1
|
Archer D, Pérez-Muñoz ME, Tollenaar S, Veniamin S, Hotte N, Cheng CC, Nieves K, Oh JH, Morceli L, Muncner S, Barreda DR, Krishnamoorthy G, Power C, van Pijkeren JP, Walter J. A secondary metabolite of Limosilactobacillusreuteri R2lc drives strain-specific pathology in a spontaneous mouse model of multiple sclerosis. Cell Rep 2025; 44:115321. [PMID: 39985770 DOI: 10.1016/j.celrep.2025.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
Limosilactobacillus reuteri is an immunomodulatory bacterium enriched in non-industrialized microbiomes, making it a therapeutic candidate for chronic diseases. However, effects of L. reuteri strains in mouse models of multiple sclerosis have been contradictory. Here, we show that treatment of spontaneous relapsing-remitting experimental autoimmune encephalomyelitis (EAE) mice with L. reuteri R2lc, a strain that activates the aryl hydrocarbon receptor (AhR) through the pks gene cluster, resulted in severe pathology. In contrast, a pks mutant and a pks-negative strain (PB-W1) failed to exacerbate EAE and exhibited reduced pathology compared to R2lc despite earlier disease onset in PB-W1 mice. Differences in pathology occurred in parallel with a pks-dependent downregulation of AhR-related genes, reduced occludin expression in the forebrain, and altered concentrations of immune cells. This work establishes a molecular foundation for strain-specific effects on autoimmunity, which has implications for our understanding of how microbes contribute to chronic conditions and the selection of microbial therapeutics.
Collapse
Affiliation(s)
- Dale Archer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - María Elisa Pérez-Muñoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Simona Veniamin
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Christopher C Cheng
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kristoff Nieves
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, County Cork, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, County Cork, Ireland; Department of Medicine, University College Cork, Cork T12 K8AF, County Cork, Ireland
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lilian Morceli
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Susan Muncner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; APC Microbiome Ireland, University College Cork, Cork T12 K8AF, County Cork, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, County Cork, Ireland; Department of Medicine, University College Cork, Cork T12 K8AF, County Cork, Ireland.
| |
Collapse
|
2
|
Xue P, Xu L, Tian Y, Lv M, Fang P, Dong K, Lin Q, Cao Z. Effects of synergistic fermentation of tea bee pollen with bacteria and enzymes on growth and intestinal health of Apis cerana cerana. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100343. [PMID: 39911354 PMCID: PMC11794166 DOI: 10.1016/j.crmicr.2025.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
While the health benefits of lactic acid bacteria (LAB)-fermented feed on farmed animals are well-established, its potential benefits for honeybees, specifically Apis cerana cerana, remain largely unexplored. The present study aimed to optimize an enzymatic hydrolysis process for tea bee pollen, employing a complex enzyme comprising acid cellulase and pectinase, followed by fermentation with Limosilactobacillus reuteri LP4. A. c. cerana workers were subsequently fed tea bee pollen processed with this optimized method. Under the optimal processing condition of fermented tea bee pollen, the pH value was 4.41, the protein content was 27.75 %, and the viable count of LAB was 2.31×10⁹ CFU/g. No molds and yeasts as well as pathogens were detected. Compared to the unfermented pollen, honey bee workers administrated with fermented tea pollen with L. reuteri LP4 showed significantly increased survival rate by 24.34 % on day 15. Moreover, the relative abundances of Lactobacillus and Bifidobacterium were elevated, while those of Enterococcus and Bacteroides were diminished. Concurrently, the relative expression levels of immune-related genes including Abaecin, PPO, Defensin, and Vg were significantly upregulated. These findings provide a scientific foundation for application of fermented feeds to enhance the health of A. c. cerana populations and contribute to the sustainable development of apiculture in China.
Collapse
Affiliation(s)
- Panpan Xue
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Kunming 650201, PR China
| | - Yakai Tian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Mingkui Lv
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661101, PR China
| | - Pingping Fang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Kun Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Kunming 650201, PR China
| |
Collapse
|
3
|
Bai J, Zeng Q, Den W, Huang L, Wu Z, Li X, Tong P, Chen H, Yang A. Synergistic Synbiotic-Containing Lactiplantibacillus plantarum and Fructo-Oligosaccharide Alleviate the Allergenicity of Mice Induced by Soy Protein. Foods 2025; 14:109. [PMID: 39796399 PMCID: PMC11720218 DOI: 10.3390/foods14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prebiotics and probiotics have key roles in the intervention and treatment of food allergies. This study assesses the effect of Lactiplantibacillus plantarum synergistic fructo-oligosaccharide (Lp-FOS) intervention using an allergic mouse model induced by soy protein. The results showed that Lp synergistic FOS significantly decreased clinical allergy scores, inhibited specific antibodies (IgE, IgG, and IgG1), IL-4, IL-6, and IL-17A levels, and increased IFN-γ and IL-10 levels. Meanwhile, flow cytometry showed that Lp-FOS intervention inhibited the percentage of dendritic cell (DC) subsets in splenocytes and increased the Th1/Th2 and Treg/Th17 ratios. Furthermore, Lp-FOS intervention upregulated the mRNA levels of T-bet and Foxp3 and downregulated the mRNA levels of GATA3. Finally, non-targeted metabolomic analysis showed that Lp-FOS improved serum metabolic disorders caused by food allergies through regulating glycine, serine, and threonine metabolism, butanoate metabolism, glyoxylate and dicarboxylate metabolism, the biosynthesis of cofactors, and glycerophospholipid metabolism. These data showed that the combination formulation Lp-FOS could be a promising adjuvant treatment for food allergies.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Qian Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Wen Den
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Liheng Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| |
Collapse
|
4
|
Liu Y, Mei L, Wang L, Tian P, Jin X, Guo M, Lu J, Chen W, Zhang H, Wang G. The Immunomodulatory Effects of Lipoteichoic Acid from Lactobacillus reuteri L1 on RAW264.7 Cells and Mice Vary with Dose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20930-20943. [PMID: 39279192 DOI: 10.1021/acs.jafc.4c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The probiotic properties of Lactobacillus reuteri (L. reuteri) and its impact on immune function are well-documented. Lipoteichoic acid (LTA) is a crucial immune molecule in Gram-positive bacteria. Despite extensive research on LTA's structural diversity, the immunomodulatory mechanisms of L. reuteri LTA remain largely unexplored. This study investigates the immunomodulatory effects of L. reuteri L1 LTA at various concentrations on RAW 264.7 cells and mice under normal and inflammatory conditions. We found that LTA does not significantly affect healthy subjects; however, low-concentration LTA can reduce inflammation induced by LPS in cells and mice, enhancing the abundance of dominant intestinal bacteria. In contrast, high-concentration LTA exacerbates intestinal damage and dysbiosis. Creatinine may play a role in this differential response. In summary, while LTA does not alter immune homeostasis in healthy organisms, low-concentration LTA may mitigate damage from immune imbalance, but high-concentration LTA can worsen it. This suggests a quantitative requirement for probiotic intake. Our study provides critical theoretical support for understanding the immunomodulatory effects of probiotics on the host and paves the way for future research into the immune mechanisms of probiotics.
Collapse
Affiliation(s)
- Yini Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liya Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
5
|
Tobita K, Iwasa S. Levilactobacillus brevis IBARAKI-TS3 Isolated From Pickles Promotes Production of Interleukin-10 via Toll-Like Receptor 2 in Human M2 Macrophages. Cell Biochem Funct 2024; 42:e4110. [PMID: 39210693 DOI: 10.1002/cbf.4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
M2 macrophages play an important role in food allergy. Several studies have reported that lactic acid bacteria isolated from pickles exert antiallergic effects. We investigated the effects of several strains of lactic acid bacteria on the immune function of M2 macrophages. M2 macrophages differentiated from THP-1 cell line by interleukin-4 (IL-4) and IL-13 strongly expressed CD163, CD206, and HMOX1 mRNA. Levilactobacillus brevis IBARAKI-TS3 (IBARAKI-TS3) isolated from pickles was identified as a lactic acid bacterium that enhances the expressions of IL-10 and EBI3 mRNA in M2 macrophages. IBARAKI-TS3 induced the expression of genes involved in Toll-like receptor (TLR) signaling, such as IRAK, mitogen-activated protein kinases (MAPKs), and NF-κB mRNA. IBARAKI-TS3-induced IL-10 production was suppressed by anti-TLR2-neutralizing antibodies. Furthermore, the IBARAKI-TS3-induced increase in IL-10 levels was significantly reduced in TLR2-knockdown M2 macrophages compared to M2 macrophages. These results suggest that IBARAKI-TS3 promotes of IL-10 production via TLR2 in M2 macrophages.
Collapse
Affiliation(s)
- Keisuke Tobita
- Industrial Technology Innovation Center of Ibaraki Prefecture, Ibaraki, Japan
| | - Satoru Iwasa
- Industrial Technology Innovation Center of Ibaraki Prefecture, Ibaraki, Japan
| |
Collapse
|
6
|
Feng L, Chen G, Guo Z, Yao W, Li X, Mu G, Zhu X. Both live and heat killed Lactiplantibacillus plantarum DPUL-F232 alleviate whey protein-induced food allergy by regulating cellular immunity and repairing the intestinal barrier. Food Funct 2024; 15:5496-5509. [PMID: 38690869 DOI: 10.1039/d4fo00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Postbiotics have been proposed as clinically viable alternatives to probiotics, addressing limitations and safety concerns associated with probiotic use. However, direct comparisons between the functional differences and health benefits of probiotics and postbiotics remain scarce. This study compared directly the desensitization effect of probiotics and postbiotics derived from Lactiplantibacillus plantarum strain DPUL-F232 in the whey protein-induced allergic rat model. The results demonstrate that administering both live and heat killed F232 significantly alleviated allergy symptoms, reduced intestinal inflammation, and decreased serum antibody and histamine levels in rats. Both forms of F232 were effective in regulating the Th1/Th2 balance, promoting the secretion of the regulatory cytokine IL-10, inhibiting mast cell degranulation and restoring the integrity of the intestinal barrier through the upregulation of tight junction proteins. Considering the enhanced stability and reduced safety concerns of postbiotics compared to probiotics, alongside their ability to regulate allergic reactions, we suggest that postbiotics may serve as viable substitutes for probiotics in managing food allergies and potentially other diseases.
Collapse
Affiliation(s)
- Lu Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Gangliang Chen
- Xinjiang Wangyuan Camel Milk Industrial Co., Ltd, Fuhai, Xinjiang, 836400, P. R. China
| | - Zihao Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Wenpu Yao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Xinling Li
- Urumqi Dairy Industry Association, Urumqi, Xinjiang, 830000, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| |
Collapse
|
7
|
Gul S, Durante-Mangoni E. Unraveling the Puzzle: Health Benefits of Probiotics-A Comprehensive Review. J Clin Med 2024; 13:1436. [PMID: 38592298 PMCID: PMC10935031 DOI: 10.3390/jcm13051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
A growing number of probiotic-containing products are on the market, and their use is increasing. Probiotics are thought to support the health of the gut microbiota, which in turn might prevent or delay the onset of gastrointestinal tract disorders. Obesity, type 2 diabetes, autism, osteoporosis, and some immunological illnesses are among the conditions that have been shown to possibly benefit from probiotics. In addition to their ability to favorably affect diseases, probiotics represent a defense system enhancing intestinal, nutritional, and oral health. Depending on the type of microbial strain utilized, probiotics can have variable beneficial properties. Although many microbial species are available, the most widely employed ones are lactic acid bacteria and bifidobacteria. The usefulness of these bacteria is dependent on both their origin and their capacity to promote health. Probiotics represent a valuable clinical tool supporting gastrointestinal health, immune system function, and metabolic balance. When used appropriately, probiotics may provide benefits such as a reduced risk of gastrointestinal disorders, enhanced immunity, and improved metabolic health. Most popular probiotics, their health advantages, and their mode of action are the topic of this narrative review article, aimed to provide the reader with a comprehensive reappraisal of this topic matter.
Collapse
Affiliation(s)
- Sabiha Gul
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio 7, 80138 Napoli, Italy;
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio 7, 80138 Napoli, Italy;
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli—Ospedale Monaldi, Piazzale Ettore Ruggieri, 80131 Napoli, Italy
| |
Collapse
|
8
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
9
|
Liu JS, Huang RY, Wei YJ, Tsai GJ, Huang CH. Influence of Cordyceps militaris-fermented grain substrate extracts on alleviating food allergy in mice. Heliyon 2023; 9:e23315. [PMID: 38144334 PMCID: PMC10746508 DOI: 10.1016/j.heliyon.2023.e23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Background Cordyceps militaris is recognized as a tonic in traditional Chinese medicine, and there have been documented findings on the anti-allergic properties of its extract derived from the fruiting body. Due to the limited availability of wild C. militaris, a specialized grain substrate has been devised for the solid-state fermentation of its fruiting bodies. However, the fermented grain substrate is considered waste and usually used as feeds for animals. To achieve the sustainable development goals, C. militaris-fermented grain substrate (CFGS) was collected to prepare CFGS extracts. Further, the anti-allergic properties of these extracts were assessed with the aim of exploring novel applications. Methods The water extract and ethanol extract of CFGS were prepared, and their potential in alleviating allergic enteritis was assessed in mice with food allergy. Assessment of immunomodulatory effects included the measurement of serum antibodies and splenic cytokines. Additionally, influence of extracts on gut microbiota composition was examined through sequencing analysis of 16S rRNA gene from freshly collected feces of the mice. Results Daily administration of the water and ethanol extracts, at doses of 50 or 250 mg/kg body weight, demonstrated a notable alleviation of allergic diarrhea and enteritis. This was accompanied by a decrease in mast cell infiltration in the duodenum and a reduction in allergen-specific IgE production in the serum. Both extracts led to a significant decrease in IL-4 secretion. Conversely, there was an increase in IFN-γ, IL-10, and TGF-β secretion from splenocytes. Remarkably, allergic mice exhibited a distinct fecal microbiota profile compared to that of normal mice. Intriguingly, the administration of these extracts had varying effects on the fecal microbiota. Conclusion Taken together, these findings collectively indicate the potential of CFGS extracts as promising candidates for functional foods. These extracts show promise in managing allergic enteritis and modulating gut microbiota.
Collapse
Affiliation(s)
- Jia-Shan Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Rong-Yi Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Jyun Wei
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
10
|
Tsai WC, Liu FL, Huang MH, Huang CH. Enhancing Immunity and Modulating Vaginal Microflora Against Candidal Vaginitis Through Nanoemulsion Supplemented with Porphyra Oligosaccharide as an Intravaginal Vaccine Adjuvant. Int J Nanomedicine 2023; 18:6333-6346. [PMID: 37954454 PMCID: PMC10637204 DOI: 10.2147/ijn.s431009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Background Intravaginal vaccination is an encouraging approach to prevent infectious vaginitis, with nanoemulsions showing effectiveness as mucosal adjuvants. Purpose This study aimed to formulate a nanoemulsion incorporating Porphyra oligosaccharide (PO@NE) and assess its effectiveness as a mucosal adjuvant in intravaginal vaccines against candidal vaginitis. Materials and Methods PO@NE was prepared, and the stability, immunomodulatory activity and cytotoxicity were screened in vitro. Further, the preventive effect of PO@NE as adjuvants for heat-killed Candida albicans (HK-CA) vaccines was explored in a murine model of candidal vaginitis, in comparison with those supplemented with polysaccharide (PP@NE). The mice were intravaginally vaccinated with 106 HK-CA cells, suspended in 1% NE without or with either PO or PP at a final concentration of 6.5 μg/mL, in a total volume of 20 μL. This vaccination was intravaginally administered once a week for 3 weeks. One week following the final vaccination, the mice underwent an intravaginal challenge with 107 C. albicans cells. One week after the challenge, the mice were euthanized to isolate serum, spleen, vaginal washes, and vaginal tissues for analysis. Results PP@NE and PO@NE, with diameters approximately around 100 nm, exhibited exceptional stability at 4°C and low cytotoxicity when used at a concentration of 1% (v/v). Intravaginal vaccination with HK-CA adjuvanted with PO@NE effectively protected against candidal vaginitis evidenced by less Candida hyphae colonization, milder mucosal damage and cell infiltration. Moreover, enhanced mucosal antibody production, induction of T helper (Th)1 and Th17-related immune responses, enlarged the population of CD8+ cells, and elevated vaginal microflora diversity were observed in vaccinated mice. Interestingly, the potency was rather attenuated when PO@NE was replaced with PP@NE. Conclusion These findings indicate PO@NE as a HK-CA vaccine adjuvant for candidal vaginitis prevention via enhancement of both cellular and humoral immunity and modulation of vaginal microflora, emphasizing further intravaginal vaccination development.
Collapse
Affiliation(s)
- Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Fang-Ling Liu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
11
|
Lu HY, Tsai WC, Liu JS, Huang CH. Preparation and evaluation of Cordyceps militaris polysaccharide- and sesame oil-loaded nanoemulsion for the treatment of candidal vaginitis in mice. Biomed Pharmacother 2023; 167:115506. [PMID: 37716120 DOI: 10.1016/j.biopha.2023.115506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Candida albicans is the most prevalent fungal pathogen, affecting over 75% of women who have experienced candidal vaginitis. Given the identification of drug-resistant C. albicans strains, there is an urgent need to develop therapeutic methods for treating vaginal Candida infection. Polysaccharide is the major bioactive component of Cordyceps militaris, known to modulate immune responses and alleviate inflammation. Sesame oil is known with anti-microbial and anti-inflammatory activities. METHODS C. militaris polysaccharide was prepared and formulated with sesame oil to prepare emulsion and nanoemulsion, which are ideal mucosal delivery systems for both hydrophobic and hydrophilic compounds concurrently. The physical property and storage stability of these formulations were illustrated, and their effects on ameliorating vaginitis were investigated in a murine model of vaginal Candida infection. RESULTS C. militaris polysaccharide-containing nanoemulsion showed smaller particle size, lower polydispersity index, higher zeta-potential and better stability than emulsion. Intravaginal administration of C. militaris polysaccharide-containing nanoemulsion significantly attenuated C. militaris colonization and vaginitis. Notably, these formulations exerted distinct effects on modulating cell infiltration and splenic cytokine production. Moreover, different profile of vaginal microflora was observed among the treatment groups, revealing the potential action mechanisms of these formulations to mitigate vaginal Candida infection. CONCLUSION C. militaris polysaccharide- and sesame oil-containing nanoemulsion is potential to be developed as intravaginal therapeutic strategy for C. albicans-induced vaginitis.
Collapse
Affiliation(s)
- Hsueh-Yu Lu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jia-Shan Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
12
|
Gao K, Chen L, Chen C, Chen Z, Zhang Q, Fan Q, Li Y, Chen S. Leuconostoc mesenteroides WHH1141 ameliorates ovalbumin-induced food allergy in mice. J Food Sci 2023; 88:4289-4304. [PMID: 37680119 DOI: 10.1111/1750-3841.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Food allergy (FA) is acknowledged as a significant public health and food safety issue, due to its manifestation as an amplified immune reaction to food antigens. Recently, probiotics within Lactobacillus and Bifidobacterium have been highlighted as a promising strategy against allergic disease by modulating the balance of Th1/Th2 responses. However, the allergy-alleviating effects of probiotic Leuconostoc mesenteroides strains are unknown. Therefore, this study investigated the potentials of eleven L. mesenteroides strains on the Th1/Th2 balance in vitro by evaluating the expression patterns of interferon-gamma (IFN-γ) (Th1 cytokine) and interleukin-4 (IL-4) (Th2 cytokine) in mesenteric lymph node-derived lymphocytes from ovalbumin (OVA)-sensitized mice. Among strains, WHH1141 incubation caused the highest IFN-γ/IL-4 ratio. Oral administration of WHH1141 (1 × 109 CFU/mL) in the OVA-induced FA mouse model for 40 days improved the weight loss and FA pathological symptoms and normalized the serum immunoglobulin E levels. Meanwhile, the OVA-induced elevated gene expressions of cytokines (IL-4, IL-5, and IL-13) and tight-junction proteins (ZO-1 and Occludin) and levels of cytokines (IL-4, IL-5, and IL-13) and histamine in the jejunum were restored by WHH1141. Furthermore, WHH1141 reversed the reduced gut microbial diversity and short-chain fatty acid (SCFA) levels, specifically increased Bacteroidota abundance, and decreased Firmicutes abundance in OVA-induced mice. Overall, these findings suggest that WHH1141 exerts FA-alleviating effects on OVA-induced mice, which is involved with the inhibition of the jejunal Th2 immune responses and the modulation of gut microbiome composition and SCFA productions. PRACTICAL APPLICATION: Leuconostoc mesenteroides WHH1141 with FA-alleviating potentials may be considered a promising approach in the mitigation of FA symptoms.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Lie Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Zuoguo Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiwen Zhang
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
13
|
Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, Rehman A, Riaz T, Aadil RM, Khan IM, Özogul F, Rocha JM, Esatbeyoglu T, Korma SA. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol 2023; 14:1216674. [PMID: 37664108 PMCID: PMC10470842 DOI: 10.3389/fmicb.2023.1216674] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries.
Collapse
Affiliation(s)
- Anam Latif
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, ULR7519 - Transformations & Agro-resources, Normandie Université, Mont-Saint-Aignan, France
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Asna Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ashraf
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mahmood Khan
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Türkiye
| | - João Miguel Rocha
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Gu S, Yang D, Liu C, Xue W. The role of probiotics in prevention and treatment of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Archer D, Perez-Muñoz ME, Tollenaar S, Veniamin S, Cheng CC, Richard C, Barreda DR, Field CJ, Walter J. The importance of the timing of microbial signals for perinatal immune system development. MICROBIOME RESEARCH REPORTS 2023; 2:11. [PMID: 38047281 PMCID: PMC10688825 DOI: 10.20517/mrr.2023.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 12/05/2023]
Abstract
Background: Development and maturation of the immune system begin in utero and continue throughout the neonatal period. Both the maternal and neonatal gut microbiome influence immune development, but the relative importance of the prenatal and postnatal periods is unclear. Methods: In the present study, we characterized immune cell populations in mice in which the timing of microbiome colonization was strictly controlled using gnotobiotic methodology. Results: Compared to conventional (CONV) mice, germ-free (GF) mice conventionalized at birth (EC mice) showed few differences in immune cell populations in adulthood, explaining only 2.36% of the variation in immune phenotypes. In contrast, delaying conventionalization to the fourth week of life (DC mice) affected seven splenic immune cell populations in adulthood, including dendritic cells and regulatory T cells (Tregs), explaining 29.01% of the variation in immune phenotypes. Early life treatment of DC mice with Limosilactobacillus reuteri restored splenic dendritic cells and Tregs to levels observed in EC mice, and there were strain-specific effects on splenic CD4+ T cells, CD8+ T cells, and CD11c+ F4/80+ mononuclear phagocytes. Conclusion: This work demonstrates that the early postnatal period, compared to the prenatal period, is relatively more important for microbial signals to influence immune development in mice. Our findings further show that targeted microbial treatments in early life can redress adverse effects on immune development caused by the delayed acquisition of the neonatal gut microbiome.
Collapse
Affiliation(s)
- Dale Archer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Simona Veniamin
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Christopher C. Cheng
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Caroline Richard
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Catherine J. Field
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
16
|
Huang YY, Liang YT, Wu JM, Wu WT, Liu XT, Ye TT, Chen XR, Zeng XA, Manzoor MF, Wang LH. Advances in the Study of Probiotics for Immunomodulation and Intervention in Food Allergy. Molecules 2023; 28:molecules28031242. [PMID: 36770908 PMCID: PMC9919562 DOI: 10.3390/molecules28031242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Food allergies are a serious food safety and public health issue. Soybean, dairy, aquatic, poultry, and nut products are common allergens inducing allergic reactions and adverse symptoms such as atopic dermatitis, allergic eczema, allergic asthma, and allergic rhinitis. Probiotics are assumed as an essential ingredient in maintaining intestinal microorganisms' composition. They have unique physiological roles and therapeutic effects in maintaining the mucosal barrier, immune function, and gastrointestinal tract, inhibiting the invasion of pathogenic bacteria, and preventing diarrhea and food allergies. Multiple pieces of evidence reveal a significant disruptive effect of probiotics on food allergy pathology and progression mechanisms. Thus, this review describes the allergenic proteins as an entry point and briefly describes the application of probiotics in allergenic foods. Then, the role of probiotics in preventing and curing allergic diseases by regulating human immunity through intestinal flora and intestinal barrier, modulating host immune active cells, and improving host amino acid metabolism are described in detail. The anti-allergic role of probiotics in the function and metabolism of the gastrointestinal tract has been comprehensively explored to furnish insights for relieving food allergy symptoms and preventing food allergy.
Collapse
Affiliation(s)
- Yan-Yan Huang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yan-Tong Liang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jia-Min Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Wei-Tong Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-Tong Liu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Ting-Ting Ye
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiao-Rong Chen
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Muhammad Faisal Manzoor
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Lang-Hong Wang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| |
Collapse
|
17
|
Bai J, Zhao X, Zhang M, Xia X, Yang A, Chen H. Gut microbiota: A target for prebiotics and probiotics in the intervention and therapy of food allergy. Crit Rev Food Sci Nutr 2022; 64:3623-3637. [PMID: 36218372 DOI: 10.1080/10408398.2022.2133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy has become a major public health problem all over the world. Evidence showed that allergic reactions induced by food proteins often lead to disturbances in the gut microbiota (symbiotic bacteria). Gut microbiota plays an important role in maintaining the balance between intestinal immune tolerance and allergic reactions. Dietary intervention has gradually become an important method for the prevention and treatment of allergic diseases, and changing the composition of gut microbiota through oral intake of prebiotics and probiotics may serve as a new effective adjuvant treatment measure for allergic diseases. In this paper, the main mechanism of food allergy based on intestinal immunity was described firstly. Then, the clinical and experimental evidence showed that different prebiotics and probiotics affect food allergy by changing the structure and composition of gut microbiota was summarized. Moreover, the molecular mechanism in which the gut microbiota and their metabolites may directly or indirectly regulate the immune system or intestinal epithelial barrier function to affect food immune tolerance of host were also reviewed to help in the development of food allergy prevention and treatment strategies based on prebiotics and probiotics.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiaoli Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Maolin Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinlei Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Huang L, Zeng Q, Zhang Y, Yin Q, Zhu X, Zhang P, Wang C, Liu J. Effects of fucoidans and alginates from Sargassum graminifolium on allergic symptoms and intestinal microbiota in mice with OVA-induced food allergy. Food Funct 2022; 13:6702-6715. [PMID: 35660845 DOI: 10.1039/d2fo00802e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food allergy has been one of the main problems threatening people's health in recent years. However, there is still no way to completely cure it at present. Therefore, the development of food allergy related drugs is still necessary. Sargassum graminifolium (SG) is a kind of polysaccharide rich marine brown alga used in food and medicine. Sargassum graminifolium polysaccharides (SGP) is mainly composed of fucoidans and alginic acid. In our study, we compared the activity of fucoidans and alginates from SG against OVA-induced food allergy in a mouse model, observed the regulatory effects of fucoidans and alginates from SG on the intestinal microbiota and summarized the possible role of the intestinal microbiota in the anti-food allergy process because polysaccharides can further act on the body through the intestinal microbiota. The results showed that fucoidans and alginates from SG could relieve the symptoms of allergy, diarrhea and jejunum injury significantly in mice with food allergy (p < 0.05). Furthermore, fucoidans at 500 mg kg-1 could reduce OVA-specific IgE and TNF-α levels significantly in the serum of food allergic mice (p < 0.05), while alginates could only significantly down-regulate serum OVA-specific IgE (p < 0.05). The results also showed that fucoidans had a stronger regulatory effect on the richness and diversity of the intestinal microbiota in food allergic mice compared to alginates at the same dose. In addition, fucoidans at 500 mg kg-1 had the most significant regulatory effect on Firmicutes, Lactobacillus and Alistipes in food allergic mice. These results suggested that fucoidans and alginates might regulate food allergy in mice through different pathways. Together, this study enriched the research on the action of alga-derived polysaccharides against food allergy.
Collapse
Affiliation(s)
- Lan Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Qianhui Zeng
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Yudie Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Qing Yin
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Xunxian Zhu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Peixi Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Cuifang Wang
- Quanzhou Normal University, Quanzhou 362000, China.
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| |
Collapse
|
19
|
Fu W, Chen C, Xie Q, Gu S, Tao S, Xue W. Pediococcus acidilactici Strain Alleviates Gluten-Induced Food Allergy and Regulates Gut Microbiota in Mice. Front Cell Infect Microbiol 2022; 12:845142. [PMID: 35531345 PMCID: PMC9072736 DOI: 10.3389/fcimb.2022.845142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat flour, the most important source of food globally, is also one of the most common causative agents of food allergy. Wheat gluten protein, which accounts for 80% of the total wheat protein, is a major determinant of important wheat-related disorders. In this study, the effects of Pediococcus acidilactici XZ31 against gluten-induced allergy were investigated in a mouse model. The oral administration of P. acidilactici XZ31 attenuated clinical and intestinal allergic responses in allergic mice. Further results showed that P. acidilactici XZ31 regulated Th1/Th2 immune balance toward Th1 polarization, which subsequently induced a reduction in gluten-specific IgE production. We also found that P. acidilactici XZ31 modulated gut microbiota homeostasis by balancing the Firmicutes/Bacteroidetes ratio and increasing bacterial diversity and the abundance of butyrate-producing bacteria. Specifically, the abundance of Firmicutes and Erysipelotrichaceae is positively correlated with concentrations of gluten-specific IgE and may act as a fecal biomarker for diagnosis. The evidence for the role of P. acidilactici XZ31 in alleviating gluten-induced allergic responses sheds light on the application of P. acidilactici XZ31 in treating wheat allergy.
Collapse
Affiliation(s)
- Wenhui Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Wentong Xue, ;
| |
Collapse
|
20
|
Lu W, Qian L, Fang Z, Wang H, Zhu J, Lee YK, Zhao J, Zhang H, Chen W. Probiotic strains alleviated OVA-induced food allergy in mice by regulating the gut microbiota and improving the level of indoleacrylic acid in fecal samples. Food Funct 2022; 13:3704-3719. [PMID: 35266474 DOI: 10.1039/d1fo03520g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Food allergy (FA) is a common immune disorder caused by food antigens. Probiotic strains showed alleviating effects on FA, such as the alleviation of FA pathological symptoms, serum OVA-sIgE levels, and the gut microbiota diversity and composition. The results showed that intragastric administration of Lactiplantibacillus plantarum CCFM1189, Limosilactobacillus reuteri CCFM1190, and Bifidobacterium longum CCFM1029 alleviated the weight loss and FA pathological symptoms of FA mice and decreased OVA-specific IgE and histamine (HIS) levels. CCFM1189 and CCFM1190 decreased IL-4, IL-5, and IL-13 levels, while CCFM1189 and CCFM 1029 decreased IL-17 levels. The gut microbiota analysis demonstrated that CCFM1189 increased the abundance of Akkermansia, while CCFM1190 improved immune regulation bacteria such as Faecalibaculum. CCFM1029 increased Bifidobacterium and the bacteria involved in short-chain fatty acid (SCFA) production, such as Dubosiella. L. plantarum CCFM1189 and L. reuteri CCFM1190 improved indoleacrylic acid levels in mouse fecal samples using untargeted metabolomics analysis. In conclusion, CCFM1189, CCFM1190, and CCFM1029 decreased Th2 immune responses and alleviated FA pathological symptoms by regulating the gut microbiota diversity and composition, and altering gut microbial metabolites, which could provide support in clinical tests and probiotic production in the future.
Collapse
Affiliation(s)
- Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Li Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan-Kun Lee
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Chen CM, Cheng SH, Chen YH, Wu CC, Hsu CC, Lin CT, Tsai YC. Supplementation with heat-inactivated Lacticaseibacillus paracasei K47 ameliorates allergic asthma in mice by regulating the Th1/Th2 balance. Benef Microbes 2022; 13:73-82. [DOI: 10.3920/bm2021.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Asthma is a chronic inflammatory disease related to the immune response of type 2 T helper cells (Th2), which affects all age groups. The incidence of asthma is increasing worldwide, and it has become a significant public health problem. This study aimed to investigate the immunomodulatory effects of Lacticaseibacillus (formerly Lactobacillus) paracasei K47 on mice with ovalbumin (OVA)-induced allergy. The consequences of orally administered heat-inactivated K47 in OVA-sensitised/challenged BALB/c mice were evaluated by assessing the serum levels of immunoglobulins (Igs), airway hyperresponsiveness (AHR), and bronchoalveolar lavage fluid (BALF) cytokine. In addition, the effect of K47 on type 1 T helper cells (Th1)/Th2 cytokine production in splenocytes from OVA-sensitised mice was evaluated. The results revealed that supplementation with K47 remarkably reduced serum levels of total IgE, OVA-specific IgE, and OVA-specific IgG1 in OVA-sensitised/challenged mice. In addition, K47 intervention ameliorated AHR and suppressed the accumulation of inflammatory cells in the BALF of OVA-sensitised/challenged mice. Furthermore, the immunomodulatory ability of K47 was mediated by regulation of the cytokine profile toward the Th1 response in the BALF, and splenocytes of OVA-sensitised mice. Taken together, these results suggested that K47 can modulate the host immune response to ameliorate AHR and inflammation in allergic asthma.
Collapse
Affiliation(s)
- C.-M. Chen
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 10491, Taiwan
| | - S.-H. Cheng
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 10491, Taiwan
| | - Y.-H. Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan
| | - C.-C. Wu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 10491, Taiwan
| | - C.-C. Hsu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 10491, Taiwan
| | - C.-T. Lin
- School of Chinese Medicine, China Medical University, 91 Hsueh-Shih Rd, Taichung City 40402, Taiwan
| | - Y.-C. Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan
| |
Collapse
|
22
|
Yang A, Liao Y, Zhu J, Zhang J, Wu Z, Li X, Tong P, Chen H, Wang S, Liu Z. Screening of anti-allergy Lactobacillus and its effect on allergic reactions in BALB/c mice sensitized by soybean protein. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
23
|
Tavakoli S, Gholami M, Ghorban K, Nojoumi F, Faghihloo E, Dadmanesh M, Rouzbahani NH. Transcriptional regulation of T-bet, GATA3, ROR<gamma>T, HERV-K env, Syncytin-1, microRNA-9, 192 and 205 induced by nisin in colorectal cancer cell lines (SW480, HCT116) and human peripheral blood mononuclear cell. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Anti-Allergic Diarrhea Effect of Diosgenin Occurs via Improving Gut Dysbiosis in a Murine Model of Food Allergy. Molecules 2021; 26:molecules26092471. [PMID: 33922675 PMCID: PMC8122900 DOI: 10.3390/molecules26092471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Although the anti-allergic and prebiotic activities of diosgenin have been reported, the influence of diosgenin on intestinal immune and epithelial cells remains unclear. As the gut microbiota plays an important role in allergic disorders, this study aimed to investigate whether the anti-allergic diarrhea effect of diosgenin occurs via improving gut dysbiosis. In a murine food allergy model, the density of fecal bacterial growth on de Man, Rogossa and Sharpe (MRS) plates was diminished, and growth on reinforced clostridial medium (RCM) and lysogeny broth (LB) agar plates was elevated. However, the oral administration of diosgenin reduced the density of fecal bacteria and ameliorated diarrhea severity. Concordantly, reshaped diversity and an abundance of fecal microbes were observed in some of the diosgenin-treated mice, which showed a milder severity of diarrhea. The relevant fecal strains from the diosgenin-treated mice were defined and cultured with Caco-2 cells and allergen-primed mesenteric lymph node (MLN) cells. These strains exhibited protective effects against the cytokine/chemokine network and allergen-induced T-cell responses to varying degrees. By contrast, diosgenin limitedly regulated cytokine production and even reduced cell viability. Taken together, these findings show that diosgenin per se could not directly modulate the functionality of intestinal epithelial cells and immune cells, and its anti-allergic effect is most likely exerted via improving gut dysbiosis.
Collapse
|
25
|
Ursachi CȘ, Perța-Crișan S, Munteanu FD. Strategies to Improve Meat Products' Quality. Foods 2020; 9:E1883. [PMID: 33348725 PMCID: PMC7766022 DOI: 10.3390/foods9121883] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Meat products represent an important component of the human diet, their consumption registering a global increase over the last few years. These foodstuffs constitute a good source of energy and some nutrients, such as essential amino acids, high biological value proteins, minerals like iron, zinc, selenium, manganese and B-complex vitamins, especially vitamin B12. On the other hand, nutritionists have associated high consumption of processed meat with an increased risk of several diseases. Researchers and processed meat producers are involved in finding methods to eliminate nutritional deficiencies and potentially toxic compounds, to obtain healthier products and at the same time with no affecting the sensorial quality and safety of the meat products. The present review aims to summarize the newest trends regarding the most important methods that can be applied to obtain high-quality products. Nutritional enrichment with natural bioactive plant compounds (antioxidants, dietary fibers) or probiotics, reduction of harmful components (salt, nitrate/nitrite, N-nitrosamines) and the use of alternative technologies (high-pressure processing, cold plasma, ultrasounds) are the most used current strategies to accomplish this aim.
Collapse
Affiliation(s)
| | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
26
|
Song J, Li Y, Li J, Wang H, Zhang Y, Suo H. Lactobacillus rhamnosus 2016SWU.05.0601 regulates immune balance in ovalbumin-sensitized mice by modulating expression of the immune-related transcription factors and gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4930-4939. [PMID: 32478427 DOI: 10.1002/jsfa.10554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Probiotics regulate host immune balance, which may reduce immune-related diseases. The effects and mechanisms of Lactobacillus rhamnosus 2016SWU.05.0601 (Lr-0601) on the immune response in ovalbumin (OVA)-sensitized mice were explored. RESULTS Lr-0601 reduced serum immunoglobulin (Ig)E and OVA-IgE and attenuated the alteration in lung pathology in OVA-sensitized mice. Lr-0601 blocked OVA-induced up-regulation in serum T helper (Th) 2 and Th17 cytokines but increased the serum levels of Th1 and regulatory T (Treg) cytokines in OVA-sensitized mice. OVA also markedly reduced the protein levels of spleen T-box transcription factor and forkhead/winged helix transcription factor p3, leading to the reduced mRNA expression of interferon-γ and interleukin (IL)-10. By contrast, OVA markedly increased the protein expression of spleen GATA-binding protein 3 and retinoid-related orphan receptor γt, as well as the mRNA expression of spleen IL-4 and IL-17. These changes induced by OVA were reversed by Lr-0601. Moreover, Lr-0601 helped alleviate OVA-induced intestinal microbiota dysbiosis. A correlation was found between specific genera and immune-associated cytokines. CONCLUSION The combined results indicate that Lr-0601 modulated the balance of Th1/Th2 and Treg/Th17 in OVA-sensitized mice, which was associated with the regulation of immune-related transcription factors and gut microbiota. Lr-0601 can potentially be used as a probiotic for preventing immune-related diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | - Yang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Li
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Di Costanzo M, Carucci L, Berni Canani R, Biasucci G. Gut Microbiome Modulation for Preventing and Treating Pediatric Food Allergies. Int J Mol Sci 2020; 21:ijms21155275. [PMID: 32722378 PMCID: PMC7432728 DOI: 10.3390/ijms21155275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing prevalence and severity of pediatric food allergies (FA) demands innovative preventive and therapeutic strategies. Emerging evidence suggests a pivotal role for the gut microbiome in modulating susceptibility to FA. Studies have demonstrated that alteration of gut microbiome could precede FA, and that particular microbial community structures early in life could influence also the disease course. The identification of gut microbiome features in pediatric FA patients is driving new prevention and treatment approaches. This review is focused on the potential role of the gut microbiome as a target for FA prevention and treatment.
Collapse
Affiliation(s)
- Margherita Di Costanzo
- Department of Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Translational Medical Science-Pediatric Section, University “Federico II”, 80131 Naples, Italy; (L.C.); (R.B.C.)
- ImmunoNutritionLab-CEINGE Advanced Biotechnologies, University “Federico II”, 80131 Naples, Italy
- Correspondence:
| | - Laura Carucci
- Department of Translational Medical Science-Pediatric Section, University “Federico II”, 80131 Naples, Italy; (L.C.); (R.B.C.)
- ImmunoNutritionLab-CEINGE Advanced Biotechnologies, University “Federico II”, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science-Pediatric Section, University “Federico II”, 80131 Naples, Italy; (L.C.); (R.B.C.)
- ImmunoNutritionLab-CEINGE Advanced Biotechnologies, University “Federico II”, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples “Federico II”, 80131 Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giacomo Biasucci
- Department of Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
| |
Collapse
|
28
|
Huang CH, Lu SY, Tsai WC. Relevant fecal microbes isolated from mice with food allergy elicited intestinal cytokine/chemokine network and T-cell immune responses. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:234-242. [PMID: 33117622 PMCID: PMC7573112 DOI: 10.12938/bmfh.2020-014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The objective of this study was to identify the relevant fecal microbes from mice with
food allergy and investigate the impact of these microbes on intestinal epithelial cells
and allergen-specific T-cell responses. A murine model of ovalbumin (OVA)-induced food
allergy was employed. The profile of fecal microbiota was evaluated by the traditional
plating method and next-generation sequencing (NGS) of the 16S ribosomal RNA gene. The
density of fecal bacteria growth on RCM, TSA and LB plates was elevated in mice with food
allergy, whereas the diversity of fecal bacteria was decreased. Additionally, the relative
abundances of Prevotellaceae and Prevotella were increased. The isolated
fecal strains, mostly belonging to Enterococcus, Streptococcus and
Vagococcus, significantly reduced the viability of intestinal Caco-2
cells but increased the production of interleukin (IL)-8, C-C motif chemokine ligand
(CCL)-2, CCL-5, CCL-20 and C-X-C motif chemokine ligand (CXCL)-1. Moreover, cell expansion
and secretion of IL-2, interferon (IFN)-γ, IL-4 and IL-17 by mesenteric lymph node (MLN)
cells were augmented, whereas the production of IL-10 and transforming growth factor
(TGF)-β was diminished. Although individual fecal strains had varying degrees of impact on
Caco-2 cells and MLN cells, these results precisely indicate a different profile of fecal
microbiota between normal mice and allergic mice. Most important, the relevant fecal
microbes involved in allergen-induced dysbiosis have the potential to induce intestinal
cytokine/chemokine network and T-cell immune responses.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | - Shueh-Yu Lu
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | - Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| |
Collapse
|
29
|
Minj J, Chandra P, Paul C, Sharma RK. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 2020; 61:2207-2224. [PMID: 32519883 DOI: 10.1080/10408398.2020.1774496] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactic acid bacteria as a starter culture are very important component in the fermentation process of dairy and food industry. Application of lactic acid bacteria as probiotic bacteria adds more functionality to the developed product. Gut colonizing bacteria have attractive benefits related to human health. Bio-functional properties such as antimicrobial activity, anti-inflammatory, ACE-inhibitory, antioxidant, antidiarrheal, antiviral, immunomodulatory, hypocholesterolemic, anti-diabetic and anti-cancer activities are the most applicable research areas of lactic acid bacteria. Different strains of Lactobacillus are generally consumed as probiotics and colonize the gastrointestinal tract. Sometimes these bacteria may possess antimicrobial activity and may positively influence the effect of antibiotics. Use of Lactobacillus spp. for the development of functional foods is one of the promising areas of current research and applications. Individual bacterial species have unique biological activity, which may vary from strains to strains and identification of this uniqueness could be helpful in the development of functional and therapeutic food products.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | | | - Catherine Paul
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
30
|
Fu L, Xie M, Wang C, Qian Y, Huang J, Sun Z, Zhang H, Wang Y. Lactobacillus Casei Zhang Alleviates Shrimp Tropomyosin-Induced Food Allergy by Switching Antibody Isotypes through the NF-κB-Dependent Immune Tolerance. Mol Nutr Food Res 2020; 64:e1900496. [PMID: 32243079 DOI: 10.1002/mnfr.201900496] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 02/29/2020] [Indexed: 12/28/2022]
Abstract
SCOPE Shellfish allergy is an important cause of food allergy, and tropomyosin (TM) is the major allergen within shellfish. Probiotics are safe bacteria that benefit host health and nutrition and is proposed as a novel approach for treating immunological diseases, including food allergies. METHODS AND RESULTS The probiotic strain Lactobacillus casei Zhang (LcZ) isolated from koumiss is investigated for its capacity to modulate food allergy induced by TM in BALB/c mice. Oral administration of LcZ attenuated allergy symptoms and intestinal epithelial damage. Furthermore, flow cytometry, real-time quantitative PCR, and ELISA demonstrated that LcZ administration altered the development and function of dendritic cells (DCs), T cells, and B cells, finally resulting in the change of TM-specific antibody isotypes into a tolerogenic pattern. Moreover, an in vitro spleen cell culture model reveals that LcZ directly modulates regulatory tolerogenic DC and T cell development, dependent on the activation of the nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSION This work indicates the ability of LcZ to alleviate TM-induced food allergy and demonstrates the involvement of the tolerogenic immune cells and NF-κB signaling pathway, indicating LcZ to be a potential immunomodulator and immunotherapy assistor.
Collapse
Affiliation(s)
- Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Menghua Xie
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Yi Qian
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Jianjian Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, and Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, and Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| |
Collapse
|
31
|
Ogita T, Yamamoto Y, Mikami A, Shigemori S, Sato T, Shimosato T. Oral Administration of Flavonifractor plautii Strongly Suppresses Th2 Immune Responses in Mice. Front Immunol 2020; 11:379. [PMID: 32184789 PMCID: PMC7058663 DOI: 10.3389/fimmu.2020.00379] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
The bacterium Flavonifractor plautii (FP), which is found in human feces, has been reported to participate in catechin metabolism in the gut, but this bacterium's effects on immune function are unclear. We assessed the effect of oral administration of FP on the immune response in ovalbumin (OVA) -sensitized mice. We demonstrated that the FP treatment suppressed interleukin (IL)-4 in splenocytes and OVA-specific IgE production in serum from OVA-sensitized mice. Moreover, oral administration of FP augmented CD4+CD25+ T cells and CD103+CD11c+ DCs. In animals of the FP group, the proportion of FP was increased in the mesenteric lymph nodes (MLNs), as was the proportion of Deferribacteres in the cecum. Oral administration of FP may inhibit the Th2 immune response by incorporation into the MLNs and/or by inducing changes in the gut microbiota. Thus, FP may be useful in alleviating antigen-induced Th2 immune responses.
Collapse
Affiliation(s)
- Tasuku Ogita
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayane Mikami
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Suguru Shigemori
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
32
|
Han J, Liu B, Liu QM, Zhang YF, Liu YX, Liu H, Cao MJ, Liu GM. Red Algae Sulfated Polysaccharides Effervescent Tablets Attenuated Ovalbumin-Induced Anaphylaxis by Upregulating Regulatory T cells in Mouse Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11911-11921. [PMID: 31475818 DOI: 10.1021/acs.jafc.9b03132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Red algae sulfated polysaccharides (RASP) were extracted from Porphyra haitanensis and Gracilaria lemaneiformis. RASP were applied to effervescent tablets to develop a type of functional food, termed red algae sulfated polysaccharide effervescent tablets (RASPET), based on the antiallergic activities of RASP. The antiallergic activities and the mechanisms of RASPET were investigated in an ovalbumin (OVA)-induced mouse model of food allergy. The results revealed that RASPET alleviated intestinal villi injury by scanning electron microscopy and anaphylactic symptoms; reduced OVA-specific immunoglobulin E, histamine, and mast cell protease-1 levels in the serum; reduced the level of serum interleukin-4; increased serum interferon-γ level; and decreased B cell and mast cell populations. Remarkably, RASPET increased the levels of serum interleukin-10, transforming growth factor-β, and upregulated splenic CD4+foxp3+ T cell populations (15.28, 16.82, and 17.58%, respectively) compared to the OVA group (13.17%). In conclusion, RASPET attenuated OVA-induced anaphylaxis via the upregulation of regulatory T cells.
Collapse
Affiliation(s)
- Jing Han
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Ya-Fen Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Yi-Xiang Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Hong Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| |
Collapse
|
33
|
Identification and characterization of major IgE binding of purified allergenic protein (11 kDa) from Buchanania lanzan. Food Res Int 2019; 125:108640. [PMID: 31554061 DOI: 10.1016/j.foodres.2019.108640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
Abstract
Tree nut along with peanut are among the most potent food allergens, responsible for frequently inducing the IgE-mediated hypersensitivity reaction. Our aim was identification, purification of Buchanania lanzan (Bl-11 kDa) protein along with characterization and assessment of allergenic potential of clinically relevant allergen. Further study was executed in clinical samples of sensitive patients, BALB/c mice, and in-vitro. A major IgE binding 11-kDa protein from Buchanania lanzan was purified by anion exchange chromatography, reverse phase high pressure liquid chromatography (RP-HPLC) and characterized using peptide mass fingerprinting (PMF). Buchanania lanzan (Bl-11 kDa) protein shows the pepsin resistance and depicts IgE interacting capacity to Buchanania lanzan allergic patient's sera as well as sensitized mice sera. It also showed increase in the allergic mediator's like IgE, IgG1, histamine levels in sensitized mice sera. Further study was carried out in-vitro (RBL-2H3 cells) and increased release mast cell degranulation mediators such as β-hexosaminidase, histamine, CysL and PGD2 in the culture supernatant was found. The activation of Th2 cytokines/transcription factors and expression of molecular markers in the downstream of mast cell signaling were up-regulated while the Th1 transcriptional factor (T-bet) was decreased in Bl-11 kDa protein treated mice. Conclusively, our study demonstrates Buchanania lanzan purified protein to be potential allergen that may generate an allergic reaction in sensitized individuals, and one of the most important IgE binding protein responsible for its allergenicity.
Collapse
|
34
|
Zhu LG, Li ZY. [Research advances in influencing factors for immune tolerance to food allergens in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:613-618. [PMID: 31208519 PMCID: PMC7389578 DOI: 10.7499/j.issn.1008-8830.2019.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Food allergen-specific immune tolerance is defined as nonresponsiveness of the adaptive immune system to food antigens. Failed development or inhibition of such tolerance may cause food allergy. With the increasing incidence rate of food allergy year by year, more and more studies have found the association between food allergy and various diseases. The development of food allergen-specific immune tolerance in childhood has been taken more and more seriously. In recent years, many studies have shown that the development of food allergen-specific immune tolerance is influenced by various factors, which can be roughly divided into antigens, organisms, and environment. This article reviews the influencing factors for the development of immune tolerance to food allergens in children, in order to provide help for reducing the incidence of food allergy and improving the prognosis of food allergy.
Collapse
Affiliation(s)
- Li-Guang Zhu
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | | |
Collapse
|
35
|
Wróblewska B, Kaliszewska-Suchodoła A, Markiewicz LH, Szyc A, Wasilewska E. Whey prefermented with beneficial microbes modulates immune response and lowers responsiveness to milk allergens in mouse model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
Shonyela SM, Wang G, Yang W, Yang G, Wang C. New Progress regarding the Use of Lactic Acid Bacteria as Live Delivery Vectors, Treatment of Diseases and Induction of Immune Responses in Different Host Species Focusing on <i>Lactobacillus</i> Species. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/wjv.2017.74004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|