1
|
Sun Z, Li L, Zhang L. Apigenin enhancing oxidative resistance and proteostasis to extend lifespan via PTEN-mediated AKT signalling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167670. [PMID: 39826849 DOI: 10.1016/j.bbadis.2025.167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Aging is a complicated process, featuring the progressive deterioration of physiological functions and a heightened susceptibility to diseases including neurodegenerative disorders, cardiovascular diseases, and cancer. Apigenin, a flavonoid existing in various plants, has attracted attention due to its potential role in anti-aging. In this investigation, the potential effect of apigenin on extending lifespan in Saccharomyces cerevisiae (yeast) and Drosophila melanogaster (flies) was explored. The results indicate that apigenin significantly extends both replicative and chronological life duration in yeast, as well as longevity in male and female flies. Apigenin treatment also improves resistance to oxidative stress in both organisms, as manifested by enhanced survival, decreased reactive oxygen species (ROS) levels and upregulation of antioxidant enzymes. Furthermore, apigenin activates crucial elements of the proteostasis network (PN), such as upregulation of proteostasis-related enzymes activity and genes expression. Network analysis revealed that apigenin affects aging conserved in the longevity-regulating pathway. Notably, Pten is a hub target in flies. Apigenin regulated DmPten at both mRNA and protein expression level while modulating downstream targets, including the phosphorylation of AKT and associated signalling pathways. In a high-sucrose diet (HSD) model, Apigenin treatment extended lifespan, reduced hemolymph glucose levels, enhanced Pten expression, suppressed AKT phosphorylation, and modulated the phosphorylation status of S6K and expression of DmFoxo. These results demonstrate that apigenin could serve as a longevity research object and potential therapeutic drug for promoting health and longevity through its antioxidant and proteostatic properties.
Collapse
Affiliation(s)
- Zhengqiong Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Lei Li
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Haridevamuthu B, Ranjan Nayak SPR, Murugan R, Pachaiappan R, Ayub R, Aljawdah HM, Arokiyaraj S, Guru A, Arockiaraj J. Prophylactic effects of apigenin against hyperglycemia-associated amnesia via activation of the Nrf2/ARE pathway in zebrafish. Eur J Pharmacol 2024; 976:176680. [PMID: 38810716 DOI: 10.1016/j.ejphar.2024.176680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to β-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rashid Ayub
- College of Science, King Saud University, P.O. Box 2454, Riyadh, 11451, Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Wang CY, Li XM, Du HX, Yan Y, Chen ZZ, Zhang CX, Yan XB, Hao SY, Gou JY. Change of Flavonoid Content in Wheatgrass in a Historic Collection of Wheat Cultivars. Antioxidants (Basel) 2024; 13:899. [PMID: 39199145 PMCID: PMC11351879 DOI: 10.3390/antiox13080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/01/2024] Open
Abstract
Wheatgrass is recognized for its nutritional and medicinal properties, partly attributed to its flavonoid content. The objective of this study was to assess the flavonoid content and antioxidant properties of wheatgrass obtained from a wide range of 145 wheat cultivars, which included Chinese landraces (CL), modern Chinese cultivars (MCC), and introduced modern cultivars (IMC). The flavonoids were extracted using a solution of 80% methanol, and their content was evaluated using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The results revealed the assessed cultivars showed significant variation in their total flavonoid content (TFC), with MCCs generally having higher amounts compared to CLs. PCA analysis demonstrated clear variations in flavonoid profiles between different cultivar groups, emphasizing the evolutionary inconsistencies in wheat breeding. The antioxidant assays, ABTS, DPPH, and FRAP, exhibited robust abilities for eliminating radicals, which were found to be directly associated with the amounts of flavonoids. In addition, this study investigated the correlation between the content of flavonoids and the ability to resist powdery mildew in a collection of mutated wheat plants. Mutants exhibiting heightened flavonoid accumulation demonstrated a decreased severity of powdery mildew, suggesting that flavonoids play a protective role against fungal infections. The results highlight the potential of wheatgrass as a valuable source of flavonoids that have antioxidant and protective effects. This potential is influenced by the genetic diversity and breeding history of wheatgrass. Gaining insight into these connections can guide future wheat breeding endeavors aimed at improving nutritional value and in strengthening disease resistance. The current finding provides critical information for developing wheatgrass with high flavonoid content and antioxidant activity.
Collapse
Affiliation(s)
- Chu-Yang Wang
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Xiao-Ming Li
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Han-Xiao Du
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Yan Yan
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Zhong-Zhong Chen
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Chen-Xi Zhang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| | - Xin-Bo Yan
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| | - Shui-Yuan Hao
- Department of Agronomy, Hetao College, Bayannur 015000, China
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| |
Collapse
|
4
|
Liu Y, Yuan C, Cui B, Zhao M, Yu B, Guo L, Liu P, Fang Y. Encapsulation of apigenin into β-cyclodextrin metal-organic frameworks with high embedment efficiency and stability. Food Chem 2024; 443:138543. [PMID: 38301553 DOI: 10.1016/j.foodchem.2024.138543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
In an effort to improve the application performance of apigenin, β-cyclodextrin metal-organic frameworks (BCDMOFs) known as porous materials were used to encapsulate apigenin via an innovative pH-adjusted method. The embedment efficiency had a significant positive pH dependence, reaching a maximum of 79.2 % ± 1.2 % at pH12. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrated formation of apigenin/BCDMOFs composites, and exposure of BCDMOFs pores facilitated high embedment efficiency. Storage stability experiment and kinetic analysis showed degradation of apigenin/BCDMOFs composites was less than that of apigenin alone. Apigenin stability was increased by approximately 18 % after 7 days. BCDMOFs effectively encapsulated and controlled the release of apigenin, and the composites exhibited improved application performance in vitro.
Collapse
Affiliation(s)
- Yaqi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
5
|
Kramer DJ, Johnson AA. Apigenin: a natural molecule at the intersection of sleep and aging. Front Nutr 2024; 11:1359176. [PMID: 38476603 PMCID: PMC10929570 DOI: 10.3389/fnut.2024.1359176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
NAD+, a pivotal coenzyme central to metabolism, exhibits a characteristic decline with age. In mice, NAD+ levels can be elevated via treatment with apigenin, a natural flavonoid that inhibits the NAD+-consuming glycoprotein CD38. In animal models, apigenin positively impacts both sleep and longevity. For example, apigenin improves learning and memory in older mice, reduces tumor proliferation in a mouse xenograft model of triple-negative breast cancer, and induces sedative effects in mice and rats. Moreover, apigenin elongates survival in fly models of neurodegenerative disease and apigenin glycosides increase lifespan in worms. Apigenin's therapeutic potential is underscored by human clinical studies using chamomile extract, which contains apigenin as an active ingredient. Collectively, chamomile extract has been reported to alleviate anxiety, improve mood, and relieve pain. Furthermore, dietary apigenin intake positively correlates with sleep quality in a large cohort of adults. Apigenin's electron-rich flavonoid structure gives it strong bonding capacity to diverse molecular structures across receptors and enzymes. The effects of apigenin extend beyond CD38 inhibition, encompassing agonistic and antagonistic modulation of various targets, including GABA and inflammatory pathways. Cumulatively, a large body of evidence positions apigenin as a unique molecule capable of influencing both aging and sleep. Further studies are warranted to better understand apigenin's nuanced mechanisms and clinical potential.
Collapse
|
6
|
Hanumanthappa R, Venugopal DM, P C N, Shaikh A, B.M S, Heggannavar GB, Patil AA, Nanjaiah H, Suresh D, Kariduraganavar MY, Raghu SV, Devaraju KS. Polyvinylpyrrolidone-Capped Copper Oxide Nanoparticles-Anchored Pramipexole Attenuates the Rotenone-Induced Phenotypes in a Drosophila Parkinson's Disease Model. ACS OMEGA 2023; 8:47482-47495. [PMID: 38144104 PMCID: PMC10734007 DOI: 10.1021/acsomega.3c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Parkinson's disease (PD) is a progressive, age-related neurodegenerative disease. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra, pars compacta of the midbrain. Pramipexole (PPX) is a novel drug used for the treatment of PD. It has a high affinity for the dopamine (DA) D2 receptor subfamily and acts as a targeted mitochondrial antioxidant. It is less effective in the treatment of PD due to its short half-life, highly inconvenient dosing schedule, and long-term side effects. In recent years, PPX-loaded nanoformulations have been actively reported to overcome these limitations. In the current study, we focused on increasing the effectiveness of PPX by minimizing the dosing frequency and improving the treatment strategy for PD. Herein, we report the synthesis of biodegradable polyvinylpyrrolidone (PVP)-capped copper oxide nanoparticles (PVP-CuO NPs), followed by PPX anchoring on the surface of the PVP-CuO NPs (PPX-PVP-CuO NC), in a simple and inexpensive method. The newly formulated PPX-PVP-CuO NC complex was analyzed for its chemical and physical properties. The PPX-PVP-CuO NC was tested to protect against rotenone (RT)-induced toxicity in the Drosophila PD model. The in vivo studies using the RT-induced Drosophila PD model showed significant changes in negative geotaxis behavior and the level of DA and acetylcholinesterase. In addition, oxidative stress markers such as glutathione-S-transferase, total glutathione, thiobarbituric acid reactive species, and protein carbonyl content showed significant amelioration. The positive changes of PPX-PVP-CuO NC treatment in behavior, neurotransmitter level, and antioxidant level suggest its potential role in mitigating the PD phenotype. The formulation can be used for treatment or pharmacological intervention against PD.
Collapse
Affiliation(s)
- Ramesha Hanumanthappa
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Deepa Mugudthi Venugopal
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
| | - Nethravathi P C
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | - Ahesanulla Shaikh
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Siddaiah B.M
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | | | - Akshay A. Patil
- Department
of Botany, Karnataka Science College, Dharwad, Karnataka 580001, India
| | - Hemalatha Nanjaiah
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, 685 W. Baltimore St. HSFI-380, Baltimore, Maryland 21201, United States
| | - D. Suresh
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | | | - Shamprasad Varija Raghu
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
- Division
of Neuroscience, Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | | |
Collapse
|
7
|
Noureen S, Hussain T, Noureen A, Altyar AE. Effect of Lactobacillus brevis (MG000874) on antioxidant-related gene expression of the liver and kidney in D-galactose-induced oxidative stress mice model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84099-84109. [PMID: 37355509 DOI: 10.1007/s11356-023-28203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Oxidative stress (OS) is a phenomenon induced by excessive production and accumulation of reactive oxygen species (ROS) in living cells. These increased ROS productions connected, coupled with many neurological and physiological diseases. Several antioxidants were utilized recently to combat OS, and lactic acid bacteria have a potent radical-scavenging activity to minimize OS. The present work was designed to find out the protective effects of Lactobacillus brevis MG000874 (L. brevis MG000874) against oxidative injuries induced by D-galactose (D-gal) in vivo and to explore the gene expression of OS-related gene mice. Sixty male mice were randomly split into six groups. The first four groups were different control groups as no treatment (N), positive (G), probiotic (B), and ascorbic acid (A); the remaining two groups were treatment groups such as probiotic treatment (BG) and ascorbic acid treatment (AG). L. brevis MG000874 (0.2 ml of 1010 CFU/ml) and ascorbic acid (0.2 ml of 25 mg/ml) were administered orally daily for 5 weeks. It was revealed that these significantly affect the weight of treated mice: 40.22 ± 1.5 and 33.0 ± 0.57 g on days 0 and 36, respectively. D-gal induction in mice declined the levels of SOD and CAT determined by spectrophotometer. Administration of L. brevis MG000874 improved the antioxidant status of the stress mice and recovered the antioxidant activities of SOD and CAT enzymes. In addition, L. brevis MG000874-altered gene expression of OS marker at the messenger RNA (mRNA) levels was determined by RT-PCR in the mouse model. L. brevis MG000874 significantly improved the GST, GPX, SOD, CAT, and ß-actin levels in the kidney and the liver of the D-gal-induced mice (p < 0.05). Moreover, the histological investigation indicated that L. brevis MG000874 mitigated damage to the kidney and liver effectively in mice induced by D-gal. Therefore, it could be concluded from the current results that L. brevis MG000874 may act as a powerful antioxidant agent, and this study can provide the baseline data for drug development against OS-linked diseases.
Collapse
Affiliation(s)
- Saleha Noureen
- Department of Biology, Virtual University of Pakistan, Lahore, 54590, Pakistan.
| | - Tanveer Hussain
- Department of Biology, Virtual University of Pakistan, Lahore, 54590, Pakistan
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Lahore, 54590, Pakistan
- Department of Zoology, Government College for Women University, Faisalabad, 38000, Pakistan
| | - Ahmed E Altyar
- Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, 80260, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Gao Y, Li D, Tian Z, Hou L, Gao J, Fan B, Wang F, Li S. Metabolomics analysis of soymilk fermented by Bacillus subtilis BSNK-5 based on UHPLC-Triple-TOF-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Oyebode OT, Olanlokun JO, Salami O, Obi I, Bodede O, Prinsloo G, Olorunsogo OO. Terpene-rich fractions of Ficus mucoso (Welw) modulate lipopolysaccharide-induced inflammatory mediators and aberrant permeability of the inner mitochondrial membrane in murine animal model. Inflammopharmacology 2021; 29:1733-1749. [PMID: 34613566 DOI: 10.1007/s10787-021-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Ficus mucoso is traditionally used to treat bronchial infections. This study compared the efficacy of terpene-rich fractions of F. mucoso root bark on lipopolysaccharide(LPS)-induced inflammation, liver mitochondrial permeability transition (mPT), an index of mitochondrial health, and associated pathological alterations. Terpene-Rich Fractions of Dichloromethane (TRDF) and Ethylacetate Fractions of F. mucoso (TREF) were obtained according to standard procedures. To induce systemic inflammation, a single intraperitoneal injection of 1mgLPS/kgbw was given to mice. Spectrophotometric techniques were used to evaluate the effects of the oral administration of TRDF and TREF (3 days) on levels of pro-inflammatory mediators (TNF-α, IL-1β, IL-6) using ELSA techniques as well as antioxidant indices in normal and LPS-treated mice. The mPT pore opening, mitochondrial ATPase activity and lipid peroxidation were monitored spectrophotometrically. Our results revealed that treatment with LPS caused significant elevation in serum cytokine levels while administration of 50 and 100 mg/kg TRDF and TREF significantly reduced elevated serum levels of cytokines (TNF-α, IL-1β, IL-6) in LPS-challenged mice. In addition, activitities of superoxide dismutase, catalase and liver marker enzymes (ALT and AST) as well as levels of mitochondrial lipid peroxides were significantly reduced in mice treated with TRDF and TREF relative to LPS-fed mice. Furthermore, LPS caused induction of opening of the liver mPT pore which was significantly inhibited by TRDF at 100 and 200 mg/kg bw by 71% and 88%, respectively, but only at 100 mg/kg TREF. Furthermore, mitochondrial ATPase activity was inhibited largely by TRDF. UPLC-ESI-MS analysis revealed the presence of terpenoid derivatives and a few aromatic metabolites in TRDF. The terpene dominance of TRDF metabolites was further justified on the 1H NMR fingerprint. Overall, TRDF is more effective as a cocktail of anti-inflammatory compounds than TREF against LPS-induced acute systemic inflammation.
Collapse
Affiliation(s)
- Olubukola Titilope Oyebode
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olamilekan Salami
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ifeanyi Obi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olusola Bodede
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida, 1710, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida, 1710, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
10
|
Oyebode OT, Abolaji AO, Faleke HO, Olorunsogo OO. Methanol fraction of Ficus mucoso (welw) prevents iron-induced oxidative damage and alters mitochondrial dysfunction in Drosophila melanogaster. Drug Chem Toxicol 2021; 45:2644-2652. [PMID: 34592861 DOI: 10.1080/01480545.2021.1979997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study investigated the antioxidant and cyto-/mito-protective roles of Methanol Fraction of Ficus mucoso (MFFM) in iron-induced oxidative damage in Drosophila melanogaster. At first, 10-day survival rates were carried out separately on FeSO4 and MFFM, respectively, after which ameliorative effects of MFFM were investigated on FeSO4-induced toxicity for 5 days using biochemical and behavioral markers. Additionally, mitochondria were isolated from treated D. melanogaster to assess mitochondrial Permeability Transition (mPT) pore opening. The results showed that FeSO4 significantly reduced survival rate, total thiol level and activities of catalase and glutathione-S-transferase in D. melanogaster. In addition, treatment with FeSO4 caused increased generation of H2O2, NO (nitrite/nitrates) and acetylcholinesterase (AChE) activity compared with control (p < 0.05). Conversely, MFFM restored FeSO4-induced inhibition of glutathione-S-transferase and catalase activities, as well as glutathione and total thiol levels. FeSO4-induced elevation of AChE activity as well as H2O2 and NO (nitrites/nitrates) levels were ameliorated by MFFM with improved climbing activity. Interestingly, MFFM prevented FeSO4-induced mitochondrial Permeability Transition (mPT) pore opening, and elevated mitochondrial ATPase activity and mitochondrial lipid peroxides generation in D. melanogaster. Taken together, our results demonstrated that iron impaired anti-stress defence capacity, altered behavioral functions, increased generation of mitochondrial malondialdehyde and activated opening of the mPT pore in D. melanogaster. Conversely, methanol fraction of F. mucoso protected against iron-induced cyto-/mito-toxic effects. F. mucoso possibly contain bioactive agents which might be useful in the management of disorders associated with oxidative stress induced by iron and or related metals.
Collapse
Affiliation(s)
- Olubukola T Oyebode
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Molecular Drug Metabolism and Toxicology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Hammed O Faleke
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria.,Molecular Drug Metabolism and Toxicology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olufunso O Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
11
|
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 2021; 46:e13950. [PMID: 34569073 DOI: 10.1111/jfbc.13950] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, India
| | - Ashwin Aneja
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Liu C, Jia Y, Qiu Y. Ethyl Acetate Fraction of Abelmoschus manihot (L.) Medic Flowers Exerts Inhibitory Effects Against Oxidative Stress in H 2O 2-Induced HepG2 Cells and D-Galactose-Induced Aging Mice. J Med Food 2021; 24:997-1009. [PMID: 34524027 DOI: 10.1089/jmf.2021.k.0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress has been demonstrated to be associated with numerous aging-related diseases. Ethyl acetate fraction of Abelmoschus manihot (L.) Medic (EA) had been reported to possess strong radical-scavenging activity due to its rich content of flavonoids. This work aimed to determine the protective effects of EA against oxidative injuries in vivo and in vitro, as well as to explore the relevant mechanisms behind these effects. Pretreatment with EA significantly elevated cell viability of H2O2-induced HepG2 cells, reduced the reactive oxygen species level, decreased apoptotic cells, and inhibited activities of caspase 3/9. Meanwhile, EA pretreatment elevated the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while reduced malondialdehyde (MDA) generation and lactate dehydrogenase (LDH) release dose-dependently. In addition, EA modulated key marker genes expression of antioxidation and apoptosis-related signaling pathways at the messenger RNA (mRNA) and protein levels. In the animal studies, EA also significantly enhanced the antioxidant activity and reduced MDA generation in serum, liver, and brain of the D-galactose (D-gal)-induced mice. Furthermore, the histological analysis indicated that EA effectively alleviated liver and brain injury of mice induced by D-gal, dose-dependently. EA as a potential antioxidant agent promoted health and reduced the risk of aging-associated diseases.
Collapse
Affiliation(s)
- Chang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanli Jia
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yan Qiu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
13
|
Zamani F, Samiei F, Mousavi Z, Azari MR, Seydi E, Pourahmad J. Apigenin ameliorates oxidative stress and mitochondrial damage induced by multiwall carbon nanotubes in rat kidney mitochondria. J Biochem Mol Toxicol 2021; 35:1-7. [PMID: 33724625 DOI: 10.1002/jbt.22762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
The toxicity of carbon nanotubes (CNTs) toward the mitochondria of the kidney is not fully recognized and still needs further research. Apigenin (APG) is known as a flavonoid compound and natural antioxidant. The purpose of this study was to assess the ameliorative role of APG against multiwall CNT (MWCNT)-induced kidney toxicity in rats. The animals were administrated with APG (10 mg/kg) for 2 weeks and then were exposed to MWCNTs (5 mg/m3 ) in pure and impure forms (10 and 100 nm) for 5 h/day and 5 days/week. Then, mitochondria were isolated from the kidney tissue and mitochondrial toxicity parameters were measured. Decreases in succinate dehydrogenase activity have been reported in all groups exposed to MWCNTs. Results indicated that MWCNTs in both forms and sizes were able to increase the generation of reactive oxygen species, decline mitochondrial membrane potential, induce mitochondrial swelling, and release cytochrome c in isolated kidney mitochondria. The pretreatment of APG decreased all the abovementioned mitochondrial damage and oxidative stress parameters induced by both pure and impure MWCNTs. Our results showed that MWCNTs have the ability to enter the body, subsequently, cross cellular barriers, and reach the kidney as a sensitive organ, which can result in mitochondrial damage in kidney cells including renal tubular cells. In addition, APG can be an effective nutritional antioxidant regimen against MWCNT-induced kidney damage.
Collapse
Affiliation(s)
- Fatemeh Zamani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Samiei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mansour Rezazadeh Azari
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety, and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Adesanoye OA, Abolaji AO, Faloye TR, Olaoye HO, Adedara AO. Luteolin-Supplemented diets ameliorates Bisphenol A-Induced toxicity in Drosophila melanogaster. Food Chem Toxicol 2020; 142:111478. [PMID: 32504732 DOI: 10.1016/j.fct.2020.111478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is an industrial chemical used in the production of various plastic materials. It is associated with reproductive, immunological and neurological disorders. Luteolin, a flavonoid found in fruits and vegetables, possesses anti-oxidative, anti-inflammatory and free radical scavenging properties. Here, we carried out studies to ascertain if Luteolin would ameliorate BPA-induced toxicity in Drosophila melanogaster. Firstly, flies were treated separately with Luteolin (0, 50, 100, 150 and 300 mg/kg diet) and BPA (0, 0.01, 0.05 and 0.1 mM) for 28 days survival assessments. Consequently, Luteolin (150 and 300 mg/kg diet) and/or BPA (0.05 mM) were exposed to D. melanogaster for 7 days for the evaluation of nitric oxide level, eclosion rate, viability assay, histology of fat body, antioxidant (Glutathione-S-transferase, catalase and total thiol), oxidative stress (hydrogen peroxide) and behavioural (negative geotaxis and acetylcholinesterase) markers. The results showed that BPA induced antioxidant-oxidative stress imbalance and behavioural deficit in flies. Luteolin increased survival rate and augmented antioxidant markers in flies. Importantly, Luteolin ameliorated BPA-induced degeneration in the fat body around the rostral, thorax and abdominal regions, oxidative stress, behavioural deficit, reduction in cell viability and eclosion rate of D. melanogaster (p < 0.05). Overall, this study offered further insights on the antioxidative and chemopreventive properties of Luteolin against BPA-induced toxicity.
Collapse
Affiliation(s)
- Omolola A Adesanoye
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Amos O Abolaji
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Tolulope R Faloye
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Hannah O Olaoye
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adeola O Adedara
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
15
|
Oyebode OT, Giwa OD, Olorunsogo OO. Comparative effects of galactose-induced aging on mitochondrial permeability transition in rat liver and testis. Toxicol Mech Methods 2020; 30:388-396. [DOI: 10.1080/15376516.2020.1755921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Olubukola T. Oyebode
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olawumi D. Giwa
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olufunso O. Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|