1
|
Yan S, Yuan Y, Song H, Mu G, Xue X. Turanose and erlose as characteristic oligosaccharides in honey: Their formation mechanism and potential application for detecting honey adulteration. Food Chem 2025; 487:144784. [PMID: 40398220 DOI: 10.1016/j.foodchem.2025.144784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
Honey contains abundant oligosaccharides which play an important role in controlling honey quality. However, there have been few reports on their formation mechanism in honey. In this study, the formation mechanism of turanose and erlose was proposed by analyzing sugar composition of obtained honey samples combined with 13C labeled sucrose experiments. Sucrose as a glucosyl donor undergoes the glycosyl transferase reaction to form turanose and erlose via α-glucosidase. Glucose binding with fructose occurs isomerization to form turansoe, while glucose binds with sucrose to form erlose. High content of erlose in obtained honey samples by feeding sucrose to honeybees implied erlose can serve as a potential index to identify the adulterated honey (artificially feeding sucrose to bee colonies). Based on the absence of turanose in common syrups and naturally existing in honey, syrup-disguised or adulterated honey can be preliminarily identified. This work provides a new theoretical basis for honey quality control.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| | - Yuzhe Yuan
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Huailei Song
- College of horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Guodong Mu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
2
|
Bayomy HM, Blackmore DPT, Alamri ES, Ozaybi NA, Almasoudi SE, Pearson S, Eyouni L, AlFaris NA, Alshammari GM, Muhammed M, Mohamady Hussein MA. Developing sustainable approach for controlling foodborne pathogens, based on chlorella vulgaris extract/alginate nanoemulsion, and enhanced via the dispersed zinc oxide nanoparticles. Int J Biol Macromol 2025; 305:141241. [PMID: 39986508 DOI: 10.1016/j.ijbiomac.2025.141241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
A promising antibacterial strategy was developed in this study to effectively eradicate foodborne pathogens via the synergism of Chlorella vulgaris extract (CVE) with zinc oxide nanoparticles (ZNPs) combined into a single nanoform. CVE-alginate nanoemulsion with enhanced antimicrobial and antioxidant properties via the dispersed ZNPs, were prepared and characterized using UV-Vis spectra, FE-SEM-EDX, TEM, DLS, FTIR. The CVE methanol extract was analyzed to record total phenolic and total flavonoid contents. Drug release pattern, encapsulation efficiency, antioxidant, antimicrobial, hemolysis and cytotoxicity were demonstrated. According to TEM and SEM imaging, produced NEs appeared spherical in nanoscale with the range of 17-23.6 nm. The results showed that when the active CVE-NE I dispersed with 1 % or 2 % ZNPs, was applied, exhibited more potent antibacterial properties against the tested foodborne pathogens, including S. aureus, E. coli, S. typhimurium, and B. subtilis, compared to CVE-NE I. CVE was released in slow and sustained manner by addition of ZNPs. All NE samples showed no obvious hemolysis or cytotoxicity when applied on fibroblast cells. These encouraging results offer a fresh approach to the efficient removal of foodborne pathogens, which may be used in food industry.
Collapse
Affiliation(s)
- Hala M Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia.
| | | | - Eman S Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Nawal A Ozaybi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Seham E Almasoudi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | | | | | - Nora A AlFaris
- Department of Sport Health, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mohamed A Mohamady Hussein
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Said K, Rauf M, Khan SA, Hussain A, Alhegaili AS, Hussain S, Ali S, Hamayun M. Metabolomics and Anticancer Potential of the Aerial Parts of Dryopteris ramosa against Cancerous Cell Lines Assisted with Advanced Computational Approaches. Curr Pharm Des 2025; 31:797-820. [PMID: 39698882 DOI: 10.2174/0113816128349549241025150229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Dryopteris ramosa is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges. AIM The present study aimed to elucidate the plant's medicinal potential as an anticancer agent. Extracts of Dryopteris ramosa were examined for cytotoxic effects against AGS, A549, and HCT116 cell lines. The project also aimed to evaluate the phytochemical constitutents of the plant. For this purpose, GC-ToF-MS analysis was executed to identify the bioactive compounds in the aerial parts extract of Dryopteris ramosa. As a result, 93 different phytochemicals were identified from the spectral properties of GC-ToF-MS which contain 19 compounds of high peaks having reported anti-inflammatory, Anti-diabetic, Antibacterial, Analgesic, and antioxidant potential. METHODS Three different cell lines have been treated against Ethanol, Methanol, Ethyl acetate, Water, Chloroform, Acetone, and n-hexane extracts from the aerial parts of Dryopteris ramosa. These cell lines were checked and were ranked in lethality based on IC50 value. The extract samples were processed as serial dilution from high concentrations (500 ug/ml). All the three cell lines were treated for 48 hours. RESULTS Extracts showed a significant effect in different cell lines (based on IC50 less than 200 ug/ml). Performing the in vitro anticancer activity against the three different cell lines in Ethyl Acetate, Methanol, n-hexane, Chloroform and Acetone extract of Dryopteris indicated that anticancer activity of the plant is high against AGS and A549 cell line while less prominent in HTC116 cell lines through MTT Assay. In silico drug-likeness and ADMET analysis were studied of the compounds, that exhibit considerable drug likenesses, phytochemical medicinal chemistry, and a promising ADMET score and no toxicity. The candidate compounds were chosen for further elucidation by Molecular Docking and dynamic simulations. Employing the molecular docking approach for virtual screening of the phytochemicals it was found that the compounds Germacrene showed remarkable results towards BCL2 with -7 Kcal/Mol and a-D-(+)-Xylopyranose showed significant docking results towards 5P21 with -7.1 Kcal/Mol. CONCLUSION For multi-scale frames structural aberrations and fluctuations identification of the docked complexes, a molecular dynamics analysis was performed for a 100 ps simulation run by accessing the online tool of MDweb simulations. These molecular docking and simulation analyses also revealed that both the phytochemicals have a stable interaction with the cancer-related proteins BCL2 and 5P21.
Collapse
Affiliation(s)
- Khalil Said
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan
| | - Sumera Afzal Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan
| | - Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sajid Hussain
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Pakistan
| |
Collapse
|
4
|
Park SD, Al Mijan M, Kwon TE, Lim TG, Yoo SH. Characterization and applications of biomacromolecule structurally similar to glycogen as a dispersion aid and skin protection agent. Int J Biol Macromol 2024; 265:130667. [PMID: 38453106 DOI: 10.1016/j.ijbiomac.2024.130667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Glycogen is a naturally occurring or metabolically synthesized biological macromolecule found in a wide range of living organisms, including animals, microorganisms, and even plants. However, naturally sourced glycogen poses challenges for industrial use. This study focused on a biological macromolecule referred to as glycogen-like particles (GLPs), detailing the production methods and biological properties of these particles. In vitro enzymatic production of GLPs was successfully achieved. GLPs synthesized through a simultaneous enzymatic reaction using sucrose had significant changes in their structure and functionality based on the branching enzyme (BE) to amylosucrase (ASase) ratio. As this ratio increased, the GLPs developed higher molecular weights and greater density, solubility, and branching degree while reducing size and turbidity. Structural changes in these enzymes were not observed beyond a critical BE/ASase ratio. Uniformly dispersed curcumin powder was generated in 50 % (w/v) aqueous GLP solution, and the GLPs were non-toxic to human skin keratinocytes at a concentration of 2.5 mg/mL. GLPs with lower branching inhibited tyrosinase activity and melanin synthesis, while those with more long chains displayed effective UV-blocking. By manipulating the BE/ASase ratio, GLPs were shown to display diverse chemical structures and physical characteristics, suggesting their potential application in the food and cosmetics industries.
Collapse
Affiliation(s)
- Sang-Dong Park
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mohammad Al Mijan
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tae-Eun Kwon
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Tae-Gyu Lim
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
5
|
Shi F, Gao YS, Han SM, Huang CS, Hou QS, Wen XW, Wang BS, Zhu ZY, Zou L. Allulose mitigates chronic enteritis by reducing mitochondria dysfunction via regulating cathepsin B production. Int Immunopharmacol 2024; 129:111645. [PMID: 38354512 DOI: 10.1016/j.intimp.2024.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Metabolic changes have been linked to the development of inflammatory bowel disease (IBD), which includes colitis. Allulose, an endogenous bioactive monosaccharide, is vital to the synthesis of numerous compounds and metabolic processes within living organisms. Nevertheless, the precise biochemical mechanism by which allulose inhibits colitis remains unknown. Allulose is an essential and intrinsic protector of the intestinal mucosal barrier, as it maintains the integrity of tight junctions in the intestines, according to the current research. It is also important to know that there is a link between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), chemically-induced colitis in rodents, and lower levels of allulose in the blood. Mice with colitis, either caused by dextran sodium sulphate (DSS) or naturally occurring colitis in IL-10-/- mice, had less damage to their intestinal mucosa after being given allulose. Giving allulose to a colitis model starts a chain of reactions because it stops cathepsin B from ejecting and helps lysosomes stick together. This system effectively stops the activity of myosin light chain kinase (MLCK) when intestinal epithelial damage happens. This stops the breakdown of tight junction integrity and the start of mitochondrial dysfunction. To summarise, the study's findings have presented data that supports the advantageous impact of allulose in reducing the advancement of colitis. Its ability to stop the disruption of the intestinal barrier enables this. Therefore, allulose has potential as a medicinal supplement for treating colitis.
Collapse
Affiliation(s)
- Fang Shi
- Department of Abdominal Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Yong-Sheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Shu-Mei Han
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Cheng-Suo Huang
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Qing-Sheng Hou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xiao-Wen Wen
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Ben-Shi Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Zhen-Yu Zhu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
| |
Collapse
|
6
|
Ponnurangam M, Balaji S. Tune in to the terrific applications of turanose. Eur Food Res Technol 2024; 250:375-387. [DOI: 10.1007/s00217-023-04417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 01/04/2025]
Abstract
AbstractTuranose, a rare sugar with low calorific value and glycemic index, used as an alternative to sucrose and other artificial sweeteners. The occurrence of turanose is in limited quantities, especially found in honey. Thus, it should be produced by either chemical or biological means. Turanose is released as a by-product during synthesis of the linear α-(1,4)-glucan from sucrose by the action of amylosucrase. In recent times, turanose attracted interest in several industries such as agricultural, food, and pharmaceuticals due to its feasible production. Hence, this review outlines about the history of turanose, its physiochemical properties, production along with inhibition and inducing effects. It is high time to tune in the terrific applications of turanose, as it retains the potential for more than a century of discovery, since 1889. These applications include detection of pathogens, facilitation of cellular respiration, regulation of inflammation, authentication of honey, phagodeterrency effects, osmoprotection, stabilization of therapeutical proteins, and edibility enhancement of foods.
Collapse
|
7
|
Ni D, Chen Z, Tian Y, Xu W, Zhang W, Kim BG, Mu W. Comprehensive utilization of sucrose resources via chemical and biotechnological processes: A review. Biotechnol Adv 2022; 60:107990. [PMID: 35640819 DOI: 10.1016/j.biotechadv.2022.107990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Jun SJ, Lee JA, Kim YW, Yoo SH. Site-Directed Mutagenic Engineering of a Bifidobacterium Amylosucrase toward Greater Efficiency of Turanose Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1579-1588. [PMID: 35080876 DOI: 10.1021/acs.jafc.1c06126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this study was to establish one of the most efficient biocatalytic processes for turanose production by applying a robust Bifidobacterium thermophilum (BtAS) mutant developed through site-directed mutagenesis. A gene encoding the amylosucrase of B. thermophilum (BtAS) was cloned and used as a mutagenesis template. Among the BtAS variants generated by the site-directed point mutation, four different single-point mutants (P200R, V202I, Y265F, and Y414F) were selected to create double-point mutants, among which BtASY414F/P200R displayed the greatest turanose productivity without losing the thermostability of native BtAS. The turanose yield of BtASY414F/P200R reached 89.3% at 50 °C after 6 h with 1.0 M sucrose + 1.0 M fructose. BtASY414F/P200R produced significantly more turanose than BtAS-wild type (WT) by 2 times and completed the reaction faster by another 2 times. Thus, turanose productivity (82.0 g/(L h)) by BtASY414F/P200R was highly improved from 28.1 g/(L h) of BtAS-WT with 2.0 M sucrose + 0.75 M fructose.
Collapse
Affiliation(s)
- Su-Jin Jun
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Jung-A Lee
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Young-Wan Kim
- Department of Food Science and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
9
|
Tietel Z, Ananth DA, Sivasudha T, Klipcan L. Metabolomics of Cassia Auriculata Plant Parts (Leaf, Flower, Bud) and Their Antidiabetic Medicinal Potentials. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:294-301. [PMID: 33904794 DOI: 10.1089/omi.2021.0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diabetes is a common chronic disease where therapeutics innovation is much needed. The search for novel antidiabetic molecules can be greatly facilitated by high throughput metabolomic characterization of herbal medicines. Cassia auriculata is a shrub used in Ayurvedic medicine and native to India and Sri Lanka. While C. auriculata has been used as a medicinal herb in diabetes, the molecular evidence for its antidiabetic medicinal potentials and components needs to be established. Moreover, the phytocomposition of the various plant parts is not fully known. We report a comprehensive metabolomic gas chromatography mass spectrometry study of the C. auriculata plant parts, including the leaf, flower, and bud. We identified a total of 102 primary and secondary metabolites in seven chemical groups, including amino acids (AA), carboxylic acids, nucleosides, fatty acids, among others. Interestingly, plant parts differed in their metabolomic signatures. While in the flowers and leaves nine and six AA were identified, respectively, no AA was detected in the buds. Some of the identified compounds have been previously noted for their antidiabetic, hypoglycemic, and hypolipidemic bioactivities. These findings offer a concrete metabolomic basis on the phytocomposition of individual C. auriculata plant parts. These omics data call for future research on the function of the identified compounds, and clinical studies to further evaluate their antidiabetic potentials and mechanisms of action in the clinic. Finally, we note that plant omics research offers an important avenue to inform, verify, and strengthen the evidentiary base and clinical testing of herbs with medicinal potentials.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization M.P. Negev, Israel
| | - Devanesan Arul Ananth
- Department of Food Science, Gilat Research Center, Agricultural Research Organization M.P. Negev, Israel
| | - Thilagar Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Liron Klipcan
- Department of Food Science, Gilat Research Center, Agricultural Research Organization M.P. Negev, Israel
| |
Collapse
|
10
|
Nascimento RDPD, Machado APDF, Galvez J, Cazarin CBB, Maróstica Junior MR. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sci 2020; 258:118129. [PMID: 32717271 DOI: 10.1016/j.lfs.2020.118129] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with increasing incidence in the world, especially in developing countries. Although knowledge of its pathogenesis has progressed over the last years, some details require clarification. Studies have highlighted the role of microbial dysbiosis and immune dysfunction as essential factors that may initiate the typical high-grade inflammatory outcome. In order to better understand the immunopathophysiological aspects of UC, experimental murine models are valuable tools. Some of the most commonly used chemicals to induce colitis are trinitrobenzene sulfonic acid, oxazolone and dextran sodium sulfate. These may also be used to investigate new ways of preventing or treating UC and therefore improving targeting in human studies. The use of functional foods or bioactive compounds from plants may constitute an innovative direction towards the future of alternative medicine. Considering the above, this review focused on updated information regarding the 1. gut microbiota and immunopathogenesis of UC; 2. the most utilized animal models of the disease and their relevance; and 3. experimental application of natural products, not yet tested in clinical trials.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Julio Galvez
- Universidad de Granada (UGR), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Centro de Investigación Biomédica, Departamento de Farmacología, 18071 Andaluzia, Granada, Spain.
| | - Cinthia Baú Betim Cazarin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| | - Mario Roberto Maróstica Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|