1
|
Chanajon P, Hamzeh A, Tian F, Roytrakul S, Oluwagunwa OA, Kadam D, Aluko RE, Aueviriyavit S, Wongwanakul R, Yongsawatdigul J. Hypotensive effect of potent angiotensin-I-converting enzyme inhibitory peptides from corn gluten meal hydrolysate: Gastrointestinal digestion and transepithelial transportation modifications. Food Chem 2025; 462:140953. [PMID: 39216374 DOI: 10.1016/j.foodchem.2024.140953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.
Collapse
Affiliation(s)
- Phiromya Chanajon
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550000, China
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and biotechnology, Pathumthani 12120, Thailand
| | - Olayinka A Oluwagunwa
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Deepak Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Ratjika Wongwanakul
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Panjaitan FCA, Shie ST, Park SH, Sevi T, Ko WL, Aluko RE, Chang YW. Bioactive Properties of Enzymatic Gelatin Hydrolysates Based on In Silico, In Vitro, and In Vivo Studies. Molecules 2024; 29:4402. [PMID: 39339395 PMCID: PMC11434199 DOI: 10.3390/molecules29184402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This current study aims to analyze the potential bioactivities possessed by the enzymatic hydrolysates of commercial bovine, porcine, and tilapia gelatins using bioinformatics in combination with in vitro and in vivo studies. The hydrolysate with superior inhibition of angiotensin converting enzyme (ACE) activity was used to treat the D-galactose (DG)-induced amnesic mice. In silico digestion of the gelatins led to the identification of peptide sequences with potential antioxidant, ACE-inhibitory, and anti-amnestic properties. The results of in vitro digestion revealed that the <1 kDa peptide fraction of porcine gelatin hydrolysate obtained after 1 h digestion with papain (PP) (PP1, <1 kDa) potently inhibited ACE, acetylcholinesterase, and prolyl endopeptidase activities at 87.42%, 21.24%, and 48.07%, respectively. Administering the PP1 to DG-induced amnesic mice ameliorated the spatial cognitive impairment and Morris water maze learning abilities. The dentate area morphology in the PP1-treated mice was relatively similar to the control group. In addition, PP1 enhanced the antioxidant capacity in the DG-induced amnesic mice. This study suggests that PP1 could serve as a potential treatment tool against oxidative stress, hypertension, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fenny Crista A Panjaitan
- Marine Products Processing Study Program, Marine and Fisheries Polytechnic of Jembrana, Bali 82218, Indonesia
| | - Sin-Ting Shie
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sung Hoon Park
- Department of Food and Nutrition, College of Life Sciences, Gangneug-Wonju National University, Gangneung 25457, Republic of Korea
| | - Tesalonika Sevi
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Ling Ko
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Yu-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
3
|
Wang W, Lin H, Shen W, Qin X, Gao J, Cao W, Zheng H, Chen Z, Zhang Z. Optimization of a Novel Tyrosinase Inhibitory Peptide from Atrina pectinata Mantle and Its Molecular Inhibitory Mechanism. Foods 2023; 12:3884. [PMID: 37959003 PMCID: PMC10649063 DOI: 10.3390/foods12213884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
In order to realize the multi-level utilization of marine shellfish resources and to develop the potential biological activity of processing by-products of Atrina pectinata, gelatin was extracted from the mantle and the potential whitening effect of its enzymatic peptides was explored. Taking tyrosinase inhibitory activity as the evaluation index, the enzyme hydrolysate process was optimized by response-surface methodology, and the optimal enzyme hydrolysate conditions were as follows: pH 5.82, 238 min enzyme hydrolysate time, and temperature of 54.5 °C. Under these conditions, the tyrosinase inhibition activity of Atrina pectinata mantle gelatin peptide (APGP) was 88.6% (IC50 of 3.268 ± 0.048 mg/mL). The peptides obtained from the identification were separated by ultrafiltration and LC-MS/MS, and then four new peptides were screened by molecular docking, among which the peptide Tyr-Tyr-Pro (YYP) had the strongest inhibitory effect on tyrosinase with an IC50 value of 1.764 ± 0.025 mM. The molecular-docking results indicated that hydrogen bonding is the main driving force for the interaction of the peptide YYP with tyrosinase. From the Lineweaver-Burk analysis, it could be concluded that YYP is inhibitory to tyrosinase and exhibits a mixed mechanism of inhibition. These results suggest that YYP could be widely used as a tyrosinase inhibitor in whitening foods and pharmaceuticals.
Collapse
Affiliation(s)
- Wen Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Weiqiang Shen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhishu Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
| |
Collapse
|
4
|
Varga-Tóth A, Németh C, Dalmadi I, Csurka T, Csorba R, Elayan M, Enkhbold M, Hidas K, Friedrich LF. Investigation of the effects of bovine collagen peptides and mixed berries on rheological properties and biological activity of egg white-based beverage via central composite design. Front Nutr 2023; 9:1011553. [PMID: 36846024 PMCID: PMC9947798 DOI: 10.3389/fnut.2022.1011553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 02/11/2023] Open
Abstract
Modern consumer expectations have become highly diversified: they want more opportunities to meet diverse family needs (diversity of family members in age, gender, physical activity, etc. ,) and individual health goals with a huge variety of sensorial preferences. Our research is aimed to develop a protein-dense, highly bioactive, lactose- and whey protein-free beverage applying a central composite rotational design (CCRD) with 2 factors. For this purpose, an egg white-based beverage was flavored with mixed berries (factor A) and enriched with bovine collagen peptides (factor B). After suitable sample preparation, the rheological properties were investigated by an Anton Paar MCR 92 rheometer (with CC 27 system, and flow behavior was analyzed with a Herschel-Bulkley (H-B) model). The antioxidant capacity of samples was investigated by Ferric Reducing Antioxidant Power (FRAP) method, the total anthocyanin content was estimated based on a spectrophotometric method, and the total phenolic content was determined by the Folin Ciocalteu method. Our results are figured on response surfaces demonstrating that both factors and their interactions show a positive correlation with the examined parameters. Based on the CCRD, all investigated parameters are significantly influenced by at least one aspect and can be adequately estimated for further product development.
Collapse
Affiliation(s)
- Adrienn Varga-Tóth
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary,*Correspondence: Adrienn Varga-Tóth ✉
| | | | - István Dalmadi
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Tamás Csurka
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Renáta Csorba
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Majd Elayan
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Munkhnasan Enkhbold
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Karina Hidas
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Ferenc Friedrich
- Department of Livestocks Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa Willd.) by electrodialysis with ultrafiltration membranes. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Senadheera TRL, Hossain A, Dave D, Shahidi F. In Silico Analysis of Bioactive Peptides Produced from Underutilized Sea Cucumber By-Products-A Bioinformatics Approach. Mar Drugs 2022; 20:610. [PMID: 36286434 PMCID: PMC9605078 DOI: 10.3390/md20100610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/15/2023] Open
Abstract
Bioinformatic tools are widely used in predicting potent bioactive peptides from food derived materials. This study was focused on utilizing sea cucumber processing by-products for generating antioxidant and ACE inhibitory peptides by application of a range of in silico techniques. Identified peptides using LC-MS/MS were virtually screened by PepRank technique followed by in silico proteolysis simulation with representative digestive enzymes using BIOPEP-UWMTM data base tool. The resultant peptides after simulated digestion were evaluated for their toxicity using ToxinPred software. All digestive resistance peptides were found to be non-toxic and displayed favorable functional properties indicating their potential for use in a wide range of food applications, including hydrophobic and hydrophilic systems. Identified peptides were further assessed for their medicinal characteristics by employing SwissADME web-based application. Our findings provide an insight on potential use of undervalued sea cucumber processing discards for functional food product development and natural pharmaceutical ingredients attributed to the oral drug discovery process.
Collapse
Affiliation(s)
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Bilir G, Khalesi M, Cermeño M, FitzGerald RJ, Ekinci D. Extraction and Characterization of Protein Concentrates from Limpets ( Patella vulgata) and Peptide Release Following Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11212-11223. [PMID: 36040349 DOI: 10.1021/acs.jafc.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated the characterization of proteins from the Irish limpet (Patella vulgata) and assessed the in vitro biological activities of hydrolysates obtained following gastrointestinal digestion (INFOGEST) of a limpet protein concentrate (LPC). The physicochemical properties and the digestibility of the LPC were investigated, along with the angiotensin-converting enzyme (ACE) inhibition and antioxidant activities of the LPC-digested samples. All the digested samples examined outperformed the LPC in terms of activity. Peptides were identified using LC-MS/MS after digestion. A total of 38 and 19 peptides were identified in LPC-G and LPC-GI, respectively, using a database search and a de novo approach. Most of the identified peptides had hydrophobic amino acids, which may contribute to their antioxidant and ACE inhibitory activities. The findings of this study showed that LPC has high nutritional quality with good digestibility and could serve as a potential source of antioxidative and ACE inhibitory peptides following gastrointestinal digestion.
Collapse
Affiliation(s)
- Gurkan Bilir
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun55270, Turkey
| | - Mohammadreza Khalesi
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
| | - Maria Cermeño
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
| | - Richard J FitzGerald
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
| | - Deniz Ekinci
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun55270, Turkey
| |
Collapse
|
8
|
Zhan J, Li G, Dang Y, Pan D. Purification and identification of a novel hypotensive and antioxidant peptide from porcine plasma. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4933-4941. [PMID: 35278236 DOI: 10.1002/jsfa.11860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/08/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pig plasma contains a large amount of protein. Porcine plasma polypeptide can be prepared by the enzymatic hydrolysis of porcine plasma protein. The present study investigated the function, structure, and mechanisms of porcine plasma peptides. RESULTS The results showed that WVRQAPGKGL had a major ability to scavenge hydroxyl radical scavenging activity (HRSA) (35.25%), 2,2'-azino-bis (3-ethylbenzothiazo line-6-sulfonic acid) diammonium salt radical scavenging activity (ABTS RSA) (93.09%) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH RSA) (25.72%), as well as in angiotensin converting enzyme (ACE) inhibition (91.64%). WVRQAPGKGL could inactivate ACE by binding to Zn2+ because of the presence of carboxyl in WVRQAPGKGL. The ACE inhibition, HRSA, and DPPH of synthetic WVRQAPGKGL were improved by 12.70%, 16.06%, and 117.11% respectively after in vitro digestion. It (0.1 mg mL-1 ) also increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) by 59.78%, 69.05%, and 59.06%, and decreased reactive oxygen species (ROS) and malondialdehyde (MDA) by 22.08% and 50.59%, respectively, to protect HepG2 cells induced by H2 O2 . Furthermore, in a spontaneously hypertensive rat (SHR) model, the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of the peptide group (30 mg kg-1 ) both decreased by about 33.33% in comparison with captopril. CONCLUSION A new difunctional (antioxidant and hypotensive) peptide, WVRQAPGKGL, derived from porcine plasma hydrolyzate was isolated by gel filtration and reverse phase chromatography, and identified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-1 . The difunctional peptide WVRQAPGKGL from porcine plasma could therefore be used in formulating functional foods or pharmaceuticals. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junqi Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Gaoshang Li
- Institute of Food Engineering, Zhejiang University, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Zhan J, Li G, Dang Y, Pan D. Identification of a novel hypotensive peptide from porcine plasma hydrolysate by in vitro digestion and rat model. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100101. [PMID: 35769399 PMCID: PMC9235047 DOI: 10.1016/j.fochms.2022.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Porcine plasma was enzymatically hydrolyzed with different times. The hydrolysate with high hydrolysis degree was isolated and purified by G-15 gel chromatography and HPLC. The ace inhibition rates of different purified compounds were determined. The sequence of the polypeptide with best ace inhibition (IFPPKPKDTL) was determined by Q exactive LC-MS / MS. The hypotensive function of synthetic peptide IFPPKPKDTL was also determined in spontaneously hypertensive rat.
We separated a novel functional peptide IFPPKPKDTL from porcine plasma hydrolysate by chromatography, HPLC, and identified by Q Exactive LC-MS/MS. Results showed that IFPPKPKDTL had a significant ability of ACE inhibition (76.6%) likely due to the presence of hydrophobic, aromatic, and acidic amino acids that can inactivate ACE by binding Zn2+, providing a hydrogen atom to maintain the link between ACE and the peptide. Furthermore, the ACE inhibition of synthetic IFPPKPKDTL was improved by 15.6% after in vitro digestion. Additionally, the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats gavaged by the peptide (30 mg/kg). Thereby, ACE inhibitory peptide IFPPKPKDTL from porcine plasma was stable and has potential functional value.
Collapse
Affiliation(s)
- Junqi Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Gaoshang Li
- Institute of Food Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
10
|
Identification of a highly stable bioactive 3-hydroxyproline-containing tripeptide in human blood after collagen hydrolysate ingestion. NPJ Sci Food 2022; 6:29. [PMID: 35662250 PMCID: PMC9166765 DOI: 10.1038/s41538-022-00144-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
There are increasing reports demonstrating high bioavailability of 4-hydroxyproline (4Hyp)-containing oligopeptides after oral ingestion of collagen hydrolysate and their bioactivity. In contrast, no study investigates the fate of another collagen-specific but minor amino acid, 3Hyp. Here, we identified Gly-3Hyp-4Hyp tripeptide in human blood at high concentrations, comparable to other 4Hyp-containing oligopeptides, after ingesting porcine skin collagen hydrolysate. Additionally, Gly-3Hyp-4Hyp uniquely maintained the maximum concentration until 4 h after the ingestion due to its exceptionally high resistance to peptidase/protease demonstrated by incubation with mouse plasma. In mice, oral administration of collagen hydrolysate prepared from bovine tendon, which contains a higher amount of 3Hyp, further increased blood Gly-3Hyp-4Hyp levels compared to that from bovine skin. Furthermore, Gly-3Hyp-4Hyp showed chemotactic activity on skin fibroblasts and promoted osteoblast differentiation. These results highlight the specific nature of the Gly-3Hyp-4Hyp tripeptide and its potential for health promotion and disease treatment.
Collapse
|
11
|
Shori AB, Yong YS, Baba AS. Effects of medicinal plants extract enriched cheese with fish collagen on proteolysis and in vitro angiotensin-I converting enzyme inhibitory activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
CunhaNeves A, Harnedy-Rothwell PA, FitzGerald RJ. In vitro angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activity of blue mussel (Mytilus edulis) byssus collagen hydrolysates. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractLarge quantities of mussel byssus are generated annually as a co-product of the mussel-processing industry. This fibrous material is a rich source of collagen, which when extracted has potential uses as an alternative source of collagen for food applications. However, due the complex structure of the material, the extraction of the collagenous components using food-friendly strategies has proved challenging to date. An enzyme-aided method, using a proline endoproteinase, was employed for the extraction of collagen from mussel byssus yielding 138.82 ± 2.25 mg collagen/g dry weight. Hydrolysates of the collagen extract were generated using five food-grade enzyme preparations with Corolase® PP giving the highest extent of hydrolysis. Reversed-phase and gel permeation high-performance liquid chromatography of the extracted collagen and its enzymatic hydrolysates showed significant hydrolysis of collagen. The hydrolysates generated with Corolase® PP showed the highest in vitro bioactivities: angiotensin-converting enzyme (ACE) IC50 = 0.79 ± 0.17 mg/ml, dipeptidyl peptidase-IV (DPP-IV) IC50 = 0.66 ± 0.17 mg/ml and oxygen radical absorbance capacity (ORAC) activity = 311.23 ± 13.41 µmol trolox equivalents (TE)/g. The results presented herein indicate that in addition to acting as an alternative source of collagen for food applications, mussel byssus collagen-derived hydrolysates have potential applications as functional food ingredients for the management of metabolic diseases such as type II diabetes and hypertension.
Collapse
|
14
|
Wu S, Zhao W, Yu Z, Liu J. Antihypertensive effect and underlying mechanism of tripeptide NCW on spontaneously hypertensive rats using metabolomics analysis. Food Funct 2022; 13:1808-1821. [PMID: 35084009 DOI: 10.1039/d1fo03924e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripeptide NCW identified in our previous study displayed a strong ACE inhibitory activity, but whether it has any antihypertensive effect in vivo remains unknown. Thus, in this study, we aimed to investigate the protective effects of tripeptide NCW in spontaneously hypertensive rats (SHRs) and to further figure out the serum metabolic profiling variations due to its oral administration via UPLC-Q-TOF-MS/MS-based metabolomics analysis to clarify the underlying hypotensive mechanism. After three weeks of oral administration, the tripeptide NCW-treated group (NCW/SHR group, 80 mg per kg BW per d) showed significantly reduced systolic and diastolic blood pressure by 48.08 ± 3.84 mmHg and 48.92 ± 5.77 mmHg, respectively. Additionally, a total of 25 blood pressure-related metabolites were identified as being significantly changed in SHRs given tripeptide NCW after three weeks. These 25 metabolites might be biomarkers that indicated that the tripeptide NCW exhibits antihypertensive activity via regulating bile acid metabolism, lipid metabolism, amino acid metabolism, purinergic signaling, pantothenate and CoA biosynthesis, and the citrate cycle. Collectively, tripeptide NCW has a protective effect on SHRs associated with serum metabolite abnormalities.
Collapse
Affiliation(s)
- Sijia Wu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China. .,Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P.R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
15
|
LI H, CHEN X, GUO Y, HOU T, HU J. A pivotal peptide (Ile-Leu-Lys-Pro) with high ACE- inhibitory activity from duck egg white: identification and molecular docking. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haitao LI
- Zhejiang Pharmaceutical College, China
| | | | - Yan GUO
- Zhejiang Pharmaceutical College, China
| | - Tao HOU
- Huazhong Agricultural University, China
| | - Jun HU
- Huazhong Agricultural University, China
| |
Collapse
|
16
|
Cheng JH, Zhang XY, Wang Z, Zhang X, Liu SC, Song XY, Zhang YZ, Ding JM, Chen XL, Xu F. Potential of Thermolysin-like Protease A69 in Preparation of Bovine Collagen Peptides with Moisture-Retention Ability and Antioxidative Activity. Mar Drugs 2021; 19:md19120676. [PMID: 34940675 PMCID: PMC8708487 DOI: 10.3390/md19120676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
Bovine bone is rich in collagen and is a good material for collagen peptide preparation. Although thermolysin-like proteases (TLPs) have been applied in different fields, the potential of TLPs in preparing bioactive collagen peptides has rarely been evaluated. Here, we characterized a thermophilic TLP, A69, from a hydrothermal bacterium Anoxybacillus caldiproteolyticus 1A02591, and evaluated its potential in preparing bioactive collagen peptides. A69 showed the highest activity at 60 °C and pH 7.0. We optimized the conditions for bovine bone collagen hydrolysis and set up a process with high hydrolysis efficiency (99.4%) to prepare bovine bone collagen peptides, in which bovine bone collagen was hydrolyzed at 60 °C for 2 h with an enzyme-substrate ratio of 25 U/g. The hydrolysate contained 96.5% peptides that have a broad molecular weight distribution below 10000 Da. The hydrolysate showed good moisture-retention ability and a high hydroxyl radical (•OH) scavenging ratio of 73.2%, suggesting that the prepared collagen peptides have good antioxidative activity. Altogether, these results indicate that the thermophilic TLP A69 has promising potential in the preparation of bioactive collagen peptides, which may have potentials in cosmetics, food and pharmaceutical industries. This study lays a foundation for the high-valued utilization of bovine bone collagen.
Collapse
Affiliation(s)
- Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao 266102, China; (X.Z.); (S.-C.L.)
| | - Shi-Cheng Liu
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao 266102, China; (X.Z.); (S.-C.L.)
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun-Mei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Correspondence: (J.-M.D.); (X.-L.C.); (F.X.)
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (J.-M.D.); (X.-L.C.); (F.X.)
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (J.-M.D.); (X.-L.C.); (F.X.)
| |
Collapse
|
17
|
Cheng S, Wu D, Liu H, Xu X, Zhu B, Du M. A novel anticoagulant peptide discovered from Crassostrea gigas by combining bioinformatics with the enzymolysis strategy: inhibitory kinetics and mechanisms. Food Funct 2021; 12:10136-10146. [PMID: 34528647 DOI: 10.1039/d1fo02148f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel anticoagulant peptide (IEELEEELEAER) derived from oyster (Crassostrea gigas) was discovered by combining the emerging bioinformatics with the classical enzymolysis approach. The anticoagulant peptide drastically reduced the extrinsic clotting activity (49% residual PT activity) and impaired the intrinsic clotting activity (77% residual PT activity). Consistent with the clotting data, the thrombin peak height reduced to 88.7 from 123.4 nM, and the thrombin generation time delayed to 5.32 from 4.42 min when an extrinsic trigger was applied. The inhibitory kinetics of FXIa, FIXa, FXa, FIIa, and APC in a purified component system rationally explained the reduction of the extrinsic clotting activity and impairment of thrombin generation. Besides the inhibition of FXa and FIIa activity, the activation processes of FX and FII by an intrinsic/extrinsic tenase complex and prothrombinase were also damaged. The anticoagulant activity in the plasma system was the result of comprehensive inhibition of various factors. The research provided a frame for anticoagulant evaluation and inhibitory mechanism of bioactive peptides from food products.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Di Wu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Hanxiong Liu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Xianbing Xu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Beiwei Zhu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ming Du
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
18
|
Cheng S, Wang Y, Chen H, Liu H, Wang L, Battino M, Yao X, Zhu B, Du M. Anticoagulant Dodecapeptide Suppresses Thrombosis In Vivo by Inhibiting the Thrombin Exosite-I Binding Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10920-10931. [PMID: 34491753 DOI: 10.1021/acs.jafc.1c03414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thrombin is a crucial regulatory serine protease in hemostasis and thrombosis and has been a therapeutic target of thrombotic events. A novel oyster-derived thrombin inhibitory dodecapeptide (IEELEELEAER, P-2-CG) was identified and characterized. P-2-CG prolonged thrombin time from 9.6 s to 23.3 s at 5 mg/mL in vitro. P-2-CG bound to thrombin Exosite-I domain spontaneously. The occupied Exosite-I blocked fibrinogen binding, which prolonged fibrinogen clotting time to 28 s from 18.5 s. Molecule dynamics demonstrated the interaction of P-2-CG and thrombin Exosite-I involved in eight hydrogen bonds and lots of electrostatic forces. The residue Tyr76 at thrombin Exosite-I is one critical amino acid for fibrinogen binding. The Glu11 in P-2-CG was bound with Tyr76 through strong hydrogen bonds and hydrophobic action. P-2-CG also significantly reduced the mortality of mice that suffered an acute pulmonary embolism induced by thrombin and inhibited mice tail thrombosis induced by κ-carrageenan. The thrombin inhibitory efficiency in vitro and antithrombosis in vivo of P-2-CG provided insight for further applications to serve as an antithrombotic agent.
Collapse
Affiliation(s)
- Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lishu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee 53226, United States
| | - Maurizio Battino
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, University of Vigo-Vigo Campus, Vigo 36310, Spain
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
19
|
Chen M, Pan D, Zhou T, Gao X, Dang Y. Novel Umami Peptide IPIPATKT with Dual Dipeptidyl Peptidase-IV and Angiotensin I-Converting Enzyme Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5463-5470. [PMID: 33949854 DOI: 10.1021/acs.jafc.0c07138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel umami peptide, IPIPATKT, showed excellent dual dipeptidyl peptidase-IV (DPP-IV) and angiotensin I-converting enzyme (ACE) inhibitory activities, the IC50 values were 64 and 265 μM, respectively. Molecular docking displayed that IPIPATKT was docked into the S1 and S2 pockets of ACE, and it was close to the active site pocket of DPP-IV. The insulin-resistant-HepG2 (IR-HepG2) cell model and human umbilical vein endothelial cell (HUVEC) model showed that the peptide significantly increased the content of glucose, the activities of hexokinase, pyruvate kinase, and the concentration of nitric oxide (p < 0.01), while it reduced the content of endothelin-1 (ET-1). IPIPATKT exhibited a hypotensive effect (-23.5 ± 2.2 mmHg) and attenuated the increase in glucose levels in vivo, as demonstrated using spontaneous hypertensive rats (SHRs) and C57BL/6N mice. We reported the in vivo activities of the umami peptide with dual hypertensive and hypoglycemic effects for the first time.
Collapse
Affiliation(s)
- Mengdi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tianqiong Zhou
- Hangzhou Huajin Pharmaceutical Co., Ltd., Hangzhou 310000, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
20
|
Undhad Trupti J, Das S, Solanki D, Kinariwala D, Hati S. Bioactivities and ACE-inhibitory peptides releasing potential of lactic acid bacteria in fermented soy milk. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00056-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
This study was designed to evaluate the bioactivities such as β-glucosidase activity, α-galactosidase activity, and the growth behavior of the Lactobacillus cultures in soy milk medium. Ten Lactobacillus cultures were considered in this study. L. fermentum (M2) and L. casei (NK9) were selected due to their better α-galactosidase, β-glucosidase activity and growth behavior in soy milk medium during fermentation. Further, soy milk fermented with M2 showed higher proteolytic activity (0.67 OD) and ACE-inhibitory (48.44%) than NK9 (proteolytic activity: 0.48 OD and ACE-inhibitory activity: 41.33%). Bioactive peptides produced during the fermentation of soy milk using the selected Lactobacillus cultures were also identified with potent ACE-inhibitory activity by MALDI-TOF spectrometry, and the identified ACE inhibitory peptide sequences from fermented soy milk were characterized using Biopep database.
Graphical abstract
Collapse
|
21
|
Chaudhary A, Bhalla S, Patiyal S, Raghava GP, Sahni G. FermFooDb: A database of bioactive peptides derived from fermented foods. Heliyon 2021; 7:e06668. [PMID: 33898816 PMCID: PMC8055555 DOI: 10.1016/j.heliyon.2021.e06668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
Globally fermented foods are in demands due to their functional and nutritional benefits. These foods are sources of probiotic organisms and bioactive peptides, various amino acids, enzymes etc. that provides numerous health benefits. FermFooDb (https://webs.iiitd.edu.in/raghava/fermfoodb/) is a manually curated database of bioactive peptides derived from wide range of foods that maintain comprehensive information about peptides and process of fermentation. This database comprises of 2205 entries with following major fields, peptide sequence, Mass and IC50, food source, functional activity, fermentation conditions, starter culture, testing conditions of sequences in vitro or in vivo, type of model and method of analysis. The bioactive peptides in our database have wide range of therapeutic potentials that includes antihypertensive, ACE-inhibitory, antioxidant, antimicrobial, immunomodulatory and cholesterol lowering peptides. These bioactive peptides were derived from different types of fermented foods that include milk, cheese, yogurt, wheat and rice. Numerous, web-based tools have been integrated to retrieve data, peptide mapping of proteins, similarity search and multiple-sequence alignment. This database will be useful for the food industry and researchers to explore full therapeutic potential of fermented foods from specific cultures.
Collapse
Affiliation(s)
- Anita Chaudhary
- Centre for Environmental Sciences and Resilient Agriculture, ICAR-IARI, New Delhi 110012, India
| | - Sherry Bhalla
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Gajendra P.S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Girish Sahni
- Institute of Microbial Technology, Sector39-A Chandigarh 160036, India
| |
Collapse
|
22
|
Generation of phenolic-rich extracts from brewers' spent grain and characterisation of their in vitro and in vivo activities. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Tu M, Xu S, Xu Z, Cheng S, Wu D, Liu H, Du M. Identification of dual-function bovine lactoferrin peptides released using simulated gastrointestinal digestion. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Mei F, Duan Z, Chen M, Lu J, Zhao M, Li L, Shen X, Xia G, Chen S. Effect of a high-collagen peptide diet on the gut microbiota and short-chain fatty acid metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Hao L, Gao X, Zhou T, Cao J, Sun Y, Dang Y, Pan D. Angiotensin I-Converting Enzyme (ACE) Inhibitory and Antioxidant Activity of Umami Peptides after In Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8232-8241. [PMID: 32662986 DOI: 10.1021/acs.jafc.0c02797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Umami peptides can help reduce the salt content in foods while still maintaining a savory taste. Few studies have reported the bioactivity of umami peptides after consumption. We studied the bioactivities of 12 umami peptides after gastrointestinal digestion. Three umami peptides exhibited angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity after digestion. Six novel peptides were identified from digestion solutions of the peptides by HPLC-MS/MS. Among them, CC, CCNK, and HCHT had both ACE inhibitory activity (IC50 values were 9.81, 9.00, and 114.99 μM, respectively) and antioxidant activity (strong 1,1-Diphenyl-2-pycryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical scavenging activities). AHSVRF had strong ACE inhibitory activity. These peptides increased the nitric oxide concentration and decreased the content of endothelin-1 in a medium of human umbilical vein endothelial cells in a dose-dependent manner. Experiments with damaged HepG2 cells showed that peptides CC, CCNK, and HCHT had antioxidant activity through their cytoprotective effects and by reducing the reactive oxygen species content. The results indicated that umami peptides may provide many health benefits after consumption.
Collapse
Affiliation(s)
- Li Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tingyi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
26
|
Cao S, Wang Y, Hao Y, Zhang W, Zhou G. Antihypertensive Effects in Vitro and in Vivo of Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Bovine Bone Gelatin Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:759-768. [PMID: 31841328 DOI: 10.1021/acs.jafc.9b05618] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the antihypertensive effects in vitro and in vivo of novel angiotensin-converting enzyme inhibitory (ACEI) peptides purified and identified from bovine bone gelatin hydrolysate (BGH). Thirteen ACEI peptides were identified from BGH, and among which, RGL-(Hyp)-GL and RGM-(Hyp)-GF exhibited high ACE inhibition with IC50 values of 1.44 and 10.23 μM. Molecular docking predicted that RGM-(Hyp)-GF and ACE residues of Glu384, His513, and Lys511 formed hydrogen-bonding interactions at distances of 2.57, 2.99, and 2.42 + 3.0 Å. RGL-(Hyp)-GL formed hydrogen bonds with Lys511 and Tyr523 and generated hydrogen-bonding interactions with His387 and Glu411 in the zinc(II) complexation motif at distances of 2.74 and 3.03 + 1.93 Å. The maximal decrements in systolic blood pressure in spontaneously hypertensive rats induced by one-time gavage of RGL-(Hyp)-GL and RGM-(Hyp)-GF at 30 mg/kg were 31.3 and 38.6 mmHg. RGL-(Hyp)-GL had higher enzyme degradation resistance than that of RGM-(Hyp)-GF in vitro incubation in rat plasma, and they were sequentially degraded into pentapeptides and tetrapeptides within 2 h. Our results indicate that BGH can serve as a nutritional candidate to control blood pressure.
Collapse
Affiliation(s)
- Songmin Cao
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yi Wang
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yuejing Hao
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Guanghong Zhou
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| |
Collapse
|
27
|
Harnedy-Rothwell PA, McLaughlin CM, O'Keeffe MB, Le Gouic AV, Allsopp PJ, McSorley EM, Sharkey S, Whooley J, McGovern B, O'Harte FPM, FitzGerald RJ. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Res Int 2020; 131:108989. [PMID: 32247474 DOI: 10.1016/j.foodres.2020.108989] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/30/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Twenty-two novel dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides (with IC50 values <200 µM) and fifteen novel insulinotropic peptides were identified in a boarfish protein hydrolysate generated at semi-pilot scale using Alcalase 2.4L and Flavourzyme 500L. This was achieved by bioassay-driven semi-preparative reverse phase-high performance liquid chromatography fractionation, liquid chromatography-mass spectrometry and confirmatory studies with synthetic peptides. The most potent DPP-IV inhibitory peptide (IPVDM) had a DPP-IV half maximal inhibitory concentration (IC50) value of 21.72 ± 1.08 µM in a conventional in vitro and 44.26 ± 0.65 µM in an in situ cell-based (Caco-2) DPP-IV inhibition assay. Furthermore, this peptide stimulated potent insulin secretory activity (1.6-fold increase compared to control) from pancreatic BRIN-BD11 cells grown in culture. The tripeptide IPV exhibited potent DPP-IV inhibitory activity (IC50: 5.61 ± 0.20 µM) comparable to that reported for the known DPP-IV inhibitor IPI (IC50: 3.20 µM). Boarfish proteins contain peptide sequences with potential to play a role in glycaemic management in vivo.
Collapse
Affiliation(s)
| | - Chris M McLaughlin
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry, Northern Ireland, United Kingdom
| | - Martina B O'Keeffe
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Aurélien V Le Gouic
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Philip J Allsopp
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry, Northern Ireland, United Kingdom
| | - Emeir M McSorley
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry, Northern Ireland, United Kingdom
| | - Shaun Sharkey
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry, Northern Ireland, United Kingdom
| | - Jason Whooley
- Bio-Marine Ingredients Ireland Ltd., Lough Egish Food Park, Castleblaney, Co. Monaghan, Ireland
| | - Brian McGovern
- Bio-Marine Ingredients Ireland Ltd., Lough Egish Food Park, Castleblaney, Co. Monaghan, Ireland
| | - Finbarr P M O'Harte
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry, Northern Ireland, United Kingdom
| | | |
Collapse
|
28
|
Sonklin C, Alashi MA, Laohakunjit N, Kerdchoechuen O, Aluko RE. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Cermeño M, Stack J, Tobin PR, O'Keeffe MB, Harnedy PA, Stengel DB, FitzGerald RJ. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct 2019; 10:3421-3429. [PMID: 31134998 DOI: 10.1039/c9fo00680j] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Porphyra dioica protein extract was enzymatically hydrolysed and then fractionated using semi-preparative reverse-phase high performance chromatography. The hydrolysate and its fractions were tested for their oxygen radical absorbance capacity (ORAC) along with their angiotensin converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. The most potent fraction was analysed by liquid chromatography mass spectrometry. Eight peptide sequences were selected for synthesis based on their structure-activity criteria for bioactivity. Asp-Tyr-Tyr-Lys-Arg showed the highest ORAC activity (4.27 ± 0.15 μmol Trolox equivalent per μM). Thr-Tyr-Ile-Ala had the highest ACE inhibitory activity (IC50: 89.7 ± 7.10 μM). Tyr-Leu-Val-Ala was the only peptide showing DPP-IV inhibitory activity (IC50: 439 ± 44 μM). Apart from Asp-Tyr-Tyr-Lys-Arg and Thr-Tyr-Ile-Ala, which displayed increased ORAC activity, the bioactivities of the peptides were either maintained or decreased following in vitro simulated gastrointestinal digestion. The results indicate that P. dioica-derived peptides may have potential applications as health enhancing ingredients.
Collapse
Affiliation(s)
- Maria Cermeño
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, Ireland.
| | | | | | | | | | | | | |
Collapse
|
30
|
León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019; 24:E4031. [PMID: 31703345 PMCID: PMC6891674 DOI: 10.3390/molecules24224031] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hydrolyzed collagen (HC) is a group of peptides with low molecular weight (3-6 KDa) that can be obtained by enzymatic action in acid or alkaline media at a specific incubation temperature. HC can be extracted from different sources such as bovine or porcine. These sources have presented health limitations in the last years. Recently research has shown good properties of the HC found in skin, scale, and bones from marine sources. Type and source of extraction are the main factors that affect HC properties, such as molecular weight of the peptide chain, solubility, and functional activity. HC is widely used in several industries including food, pharmaceutical, cosmetic, biomedical, and leather industries. The present review presents the different types of HC, sources of extraction, and their applications as a biomaterial.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Alejandro Morales-Peñaloza
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan s/n, Colonia, Chimalpa Tlalayote, Apan, Hidalgo 43920 Mexico;
| | - Víctor Manuel Martínez-Juárez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Apolonio Vargas-Torres
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| |
Collapse
|
31
|
Changes in peptidomes and Fischer ratios of corn-derived oligopeptides depending on enzyme hydrolysis approaches. Food Chem 2019; 297:124931. [DOI: 10.1016/j.foodchem.2019.05.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/15/2022]
|
32
|
Cermeño M, Connolly A, O'Keeffe MB, Flynn C, Alashi AM, Aluko RE, FitzGerald RJ. Identification of bioactive peptides from brewers’ spent grain and contribution of Leu/Ile to bioactive potency. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
33
|
Hong H, Fan H, Chalamaiah M, Wu J. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chem 2019; 301:125222. [PMID: 31382108 DOI: 10.1016/j.foodchem.2019.125222] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
Collagen hydrolysates (peptides) derived from food processing byproducts have been used to produce commercially valuable food ingredients due to their potential to trigger certain desirable physiological responses in the body. Low-molecular-weight (LMW) collagen hydrolysates are generally thought to exert better bioactivities than their larger counterparts. However, the preparation of LMW collagen hydrolysates is often impeded by their special structure, cross-linking, and hydroxyproline. This review briefly introduces the motivation of the food industry to prepare LMW collagen hydrolysate from food processing byproducts. We further summarize recent progress on the preparation of LMW collagen hydrolysates and methods to determine the molecular weight. We then discuss the challenges and then provide perspectives on future directions in preparing LMW collagen hydrolysates.
Collapse
Affiliation(s)
- Hui Hong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Meram Chalamaiah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
34
|
Panyayai T, Ngamphiw C, Tongsima S, Mhuantong W, Limsripraphan W, Choowongkomon K, Sawatdichaikul O. FeptideDB: A web application for new bioactive peptides from food protein. Heliyon 2019; 5:e02076. [PMID: 31372542 PMCID: PMC6656964 DOI: 10.1016/j.heliyon.2019.e02076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bioactive peptides derived from food are important sources for alternative medicine and possess therapeutic activity. Several biochemical methods have been achieved to isolate bioactive peptides from food, which are tedious and time consuming. In silico methods are an alternative process to reduce cost and time with respect to bioactive peptide production. In this paper, FeptideDB was used to collect bioactive peptide (BP) data from both published research articles and available bioactive peptide databases. FeptideDB was developed to assist in forecasting bioactive peptides from food by combining peptide cleavage tools and database matching. Furthermore, this application was able to predict the potential of cleaved peptides from 'enzyme digestion module' to identify new ACE (angiotensin converting enzyme) inhibitors using an automatic molecular docking approach. RESULTS The FeptideDB web application contains tools for generating all possible peptides cleaved from input protein by various available enzymes. This database was also used for analysis and visualization to assist in bioactive peptide discovery. One module of FeptideDB has the ability to create 3-dimensional peptide structures to further predict inhibitors for the target protein, ACE (angiotensin converting enzyme). CONCLUSIONS FeptideDB is freely available to researchers who are interested in exploring bioactive peptides. The FeptideDB interface is easy to use, allowing users to rapidly retrieve data based on desired search criteria. FeptideDB is freely available at http://www4g.biotec.or.th/FeptideDB/. Ultimately, FeptideDB is a computational aid for assessing peptide bioactivities.
Collapse
Affiliation(s)
- Thitima Panyayai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, 50 Ngam Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Department of Research and Development, Betagro Science Center Co. Ltd., Klong Luang, Pathumthani, 12120, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wachira Limsripraphan
- Department of Computer Engineering, Faculty of Industrial Technology, Pibulsongkram Rajabhat University, 156 Mu 5 Plaichumpol Sub-district, Muang District, Phitsanulok, 65000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam, Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
35
|
Liu Y, Zheng L, Xu J, Sun‐waterhouse D, Sun B, Su G, Zhao M. Identification of novel peptides with high stability against
in vitro
hydrolysis from bovine elastin hydrolysates and evaluation of their elastase inhibitory activity. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Lin Zheng
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jucai Xu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Dongxiao Sun‐waterhouse
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University Beijing 100048 China
| | - Guowan Su
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Mouming Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University Beijing 100048 China
| |
Collapse
|
36
|
Purification of Angiotensin-I-Converting Enzyme Inhibitory Peptides Derived from Camellia oleifera Abel Seed Meal Hydrolysate. J FOOD QUALITY 2019. [DOI: 10.1155/2019/7364213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
China is a large country that produces Camellia oleifera Abel seed meal (COASM), a by-product of tea-seed oil, which is only used as an organic fertilizer, resulting in a serious waste of high-quality resources. The preparation of the ACE inhibitory peptide from COASM and the study of its functional properties are of practical importance in improving the comprehensive utilization of COASM. Our manuscript presents an optimized preparation of ACE inhibitory peptides with alkaline protease and enzyme kinetics parameters. Ultrafiltration, gel chromatography, and RP-HPLC purification were conducted for ACE inhibitory peptides, and peptide molecular weight distribution and amino acid composition were analyzed in the enzymolysis liquid. The following were the conditions of the optimized enzymatic hydrolysis to obtain ACE inhibitory peptides from COASM: 15 times of hydrolysis in distilled water for 3.5 h at 50°C, pH = 8.5, substrate concentration of 17 mg/g, and addition of 6% (w/w) alkaline protease. Under this condition, the peptides produced exhibited an ACE inhibition rate of 79.24%, and the reaction kinetics parameters are as follows: Km = 0.152 mg/mL and Vmax = 0.130 mg/mL·min. The majority of ACE inhibitory peptides from COASM have molecular weight below 1 kDa, and a high ACE inhibitory rate was achieved after dextran gel chromatography separation and purification (whose IC50 was 0.678 mg/mL). The hydrophobic amino acid content in this fraction reached 51.21%.
Collapse
|
37
|
Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Mudgil P, Jobe B, Kamal H, Alameri M, Al Ahbabi N, Maqsood S. Dipeptidyl peptidase-IV, α-amylase, and angiotensin I converting enzyme inhibitory properties of novel camel skin gelatin hydrolysates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Taga Y, Hayashida O, Ashour A, Amen Y, Kusubata M, Ogawa-Goto K, Shimizu K, Hattori S. Characterization of Angiotensin-Converting Enzyme Inhibitory Activity of X-Hyp-Gly-Type Tripeptides: Importance of Collagen-Specific Prolyl Hydroxylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8737-8743. [PMID: 30060651 DOI: 10.1021/acs.jafc.8b03648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydroxyproline (Hyp) is a collagen-specific amino acid formed by post-translational hydroxylation of Pro residues. Various Hyp-containing oligopeptides are transported into the blood at high concentrations after oral ingestion of collagen hydrolysate. Here we investigated the angiotensin-converting enzyme (ACE) inhibitory activity of X-Hyp-Gly-type tripeptides. In an in vitro assay, ginger-degraded collagen hydrolysate enriched with X-Hyp-Gly-type tripeptides dose-dependently inhibited ACE and various synthetic X-Hyp-Gly-type tripeptides showed ACE-inhibitory activity. In particular, strong inhibition was observed for Leu-Hyp-Gly, Ile-Hyp-Gly, and Val-Hyp-Gly with IC50 values of 5.5, 9.4, and 12.8 μM, respectively. Surprisingly, substitution of Hyp with Pro dramatically decreased inhibitory activity of X-Hyp-Gly, indicating that Hyp is important for ACE inhibition. This finding was supported by molecular docking experiments using Leu-Hyp-Gly/Leu-Pro-Gly. We further demonstrated that prolyl hydroxylation significantly enhanced resistance to enzymatic degradation by incubation with mouse plasma. The strong ACE-inhibitory activity and high stability of X-Hyp-Gly-type tripeptides highlight their potential for hypertension control.
Collapse
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara , Toride , Ibaraki 302-0017 , Japan
| | - Osamu Hayashida
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara , Toride , Ibaraki 302-0017 , Japan
| | - Ahmed Ashour
- Faculty of Agriculture , Kyushu University , 6-10-1 Hakozaki, Higashi-ku , Fukuoka 812-8581 , Japan
- Department of Pharmacognosy, Faculty of Pharmacy , Mansoura University , Mansoura 35516 , Egypt
| | - Yhiya Amen
- Faculty of Agriculture , Kyushu University , 6-10-1 Hakozaki, Higashi-ku , Fukuoka 812-8581 , Japan
- Department of Pharmacognosy, Faculty of Pharmacy , Mansoura University , Mansoura 35516 , Egypt
| | - Masashi Kusubata
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara , Toride , Ibaraki 302-0017 , Japan
| | - Kiyoko Ogawa-Goto
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara , Toride , Ibaraki 302-0017 , Japan
| | - Kuniyoshi Shimizu
- Faculty of Agriculture , Kyushu University , 6-10-1 Hakozaki, Higashi-ku , Fukuoka 812-8581 , Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara , Toride , Ibaraki 302-0017 , Japan
| |
Collapse
|
40
|
Yu Z, Chen Y, Zhao W, Li J, Liu J, Chen F. Identification and molecular docking study of novel angiotensin-converting enzyme inhibitory peptides from Salmo salar using in silico methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3907-3914. [PMID: 29369350 DOI: 10.1002/jsfa.8908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND In order to circumvent some challenges of the classical approach, the in silico method has been applied to the discovery of angiotensin-converting enzyme (ACE) inhibitory peptides from food proteins. In this study, some convenient and efficient in silico tools were utilized to identify novel ACE inhibitory peptides from Salmo salar. RESULTS Collagen from Salmo salar was digested in silico into hundreds of peptides. Results revealed that tetrapeptides PGAR and IGPR showed potent ACE inhibitory activity, with IC50 values of 0.598 ± 0.12 and 0.43 ± 0.09 mmol L-1 , respectively. The molecular docking result showed that PGAR and IGPR interact with ACE mostly via hydrogen bonds and attractive charge. Peptide IGPR interacts with Zn+ at the ACE active site, showing high inhibitory activity. CONCLUSION Interaction with Zn+ in ACE may lead to higher inhibitory activity of peptides, and Pi interactions may promote the effect of peptides on ACE. The in silico method can be an effective method to predict potent ACE inhibitory peptides from food proteins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Yang Chen
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Jingbo Liu
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun, PR China
| | - Feng Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, PR China
- Department of Food Science and Human Nutrition, Clemson University, Clemson, SC, USA
| |
Collapse
|
41
|
Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chem 2018; 258:174-180. [DOI: 10.1016/j.foodchem.2018.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/22/2022]
|
42
|
Alashi AM, Taiwo KA, Oyedele D, Adebooye OC, Aluko RE. Antihypertensive properties of aqueous extracts of vegetable leaf-fortified bread after oral administration to spontaneously hypertensive rats. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Adeola M. Alashi
- Department of Food and Human Nutritional Sciences; University of Manitoba; Winnipeg Manitoba Canada R3T 2N2
| | - Kehinde A. Taiwo
- Department of Food Science and Technology; Obafemi Awolowo University; Ile-Ife Nigeria
| | - Durodoluwa Oyedele
- Department of Soil and Land Resources Management; Faculty of Agriculture; Obafemi Awolowo University; Ile-Ife Nigeria
| | | | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences; University of Manitoba; Winnipeg Manitoba Canada R3T 2N2
| |
Collapse
|
43
|
Harnedy PA, Parthsarathy V, McLaughlin CM, O'Keeffe MB, Allsopp PJ, McSorley EM, O'Harte FPM, FitzGerald RJ. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Res Int 2018; 106:598-606. [PMID: 29579965 DOI: 10.1016/j.foodres.2018.01.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022]
Abstract
Large quantities of low-value protein rich co-products, such as salmon skin and trimmings, are generated annually. These co-products can be upgraded to high-value functional ingredients. The aim of this study was to assess the antidiabetic potential of salmon skin gelatin and trimmings-derived protein hydrolysates in vitro. The gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L exhibited significantly higher (p < 0.001) insulin and GLP-1 secretory activity from pancreatic BRIN-BD11 and enteroendocrine GLUTag cells, respectively, when tested at 2.5 mg/mL compared to hydrolysates generated with Alcalase 2.4L or Promod 144MG. The gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L showed significantly more potent (p < 0.01) DPP-IV inhibitory activity than those generated with Alcalase 2.4L or Promod 144MG. No significant difference was observed in the insulinotropic activity mediated by any of the trimmings-derived hydrolysates when tested at 2.5 mg/mL. However, the trimmings hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L exhibited significantly higher DPP-IV inhibitory (p < 0.05:Alcalase 2.4L and p < 0.01:Promod 144MG) and GLP-1 (p < 0.001, 2.5 mg/mL) secretory activity than those generated with Alcalase 2.4L or Promod 144MG. The salmon trimmings hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L when subjected to simulated gastrointestinal digestion (SGID) was shown to retain its GLP-1 secretory and DPP-IV inhibitory activities, in addition to improving its insulin secretory activity. However, the gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L was shown to lose GLP-1 secretory activity following SGID. A significant increase in membrane potential (p < 0.001) and intracellular calcium (p < 0.001) by both co-product hydrolysates generated with Alcalase 2.4L and Flavourzyme 500L suggest that both hydrolysates mediate their insulinotropic activity through the KATP channel-dependent pathway. Additionally, by stimulating a significant increase in intracellular cAMP release (p < 0.05) it is likely that the trimmings-derived hydrolysate may also mediate insulin secretion through the protein kinase A pathway. The results presented herein demonstrate that salmon co-product hydrolysates exhibit promising in vitro antidiabetic activity.
Collapse
Affiliation(s)
- Pádraigín A Harnedy
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Vadivel Parthsarathy
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Chris M McLaughlin
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Martina B O'Keeffe
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Philip J Allsopp
- Northern Ireland Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Emeir M McSorley
- Northern Ireland Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Finbarr P M O'Harte
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | | |
Collapse
|
44
|
Harnedy PA, Parthsarathy V, McLaughlin CM, O'Keeffe MB, Allsopp PJ, McSorley EM, O'Harte FP, FitzGerald RJ. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
45
|
O'Keeffe MB, FitzGerald RJ. Whey protein hydrolysate induced modulation of endothelial cell gene expression. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Aiello G, Lammi C, Boschin G, Zanoni C, Arnoldi A. Exploration of Potentially Bioactive Peptides Generated from the Enzymatic Hydrolysis of Hempseed Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10174-10184. [PMID: 29096438 DOI: 10.1021/acs.jafc.7b03590] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The seed of industrial hemp is an underexploited protein source. In view of a possible use in functional foods, a hempseed protein concentrate was hydrolyzed with pepsin, trypsin, pancreatin, or a mixture of these enzymes. A detailed peptidomic analysis using data-dependent acquisition showed that the numbers of peptides identified ranged from 90 belonging to 33 parent proteins in the peptic hydrolysate to 9 belonging to 6 proteins in the pancreatin digest. The peptic and tryptic hydrolysates resulted to be the most efficient inhibitors of 3-hydroxymethyl-coenzyme A reductase activity when tested on the catalytic domain of the enzyme. Using the open access tools PeptideRanker and BIOPEP, a list of potentially bioactive peptides was generated: the alleged activities included the antioxidant property, the glucose uptake stimulating activity, the inhibition of dipeptidyl peptidase-IV and angiotensin-converting enzyme I.
Collapse
Affiliation(s)
- Gilda Aiello
- Department of Pharmaceutical Sciences, University of Milan , via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan , via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan , via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Chiara Zanoni
- Department of Pharmaceutical Sciences, University of Milan , via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan , via Luigi Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
47
|
Hong H, Chaplot S, Chalamaiah M, Roy BC, Bruce HL, Wu J. Removing Cross-Linked Telopeptides Enhances the Production of Low-Molecular-Weight Collagen Peptides from Spent Hens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7491-7499. [PMID: 28745049 DOI: 10.1021/acs.jafc.7b02319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The low-molecular-weight (LMW) peptides derived from collagen have shown a potential for various nutritional and pharmaceutical applications. However, production of LMW peptides from vertebrate collagen remains a challenge. Herein, we report a new method to produce LMW collagen peptides using pepsin pretreatment that removed cross-linked telopeptides in collagen molecules. After the pretreatment, the proportion of LMW collagen peptides (<1.4 kDa) that were obtained from pepsin-soluble collagen increased to 32.59% compared to heat-soluble collagen peptides (16.10%). Fourier transform infrared spectroscopy results indicated that telopeptide cleavage retained the triple-helical conformation of collagen. Liquid chromatography-tandem mass spectrometry analysis suggested that Gly-X-Y (X is often proline, while Y is either hydroxyproline or hydroxylysine) repeats were not the main factors that hindered the enzymatic hydrolysis of collagen molecules. However, cross-link quantification demonstrated that trivalent cross-links that included pyridinolines and pyrroles were the primary obstacles to producing small peptides from collagen of spent hens. This study demonstrated for the first time that removing cross-linked telopeptides could enhance the production of LMW peptides from spent hen collagen, which is also of interest to manufacturers who produce LMW collagen peptides from other vertebrate animals, such as bovids and porcids.
Collapse
Affiliation(s)
- Hui Hong
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Shreyak Chaplot
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Meram Chalamaiah
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
48
|
Harnedy PA, O'Keeffe MB, FitzGerald RJ. Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Res Int 2017; 100:416-422. [PMID: 28873704 DOI: 10.1016/j.foodres.2017.07.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 11/29/2022]
Abstract
Proteins derived from the macroalgal species Palmaria palmata have emerged as potential substrates for the generation of bioactive peptides. The aim of this study was to fractionate, identify and characterize antioxidant peptides from a P. palmata protein hydrolysate. The P. palmata protein hydrolysate generated with the food-grade proteolytic enzyme Corolase PP was sequentially fractionated using solid phase extraction and semi-preparative (SP) RP-HPLC. The most active SP-RP-HPLC peptide fraction (SP-RP-HPLC-30-F26) was analysed by ESI-MS/MS. Seventeen novel peptide sequences were identified in this fraction. Of the peptides selected for synthesis, Ser-Asp-Ile-Thr-Arg-Pro-Gly-Gly-Asn-Met, showed the highest oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) activity with values of 152.43±2.73 and 21.23±0.90nmolTE/μmol peptide, respectively. The results presented herein indicate that P. palmata derived peptides may have potential applications as health enhancing ingredients and as food preservatives due to their antioxidant activity.
Collapse
Affiliation(s)
- Pádraigín A Harnedy
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Martina B O'Keeffe
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | | |
Collapse
|
49
|
Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res Int 2017; 100:112-120. [PMID: 28873669 DOI: 10.1016/j.foodres.2017.06.065] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Salmon gelatin (Salmo salar, SG) enzymatic hydrolysates were generated using Alcalase 2.4L, Alcalase 2.4L in combination with Flavourzyme 500L, Corolase PP, Promod 144MG and Brewer's Clarex. The hydrolysate generated with Corolase PP for 1h (SG-C1) had the highest angiotensin converting enzyme (ACE, IC50=0.13±0.05mgmL-1) and dipeptidyl peptidase IV (DPP-IV, IC50=0.08±0.01mgmL-1) inhibitory activities, and oxygen radical absorbance capacity (ORAC, 540.94±9.57μmolTEg-1d.w.). The in vitro bioactivities of SG-C1 were retained following simulated gastrointestinal digestion. Administration of SG and SG-C1 (50mgkg-1 body weight) to spontaneously hypertensive rats (SHR) lowered heart rate along with systolic, diastolic and mean arterial blood pressure. The SG-C1 hydrolysate was fractionated using semi-preparative RP-HPLC and the fraction with highest overall in vitro bioactivity (fraction 25) was analysed by UPLC-MS/MS. Four peptide sequences (Gly-Gly-Pro-Ala-Gly-Pro-Ala-Val, Gly-Pro-Val-Ala, Pro-Pro and Gly-Phe) and two free amino acids (Arg and Tyr) were identified in this fraction. These peptides and free amino acids had potent ACE and DPP-IV inhibitory, and ORAC activities. The results show that SG hydrolysates have potential as multifunctional food ingredients particularly for the management of hypertension.
Collapse
|