1
|
Tripathi S, Murtuja S, Siddique MU, Ansari A, Rakshit G. Inhibitory Potency of Chlorogenic Acid from Apple Cider Vinegar Against Alzheimer's Disease: Molecular Docking and Dynamics Validation. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:267-282. [PMID: 39531579 DOI: 10.1080/27697061.2024.2426558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/11/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The primary cause of memory loss is Alzheimer's disease (AD). Recent studies have shown that natural compounds like apple cider vinegar (ACV) have anti-Alzheimer's capabilities. Essential components of ACV, such as gallic acid and chlorogenic acid, may be in charge of the drug's pharmacological effects. METHODS Using molecular docking and dynamics (MD), the current work looks at the aspect of ACV that protects against AD. To study the conformational relationships and interaction mechanisms between two biological molecules (such as interactions between proteins and drugs or between proteins), MD simulation is frequently used. MD can help understand molecular structural differences between proteins and small compounds. We used acetylcholinesterase (AChE, PDB ID: 1UT6) to MD chlorogenic and gallic acids, as well as the currently prescribed medication rivastigmine (Standard medication). Furthermore, we determine the binding affinity, which may be responsible for AChE inhibition. MD simulations were performed on docked complexes of chlorogenic acid, gallic acid, and rivastigmine with receptor 1UT6 for a 300 ns trajectory to ensure the stability of docked ligand-protein complexes. RESULTS The results showed that chlorogenic acid has the highest binding affinity and stability for AChE inhibition. In the docking and dynamics analysis, both techniques have predicted chlorogenic acid to be a potential constituent of ACV which shows a similar activity when compared to rivastigmine by virtue of binding affinity. CONCLUSION These findings identify chlorogenic acid as the key component of ACV that protects against AD-related cognitive and behavioral impairments. This finding will be critical in the development of ACV-based drugs for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Smriti Tripathi
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| | - Sheikh Murtuja
- Department of Pharmaceutical Technology, Adamas University, Kolkata, India
| | - Mohd Usman Siddique
- Department of Pharmaceutical Sciences, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Azim Ansari
- Department of Pharmaceutical Sciences, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
2
|
Althagafi HA. Neuroprotective role of chlorogenic acid against hippocampal neuroinflammation, oxidative stress, and apoptosis following acute seizures induced by pentylenetetrazole. Metab Brain Dis 2024; 39:1307-1321. [PMID: 39133453 DOI: 10.1007/s11011-024-01400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
This study investigated the neuroprotective effect of chlorogenic acid (CGA) on pentylenetetrazole (PTZ)-induced acute epileptic seizures in mice. Epileptic animals received CGA (200 mg/kg) or sodium valproate (standard antiepileptic agent, 200 mg/kg) for four weeks. Results revealed that pre-administration of CGA significantly reversed the behavioral changes following pentylenetetrazole (PTZ) injection. Further, CGA pre-treatment caused significant increases in acetylcholinesterase (AChE) activity and brain-derived neurotrophic factor (BDNF) levels, along with marked increases in dopamine, norepinephrine, and serotonin levels. Additionally, the increased antioxidant enzymes activities, along with higher glutathione (GSH) contents and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression, were indicative of a notable improvement in the cellular antioxidant defense in mice treated with CGA. These results were associated with lowered malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, epileptic mice that received CGA showed significant declines in the content of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and nuclear factor kappa-B (NF-κB), besides downregulating inducible nitric oxide synthase (iNOS) expression. Remarkably, CGA counteracted hippocampal apoptosis by lessening the levels of pro-apoptotic biomarkers [Bcl-2-associated X protein (Bax) and caspase-3] and increasing the anti-apoptogenic marker level of B-cell lymphoma 2 (Bcl-2). The hippocampal histopathological findings corroborated the abovementioned changes. In sum, these findings suggest that CGA could mediate the neuroprotective effect against PTZ-induced epilepsy via modulation of neurotransmitters, oxidative damage, neuroinflammation, and apoptosis. CGA, therefore, could be considered a valuable antiepileptic therapeutic supplement.
Collapse
Affiliation(s)
- Hussam A Althagafi
- Department of Biology, Faculty of Science, Al-Baha University, Al Baha, Saudi Arabia.
| |
Collapse
|
3
|
Rodak K, Bęben D, Birska M, Siwiela O, Kokot I, Moreira H, Radajewska A, Szyjka A, Kratz EM. Evaluating the Neuroprotective Potential of Caffeinated Coffee in the Context of Aluminum-Induced Neurotoxicity: Insights from a PC12 Cell Culture Model. Antioxidants (Basel) 2024; 13:342. [PMID: 38539875 PMCID: PMC10968250 DOI: 10.3390/antiox13030342] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2025] Open
Abstract
Exposure to aluminum (Al) and its compounds is an environmental factor that induces neurotoxicity, partially through oxidative stress, potentially leading to the development of neurodegenerative diseases. Components of the diet, such as caffeinated coffee, may play a significant role in preventing these diseases. In the present study, an experimental model of PC12 cells (rat pheochromocytoma tumor cells) was developed to investigate the influence of caffeine and caffeinated coffee on neurotoxicity induced by Al compounds and/or oxidative stress. For the induction of neurotoxicity, aluminum maltolate (Almal) and H2O2 were used. The present study demonstrates that 100 μM Almal reduced cell survival, while caffeinated coffee with caffeine concentrations of 5 μg/mL and 80 μg/mL reversed this effect, resulting in a higher than fivefold increase in PC12 cell survival. However, despite the observed antioxidant properties typical for caffeine and caffeinated coffee, it is unlikely that they are the key factors contributing to cell protection against neurotoxicity induced by both oxidative stress and Al exposure. Moreover, the present study reveals that for coffee to exert its effects, it is possible that Al must first activate certain mechanisms within the cell. Therefore, various signaling pathways are discussed, and modifications of these pathways might significantly decrease the risk of Al-induced neurotoxicity.
Collapse
Affiliation(s)
- Kamil Rodak
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
- Student Research Club, “Biomarkers in Medical Diagnostics”, Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Dorota Bęben
- Student Research Club of Flow Cytometry and Biomedical Research, Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (D.B.); (M.B.); (O.S.)
| | - Monika Birska
- Student Research Club of Flow Cytometry and Biomedical Research, Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (D.B.); (M.B.); (O.S.)
| | - Oliwia Siwiela
- Student Research Club of Flow Cytometry and Biomedical Research, Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (D.B.); (M.B.); (O.S.)
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (H.M.); (A.S.)
| | - Anna Radajewska
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Anna Szyjka
- Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (H.M.); (A.S.)
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
4
|
Shi D, Hao Z, Qi W, Jiang F, Liu K, Shi X. Aerobic exercise combined with chlorogenic acid exerts neuroprotective effects and reverses cognitive decline in Alzheimer's disease model mice (APP/PS1) via the SIRT1/ /PGC-1α/PPARγ signaling pathway. Front Aging Neurosci 2023; 15:1269952. [PMID: 38046466 PMCID: PMC10693339 DOI: 10.3389/fnagi.2023.1269952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease account for 60-80% of the total number of people with dementia, but its treatment and prevention strategies are still in a long process of exploration. It has been reported that a healthy lifestyle may be an effective non-pharmacological intervention for the prevention and treatment of AD, including increased physical activity and the consumption of polyphenol-rich foods. This study, therefore, investigated the effects of 8 weeks of moderate-intensity aerobic exercise (EX), administration of chlorogenic acid administration (GCA), and a combination of both (EX+GCA) on β-amyloid (Aβ) deposition, inflammatory factors, oxidative stress markers, neuronal damage, and cognitive performance in the brains of AD model mice (APP/PS1) and which signaling pathways may be responsible for these effects. The study used Western blot to detect the expression of signaling pathway-related proteins, enzyme-linked immunosorbent assay to detect the expression of inflammatory factors, hematoxylin-eosin staining to detect hippocampal neuronal morphology, immunohistochemistry to detect changes in Aβ deposition in the hippocampus, an oxidative stress marker kit to detect oxidative stress status and the Morris water maze to detect changes in cognitive performance. This study showed that an 8-week intervention (EX/GCA/EX+GCA) activating the SIRT1/PGC-1α signaling pathway improved oxidative stress, neuroinflammation, Aβ deposition, and cognitive performance in mice. However, there was no obvious difference between the EX and GCA groups. In contrast, the combined EX+GCA intervention was significantly better than phase EX or GCA. Our study suggests that although relief of Aβ deposition, neuroinflammation, oxidative stress, neuronal damage, and cognitive decline could also be achieved with EX or GCA, the combined EX+GCA intervention showed better results. These relief effects on AD-related conditions may be obtained by mediating the activation of the SIRT1/PGC-1α signaling pathway. This study is the first to explore the improvement of AD-related conditions with a combined lifestyle of EX+GCA. This healthy lifestyle could be a candidate option for the treatment of AD.
Collapse
Affiliation(s)
- Dan Shi
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zikang Hao
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Wenxiao Qi
- Sports Training College, Tianjin Institute of Physical Education, Tianjin, China
| | - Fengyi Jiang
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kerui Liu
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Xiao Shi
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Behne S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules 2023; 28:5540. [PMID: 37513412 PMCID: PMC10385244 DOI: 10.3390/molecules28145540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphenolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-products. The objective of this review was to assess the potential health risks associated with the oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering both acute and chronic exposure. An electronic literature search was conducted, revealing that 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal and human studies were available for the assessment, which indicated no significant evidence of toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to pose a risk to human health when observed at doses within the normal range of dietary exposure. As a result, the intake of CQAs from coffee by-products can be considered reasonably safe.
Collapse
Affiliation(s)
- Sascha Behne
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
- Fachbereich II (Fachgruppe Chemie), Berliner Hochschule für Technik (BHT), Luxemburger Strasse 10, 13353 Berlin, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
6
|
Ju Y, Bu D, Li B, Cheng D. Protective function and mechanisms of soybean peptides on aluminum maltolate induced brain and liver toxicity on C57BL/6 mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Albrakati A. Monosodium glutamate induces cortical oxidative, apoptotic, and inflammatory challenges in rats: the potential neuroprotective role of apigenin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24143-24153. [PMID: 36334201 DOI: 10.1007/s11356-022-23954-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Monosodium glutamate (MSG) is used as a flavor, and a taste enhancer was reported to evoke marked neuronal impairments. This study investigated the neuroprotective ability of flavonoid apigenin against neural damage in MSG-administered rats. Adult male rats were allocated into four groups: control, apigenin (20 mg/kg b.wt, orally), MSG (4 g/kg b.wt, orally), and apigenin + MSG at the aforementioned doses for 30 days. Regarding the levels of neurotransmitters, our results revealed that apigenin augmented the activity of acetylcholinesterase (AChE) markedly, and levels of brain monoamines (dopamine, norepinephrine, and serotonin) accompanied by lessening the activity of monoamine oxidase (MAO) as compared to MSG treatment. Moreover, apigenin counteracted the MSG-mediated oxidative stress by decreasing the malondialdehyde (MDA) levels together with elevating the glutathione (GSH) levels. In addition, pretreatment with apigenin induced notable increases in the activities of cortical superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Furthermore, apigenin attenuated the cortical inflammatory stress as indicated by lower levels of pro-inflammatory mediators such as interleukin-1 b (IL-1b), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) as well as downregulated inducible nitric oxide synthase (iNOS) expression levels. Histopathological screening validated the abovementioned results and revealed that apigenin restored the distorted cytoarchitecture of the brain cortex. Thus, the present findings collectively suggest that apigenin exerted significant protection against MSG-induced neurotoxicity by enhancing the cellular antioxidant response and attenuating inflammatory machineries in the rat brain cortex.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
8
|
Mohamed KM, Abdelfattah MS, El-khadragy M, Al-Megrin WA, Fehaid A, Kassab RB, Abdel Moneim AE. Rutin-loaded selenium nanoparticles modulated the redox status, inflammatory, and apoptotic pathways associated with pentylenetetrazole-induced epilepsy in mice. GREEN PROCESSING AND SYNTHESIS 2023; 12. [DOI: 10.1515/gps-2023-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Abstract
Worldwide, epilepsy is the second most prevalent neurological disorder. Disappointingly, various adverse effects are being observed with currently used antiepileptic drugs. Nanomedicine represents an effective strategy to overcome these limitations with a better central drug delivery. Hence, our work aimed to unravel the antiepileptic efficacy of rutin (Rut) loaded with selenium nanoparticles (SeNPs) against pentylenetetrazole (PTZ)-challenged mice. Ten days before PTZ (60 mg·kg−1) intraperitoneal injection, mice were orally administered Rut (100 mg·kg−1), sodium selenite (0.5 mg·kg−1), SeNPs (100 mg·kg−1), or sodium valproate (reference drug, 200 mg·kg−1). Remarkably, administration of Rut-loaded SeNPs (Rut-SeNPs) to epileptic mice markedly increased the latency time and decreased the severity and duration of seizures. Remarkable increases were also noticed in acetylcholinesterase, brain-derived neurotrophic factor, dopamine, and norepinephrine levels in epileptic mice treated with Rut-SeNPs. Furthermore, Rut-SeNPs boosted the cellular antioxidant defense by increasing superoxide dismutase, catalase, GSH, Nrf2, and HO-1, along with decreased malondialdehyde and nitric oxide levels. In addition, the nanotherapy successfully mitigated the inflammatory mediators (tumor necrosis factor-α, interleukin-6, cyclooxygenase-2, and nuclear factor kappa B) in mice hippocampus. Rut-SeNPs antagonized neuronal apoptosis by decreasing Bax and caspase-3 and increasing the levels of Bcl-2. Conclusively, the present work suggests Rut-loaded SeNPs as an effective antiepileptic therapy through correction of disturbed neurotransmitters, oxidative status, neuroinflammation, and apoptosis.
Collapse
Affiliation(s)
- Kareem M. Mohamed
- Chemistry Department, Faculty of Science, Helwan University , Cairo , Egypt
| | | | - Manal El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Wafa A. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University , Dakahlia , Egypt
| | - Rami B. Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University , Cairo , Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University , Cairo , Egypt
| |
Collapse
|
9
|
Liu S, Ding Y, Yu Q, Wang X, Cheng D. Comparative study of aluminum speciation on brain-type creatine kinase: Enzyme kinetic, molecular docking, cellular experiment, and mouse model study. J Inorg Biochem 2023; 238:112032. [PMID: 36327498 DOI: 10.1016/j.jinorgbio.2022.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Brain-type Creatine kinase (CK-BB), which has a high affinity for Aluminum (Al), and its abnormality is closely related to neurodegenerative diseases. In this study, the comparative effect of Al speciation on the bioactivity of CK-BB has been studied by the inhibition kinetics method, molecular docking, cellular experiment, and mouse model study. Results showed that the half-inhibitory concentration of AlCl3 was 0.67 mM, while Al(mal)3 was 3.81 mM. Fluorescence spectra showed that Al(mal)3 had a more substantial effect on the endogenous fluorescence of CK-BB than AlCl3. Molecular docking showed that AlCl3 was closer to the active site of CK-BB. C6 cells were used to explore the enzyme activity and intracellular distribution of CK-BB by AlCl3 or Al(mal)3. AlCl3 treatment may directly affect CK-BB activity and cause insufficient local ATP supply in cells which affected the formation of F-actin and cell morphology. The change in the hydrophobicity of CK-BB induced by Al(mal)3 affected the movement of CK-BB, which subsequently activated thecytochrome C (Cyt C)/Caspase 9/Caspase 3 pathway. Similar results have been found in vivo experiments. This study demonstrated that interaction between Al and CK-BB might be related to the process of Al-induced energy metabolism disorders, in which the Al speciation revealed differentiated toxicity mechanisms.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qianqian Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuerui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
10
|
Artichoke Leaf Extract-Mediated Neuroprotection against Effects of Aflatoxin in Male Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4421828. [PMID: 35909495 PMCID: PMC9325642 DOI: 10.1155/2022/4421828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Attenuation of adverse effects of aflatoxin (AFB1) in brains of B1 rats by extracts of leaves of artichoke was studied. The active ingredients in extracts of leaves of artichoke, Cynara scolymus L., were determined by HPLC analysis. In the 42-day experiment, rats were exposed to either sterile water, 4% DMSO, 100 mg artichoke leaf extract/kg body mass, 72 μg aflatoxin B1/kg body mass, or AFB1 plus artichoke leaf extract. Neurotoxicity of AFB1 was determined by an increase in profile of lipids, augmentation of plasmatic glucose and concentrations of insulin, oxidative stress, increased activities of cholinergic enzymes, and a decrease in activities of several antioxidant enzymes and pathological changes in brain tissue. Extracts of artichoke leaf significantly reduced adverse effects caused by AFB1, rescuing most of the parameters to values similar to unexposed controls, which demonstrated that adverse, neurotoxic effects caused by aflatoxin B1 could be significantly reduced by simultaneous dietary supplementation with artichoke leaf extract, which itself is not toxic.
Collapse
|
11
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Xi Y, Li H, Yu M, Li X, Li Y, Hui B, Zeng X, Wang J, Li J. Protective effects of chlorogenic acid on trimethyltin chloride-induced neurobehavioral dysfunctions in mice relying on the gut microbiota. Food Funct 2022; 13:1535-1550. [PMID: 35072194 DOI: 10.1039/d1fo03334d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethyltin chloride (TMT) is acknowledged to have potent neurotoxicity. Chlorogenic acid (CGA), the most abundant polyphenol in the human diet, is well-known for its neuroprotective activity. This investigation was performed to determine the effects and mechanisms of CGA on TMT-induced neurobehavioral dysfunctions. Mice received oral administrations of CGA (30 mg kg-1) for 11 days, in which they were intraperitoneally injected with TMT (2.7 mg kg-1) once on the 8th day. The daily intake of CGA significantly alleviated TMT-induced epilepsy-like seizure and cognition impairment, ameliorating hippocampal neuronal degeneration and neuroinflammation. Oral gavage of CGA potentially exerted neuroprotective effects through JNK/c-Jun and TLR4/NFκB pathways. Microbiome analysis revealed that daily consumption of CGA raised the relative abundance of Lactobacillus in TMT-treated mice. SCFAs, the gut microbial metabolites associated with neuroprotection, were increased in the mouse hippocampus following CGA treatment. TMT-induced neurotransmitter disorders were regulated by oral gavage of CGA, especially DL-kynurenine and acetylcholine chloride. Additionally, neurotransmitters in the mouse hippocampus were found to be highly associated with the gut microbiota. Our findings provided research evidence for the neuroprotective effect of CGA on TMT-induced neurobehavioral dysfunctions.
Collapse
Affiliation(s)
- Yu Xi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Meihong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Xuejie Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Bowen Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Xiangquan Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
13
|
Hussien HM, Ghareeb DA, Ahmed HEA, Hafez HS, Saleh SR. Pharmacological implications of ipriflavone against environmental metal-induced neurodegeneration and dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65349-65362. [PMID: 34235690 DOI: 10.1007/s11356-021-15193-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Long-term exposure to environmental neurotoxic metals is implicated in the induction of dementia and cognitive decline. The present study aims to illustrate the therapeutic role of ipriflavone as a synthetic isoflavone against environmental metal-induced cognitive impairment in rats. Dementia was induced by a mixture of aluminum, cadmium, and fluoride for 90 days followed by ipriflavone for a further 30 days. Metal-treated animals exhibited abnormal behaviors in the Morris water maze task. Neuropathological biomarkers including oxidative stress (TBARS, NO, SOD, GPX, GST, and GSH), inflammation (TNF- α, IL-6, and IL-1β), neurotransmission (AChE and MAO), and insulin resistance (insulin, insulin receptor, and insulin-degrading enzyme) were altered, which consequently elevated the level of amyloid-β42 and tau protein in the hippocampus tissues inducing neuronal injury. Ipriflavone significantly (P < 0.05) ameliorated the neurobehavioral abnormalities and the cognitive dysfunction biomarkers via antioxidant/anti-inflammatory mechanism. Moreover, ipriflavone downregulated the mRNA expression level of amyloid precursor protein and tau protein, preventing amyloid plaques and neurofibrillary tangle aggregation at P < 0.05. A molecular docking study revealed that ipriflavone has a potent binding affinity towards AChE more than donepezil and acts as a strong AChE inhibitor. Our data concluded that the therapeutic potential of ipriflavone against dementia could provide a new strategy in AD treatment.
Collapse
Affiliation(s)
- Hend M Hussien
- Department of Pharmacology and Therapeutics Department, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, Smouha, Sidi Gaber, P.O. Box 37, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellency for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Samar R Saleh
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellency for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
14
|
Kim JM, Kang JY, Park SK, Moon JH, Kim MJ, Lee HL, Jeong HR, Kim JC, Heo HJ. Powdered Green Tea (Matcha) Attenuates the Cognitive Dysfunction via the Regulation of Systemic Inflammation in Chronic PM 2.5-Exposed BALB/c Mice. Antioxidants (Basel) 2021; 10:antiox10121932. [PMID: 34943034 PMCID: PMC8750520 DOI: 10.3390/antiox10121932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to evaluate the anti-amnesic effect of the aqueous extract of powdered green tea (matcha) (EM) in particulate matter (PM)2.5-induced systemic inflammation in BALB/c mice. EM ameliorated spatial learning and memory function, short-term memory function, and long-term learning and memory function in PM2.5-induced mice. EM protected against antioxidant deficit in pulmonary, dermal, and cerebral tissues. In addition, EM improved the cholinergic system through the regulation of acetylcholine (ACh) levels and acetylcholinesterase (AChE) activity in brain tissue, and it protected mitochondrial dysfunction by regulating the production of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP contents in brain tissue. EM attenuated systemic inflammation and apoptotic signaling in pulmonary, dermal, olfactory bulb, and hippocampal tissues. Moreover, EM suppressed neuronal cytotoxicity and cholinergic dysfunction in hippocampal tissue. This study suggests that EM might be a potential substance to improve PM2.5-induced cognitive dysfunction via the regulation of systemic inflammation.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Jin Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
- Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jong Hyun Moon
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Min Ji Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Hye Rin Jeong
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
- Correspondence: ; Tel.: +82-557721907
| |
Collapse
|
15
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies. ADVANCES IN NEUROTOXICOLOGY 2021; 5:1-34. [PMID: 34263089 DOI: 10.1016/bs.ant.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
He X, Zheng S, Sheng Y, Miao T, Xu J, Xu W, Huang K, Zhao C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:631-637. [PMID: 32683698 DOI: 10.1002/jsfa.10675] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chlorogenic acid is a type of phenolic acid found in many plants. Chlorogenic acid has an anti-obesity effect with an unclear mechanism. The present study aimed to investigate the regulatory effect of chlorogenic acid on energy balance in high-fat diet (HFD) induced obese C57BL/6J mice administrated 100 mg kg-1 chlorogenic acid for 13 weeks. RESULTS The consumption of chlorogenic acid ameliorated HFD induced obesity. Chlorogenic acid did not change the physical activity but significantly decreased food intake and increased body temperature, thermal dissipation and brown adipose tissue activity. Moreover, chlorogenic acid improved glucose tolerance but had a moderate impact on other blood indices. Additionally, chlorogenic acid failed to restore the microbiota change associated with HFD induced obesity, but modified the gut bacterial composition in a unique way. CONCLUSION Supplementation with chlorogenic acid can improve HFD induced obesity and associated glucose intolerance mainly via regulating food intake and energy expenditure. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shujuan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Jilin, China
| |
Collapse
|
18
|
|
19
|
Metwally DM, Alajmi RA, El-Khadragy MF, Yehia HM, AL-Megrin WA, Akabawy AM, Amin HK, Abdel Moneim AE. Chlorogenic acid confers robust neuroprotection against arsenite toxicity in mice by reversing oxidative stress, inflammation, and apoptosis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem Biol Interact 2020; 333:109333. [PMID: 33242462 DOI: 10.1016/j.cbi.2020.109333] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Arsenic, a major environmental pollutant of global concern, is well-known for its reproductive toxicity. In this study, the protective potential of chlorogenic acid (CGA), a caffeoylquinic acid isomer abundantly found in many plants, was investigated against sodium arsenite (NaAsO2)-induced testicular dysfunctions. Adult male Swiss mice were either administered NaAsO2 alone at 5 mg kg-1 or co-treated with CGA at 100 mg kg-1 or 200 mg kg-1 body weight for 4 weeks. Results showed that NaAsO2-treated mice exhibited marked declines in testes weight, sperm count, and viability accompanied by decreases in sexual hormonal levels. Moreover, NaAsO2 toxicity evoked exhaustion of antioxidant markers (SOD, CAT, GPx, GR, and GSH), down-regulation of Nrf2 (nuclear factor erythroid 2-related factor 2) gene expression level, and elevations in malondialdehyde. Further, elevations in inflammatory cytokines (IL-1, TNF-α, and IL-6) together with the up-regulation of pro-apoptotic biomarkers (Bax and caspase- 3) and down-regulation of anti-apoptotic Bcl-2 were observed in NaAsO2 intoxication. Immunohistochemical analysis of testis sections of NaAsO2-treated mice showed high caspase-3 expression. These findings were well supported with testicular histopathological examination. However, pretreatment of mice with CGA resulted in noteworthy improvements in testicular damage induced by arsenic in a dose-dependent manner possibly mediated by the Nrf2 signaling pathway. Conclusively, CGA counteracted arsenic-induced testicular injury through its antioxidant, anti-inflammatory, and anti-apoptotic properties. Therefore, CGA could serve as a favorable intervention in the alleviation of arsenic-induced reproductive toxicity.
Collapse
|
21
|
Rodrigues GZP, Finkler M, Garcia ALH, Gehlen G. Evaluation of transgenerational effects caused by metals as environmental pollutants in Daphnia magna. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:755. [PMID: 33170361 DOI: 10.1007/s10661-020-08713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to evaluate the acute and chronic toxicity of environmentally relevant concentrations of metals (Mn, Al, Fe, and Pb) in Daphnia magna and the generational transposition of reproductive and morphological damages. The effective concentration for 10% of the organisms from each metal was obtained by the acute toxicity test (96 hours); then, another five concentrations lower than this one were defined for the chronic experimentation (21 days), in which the number of neonates generated by each individual was checked daily. At the end of the exposition, the lengths and number of morphological damages were recorded in each adult daphnid. During this, the molt generated on the 14th and 21st days were collected and cultivated for posterior evaluation of the same parameters. Alterations in the reproductive performance were observed in the organisms exposed to manganese and aluminum (4.0 and 0.5 mg L-1, respectively). Organisms exposed to aluminum (0.05 mg L-1) and iron (0.27 mg L-1) showed a reduction in body length. It is also noteworthy that the molt of these adults and their respective offspring also presented reproductive alterations, especially the molt from the 14th day of lead exposure (0.02 mg L-1) and the 21st day of manganese exposure (4.0 mg L-1). Such effects allow us to conclude that environments polluted by metals can reduce the ability of the species to maintain themselves in the ecosystem. In addition, there is a need to increase the control and monitoring of metals, such as aluminum, which present risks even in low concentrations.
Collapse
Affiliation(s)
| | | | - Ana Letícia Hilario Garcia
- Post Graduation Program in Cellular and Molecular Biology Applied to Health, ULBRA - Lutheran University of Brazil, Farroupilha Avenue, 8001, Canoas, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, ERS-239, 2755, Novo Hamburgo, 93525-075, Brazil
| |
Collapse
|
22
|
Al-Megrin WA, Metwally DM, Habotta OA, Amin HK, Abdel Moneim AE, El-Khadragy M. Nephroprotective effects of chlorogenic acid against sodium arsenite-induced oxidative stress, inflammation, and apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5162-5170. [PMID: 32519758 DOI: 10.1002/jsfa.10565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Chronic exposure to arsenic (As) leads to serious renal disorders. Chlorogenic acid (CGA), a phenolic compound, has several well known physiological benefits, including antioxidant and anti-inflammatory activities. The present study investigated the potential renoprotective effects of CGA on sodium arsenite (NaAsO2 )-induced kidney damage in mice. The mice were randomly allocated into five groups to receive daily treatment with CGA (200 mg kg-1 ), NaAsO2 (5 mg kg-1 ), NaAsO2 + CGA (100 mg kg-1 ), NaAsO2 + CGA (200 mg kg-1 ), or a control for 28 days. RESULTS In the NaAsO2 -treated group, NaAsO2 induced significant renal dysfunction, oxidative damage, inflammation, and apoptosis, as demonstrated by marked increases in urea and creatinine levels accompanied by a decrease in the kidney index. Considerable increases in malondialdehyde and nitric oxide levels and parallel decreases in various antioxidant markers (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione) levels were also detected in the renal tissues of NaAsO2 -treated mice. NaAsO2 exposure was associated with marked increases in renal inflammatory markers (interleukin-1β and tumor necrosis factor-α) and apoptosis indicators including Bax and caspase-3 levels contaminant, with a marked decrease in Bcl-2, an anti-apoptotic protein, in the NaAsO2 -treated group compared with the control group. However, pretreatment with CGA substantially mitigated the renal injury and dysfunction associated with NaAsO2 exposure by reducing tissue inflammation and apoptosis and improving the antioxidant status. The CGA pretreatment also alleviated the NaAsO2 -induced histological alterations in renal tissues. CONCLUSION Taken together, our results suggest the efficacy of CGA in alleviating As-mediated renal tissue damage. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wafa A Al-Megrin
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dina M Metwally
- Zoology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ola A Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem K Amin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manal El-Khadragy
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
23
|
Cheng D, Wang G, Wang X, Tang J, Yu Q, Zhang X, Wang S. Neuro-protection of Chlorogenic acid against Al-induced apoptosis in PC12 cells via modulation of Al metabolism and Akt/GSK-3β pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
24
|
Dkhil MA, Abdel Moneim AE, Bauomy AA, Khalil M, Al-Shaebi EM, Al-Quraishy S. Chlorogenic acid prevents hepatotoxicity in arsenic-treated mice: role of oxidative stress and apoptosis. Mol Biol Rep 2019; 47:1161-1171. [PMID: 31820315 DOI: 10.1007/s11033-019-05217-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
|
25
|
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 2019; 12:45-70. [PMID: 32206026 PMCID: PMC7071840 DOI: 10.2478/intox-2019-0007] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aluminium (Al) is frequently accessible to animal and human populations to the extent that intoxications may occur. Intake of Al is by inhalation of aerosols or particles, ingestion of food, water and medicaments, skin contact, vaccination, dialysis and infusions. Toxic actions of Al induce oxidative stress, immunologic alterations, genotoxicity, pro-inflammatory effect, peptide denaturation or transformation, enzymatic dysfunction, metabolic derangement, amyloidogenesis, membrane perturbation, iron dyshomeostasis, apoptosis, necrosis and dysplasia. The pathological conditions associated with Al toxicosis are desquamative interstitial pneumonia, pulmonary alveolar proteinosis, granulomas, granulomatosis and fibrosis, toxic myocarditis, thrombosis and ischemic stroke, granulomatous enteritis, Crohn's disease, inflammatory bowel diseases, anemia, Alzheimer's disease, dementia, sclerosis, autism, macrophagic myofasciitis, osteomalacia, oligospermia and infertility, hepatorenal disease, breast cancer and cyst, pancreatitis, pancreatic necrosis and diabetes mellitus. The review provides a broad overview of Al toxicosis as a background for sustained investigations of the toxicology of Al compounds of public health importance.
Collapse
Affiliation(s)
- Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Nanacha Afifi Igbokwe
- Department Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
26
|
Liu Q, Tang GY, Zhao CN, Gan RY, Li HB. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants (Basel) 2019; 8:E78. [PMID: 30934715 PMCID: PMC6523695 DOI: 10.3390/antiox8040078] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Fruit vinegars are popular condiments worldwide. Antioxidants and organic acids are two important components of the flavors and health benefits of fruit vinegars. This study aimed to test the antioxidant activities, phenolic profiles, and organic acid contents of 23 fruit vinegars. The results found that the 23 fruit vinegars varied in ferric-reducing antioxidant power (FRAP, 0.15⁻23.52 μmol Fe(II)/mL), Trolox equivalent antioxidant capacity (TEAC, 0.03⁻7.30 μmol Trolox/mL), total phenolic content (TPC, 29.64⁻3216.60 mg gallic acid equivalent/L), and total flavonoid content (TFC, 2.22⁻753.19 mg quercetin equivalent/L) values. Among the 23 fruit vinegars, the highest antioxidant activities were found in balsamic vinegar from Modena (Galletti), Aceto Balsamico di Modena (Monari Federzoni), red wine vinegar (Kühne), and red wine vinegar (Galletti). In addition, polyphenols and organic acids might be responsible for the antioxidant activities of fruit vinegars. The most widely detected phenolic compounds in fruit vinegars were gallic acid, protocatechuic acid, chlorogenic acid, caffeic acid, and p-coumaric acid, with tartaric acid, malic acid, lactic acid, citric acid, and succinic acid the most widely distributed organic acids. Overall, fruit vinegars are rich in polyphenols and organic acids and can be a good dietary source of antioxidants.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
27
|
Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019; 123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Fatal unintentional poisoning is widespread upon human exposure to toxic agents such as pesticides, heavy metals, environmental pollutants, bacterial and fungal toxins or even some medications and cosmetic products. In this regards, the application of the natural dietary agents as antidotes has engrossed a substantial attention. One of the ancient known traditional medicines and spices with an arsenal of metabolites of several reported health benefits is ginger. This extended literature review serves to demonstrate the protective effects and mechanisms of ginger and its phytochemicals against natural, chemical and radiation-induced toxicities. Collected data obtained from the in-vivo and in-vitro experimental studies in this overview detail the designation of the protective effects to ginger's antioxidant, anti-inflammatory, and anti-apoptotic properties. Ginger's armoury of phytochemicals exerted its protective function via different mechanisms and cell signalling pathways, including Nrf2/ARE, MAPK, NF-ƙB, Wnt/β-catenin, TGF-β1/Smad3, and ERK/CREB. The outcomes of this review could encourage further clinical trials of ginger applications in radiotherapy and chemotherapy regime for cancer treatments or its implementation to counteract the chemical toxicity induced by industrial pollutants, alcohol, smoking or administered drugs.
Collapse
Affiliation(s)
- Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Allan Torres
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia.
| |
Collapse
|
28
|
Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages. J Inorg Biochem 2018; 190:113-120. [PMID: 30428426 DOI: 10.1016/j.jinorgbio.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
Aluminum (Al), which may bring about damage to the macrophages, has been implicated in the development of immunological diseases. It has been reported that chlorogenic acid (CGA, 5‑caffeoylquinic acid, chemical formula: C16H18O9) is a natural antioxidant and chelating agent with the capacity against Al (III)-induced biotoxicity. The present study was carried out to investigate whether CGA could reduce AlCl3-induced cellular damage in RAW264.7 cells. After treatment with AlCl3, the inhibition rate of viability and phagocytic activity of RAW264.7 cells was 54.5% and 27.6%, respectively. Administration of CGA significantly improved the integrity and phagocytic activity, and attenuated the accumulation of intracellular Al(III) level and oxidative stress in Al(III)-treated cells. Furthermore, CGA significantly inhibited Al(III)-induced increase of phospho-Jun N-terminal kinase (p-JNK), a pro-apoptotic Bcl-2 family protein (Bad), cytochrome c and decrease of extracellular regulated protein kinases (ERK1/2), protein kinase B (Akt) protein expressions. These results showed that CGA has a protective effect against Al(III)-induced cytotoxicity through mitogen-activated protein kinase (MAPK)/Akt-mediated caspase pathways in RAW264.7 cells.
Collapse
|
29
|
Wang X, Cheng D, Jiang W, Ma Y. Mechanisms Underlying Aluminum Neurotoxicity Related to 14-3-3ζ Protein. Toxicol Sci 2018; 163:45-56. [DOI: 10.1093/toxsci/kfy021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xiaomei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Dai Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Yuxia Ma
- Department of Nutrition and Hygiene, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|