and solubility profiles of FAM and FON.
Collapse
Affiliation(s)
- Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5e1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Koji Yamada
- Medicinal Plant Laboratory, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|