1
|
Xu Y, Bassi A. Non-thermal plasma decontamination of microbes: a state of the art. Biotechnol Prog 2025; 41:e3511. [PMID: 39462867 PMCID: PMC12000644 DOI: 10.1002/btpr.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
Microbial decontamination is a critical concern in various sectors, from healthcare to food processing. Traditional decontamination methods, while effective to a degree, present limitations in terms of environmental impact, efficiency, and potential harm to the target material. This review investigates the emerging realm of non-thermal plasma (NTP) as a promising alternative for microbial decontamination, emphasizing its mechanisms, reactor designs and applications. The mechanism decomposed into physical, chemical and biological effects of plasma, are elaborated upon to provide a foundational understanding of the intrinsic principles of plasma decontamination. Except for the generation type of NTP, reactors and other parameters by which NTP achieves microbial decontamination, emphasizing the design considerations and parameters that influence its efficacy. Moreover, the latest applications of NTP in decontaminating air, water, and surfaces, supported by the latest research findings in each domain are explored. Additionally, the perspectives on the future research tendencies of NTP decontamination and disinfection are highlighted with potential avenues for exploration and innovation. Through this comprehensive review, the aim is to underscore the potential of NTP, particularly DBD plasma, as a versatile, efficient, and environmentally friendly method for microbial decontamination.
Collapse
Affiliation(s)
- Yiyi Xu
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| | - Amarjeet Bassi
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| |
Collapse
|
2
|
Zhou B, Zhao H, Yang X, Cheng JH. Versatile dielectric barrier discharge cold plasma for safety and quality control in fruits and vegetables products: Principles, configurations and applications. Food Res Int 2024; 196:115117. [PMID: 39614520 DOI: 10.1016/j.foodres.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
It is well-known that fresh fruits and vegetables and their products are particularly susceptible to microbial contaminations. Seeking safer and more effective methods and technologies to extend the shelf life of these foods and ensure their safety is obviously important. This review comprehensively discusses the applications of versatile dielectric barrier discharge (DBD) cold plasma technology in the safety control and shelf-life extension of fruits and vegetables. The effectiveness of DBD cold plasma in microbial purification, the capacity for pesticide residue degradation, and the influence on the sensory and nutritional attributes of fruits and vegetables products are detailly reported. Additionally, the review discusses the challenges of scaling DBD from experimental setups to industrial applications, including technical hurdles, commercial feasibility, and the need for rigorous safety evaluations and monitoring protocols. This review aims to provide recommendations for the ongoing development of food safety and quality measures in the fresh fruits and vegetables and their processing products.
Collapse
Affiliation(s)
- Bosheng Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; ChemPartner PharmaTech Co., Ltd, Jiangmen 529081, China
| | - Xiao Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
3
|
Zhuang H, Rothrock MJ, Lawrence KC, Gamble GR, Bowker BC. Effects of in-package cold plasma treatment on poultry breast meat packaged in high CO 2 atmosphere. Poult Sci 2024; 103:104085. [PMID: 39067130 PMCID: PMC11331944 DOI: 10.1016/j.psj.2024.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
High CO2 in packages significantly extends microbiological shelf life of poultry meat. Cold plasma is an emerging antimicrobial treatment, which generates various reactive gas species and inactivates microbials effectively. The objective of this study was to explore the potential effects of combining high CO2 package and in-package cold plasma (IPCP) treatments on the quality and safety of raw chicken breast meat. Noninoculated samples and samples inoculated with Campylobacter jejuni and Salmonella Typhimurium were packaged in 0, 30, 70, or 100% CO2 (with make-up gas N2) and treated with IPCP at 70 kV for 3 min. Ozone formation, microbial counts, drip loss, pH, and color were measured. There was no interaction effect between high CO2 package and IPCP on microbial counts, drip loss, and color measurements. IPCP reduced spoilage microbial growth by 0.43 log (from 7.00 log to 6.57 log, P = 0.033) and C. jejuni populations by 0.67 log (from 4.82 log to 4.15 log, P < 0.001) on meat surface but did not affect S. Typhimurium (P = 0.206). Increased CO2 in packages had more effect on spoilage microbial growth (more than 1.5 log from 8.08 log to 6.35 log, P < 0.001) and S. Typhimurium populations (more than 0.5 log from 4.94 log to 4.39 log, P = 0.004) than IPCP but did not affect C. jejuni (P = 0.163). IPCP resulted in increases in changes in L* by 1.67 units (0.70 vs. 2.37, P = 0.016) and a* values by 0.56 units (0.73 vs. 1.29, P < 0.001) and decreases in b* values by 0.91 units (0.46 versus -0.45, P = 0.015). High CO2 levels caused increases in changes in L* values by 4.35 units (-0.82 versus 3.53, P < 0.001) with no effects on a* and b* values (P > 0.05). Data demonstrate that there are no combined effects by high CO2 package and IPCP on meat quality and safety of raw chicken breast meat under our experimental conditions. Either high CO2 package or IPCP can retain microbial quality and safety, even though they may cause changes in appearance of stored chicken breast meat.
Collapse
Affiliation(s)
- Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA.
| | | | - Kurt C Lawrence
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Gary R Gamble
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| |
Collapse
|
4
|
Spanou A, Tzamarias AE, Ladakis D, Koutinas A, Tsironi T. In-package cold atmospheric plasma processing for shelf-life extension of gilthead seabream (Sparus aurata) fillets. J Food Sci 2024; 89:4714-4729. [PMID: 38922946 DOI: 10.1111/1750-3841.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
In-package cold atmospheric plasma (CAP) processing, which refers to the generation of CAP inside a sealed package, enables a local disinfecting reaction, allowing no post-process contamination and extending the shelf-life (SL) of perishable food products, such as fresh fish. In the present study, four in-package CAP treatments, differing in frequency and processing time, were applied on fresh gilthead seabream (Sparus aurata) fillets, prepacked in low-permeability pouches. Fish SL was evaluated during isothermal storage at 2°C, whereas untreated packaged fillets were used as control samples. The SL assessment of the fish fillets was based on microbial enumeration of total aerobic mesophilic count (TMC), total aerobic psychrotrophic count (TPC), Pseudomonas spp., Enterobacteriaceae, and lactic acid bacteria (LAB), pH measurement, determination of color and texture parameters, lipid oxidation, total volatile basic nitrogen (TVB-N) measurement, and sensory evaluation. All CAP treatments were effective against microbial inhibition in fish fillets, especially regarding TMC, TPC, and Pseudomonas spp., resulting in maximum reduction of 1.49, 1.24, and 1.43 log CFU/g, respectively, compared to the control samples after 16 days of storage. However, minor effect was observed against Enterobacteriaceae and no effect against LAB. CAP processing did not affect the color and texture parameters of fish fillets, and TVB-N production was slightly reduced in CAP-treated samples; however, lipid oxidation was accelerated, especially at the more intense processing conditions, by a maximum of 75.5%. The results of the study indicated that in-package CAP processing could be effectively applied for inhibiting spoilage during refrigerated storage and extending SL of fresh fish fillets. PRACTICAL APPLICATION: In-package cold atmospheric plasma (CAP) processing was tested on gilthead seabream fillets, a highly perishable product with high commercial potential if its shelf-life can be extended through minimal processing. The food industry could benefit from in-package CAP technology as it is a cost effective nonthermal processing method while preventing post-processing contamination of the products. Although in-package CAP processing has not been extensively tested on fish, this study examined the quality and shelf-life of a highly perishable fish species, and the results could be further used as a reference for processing optimization of the CAP treatments.
Collapse
Affiliation(s)
- Aikaterini Spanou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
5
|
Zou F, Shinali TS, Yang M, Zhong Y, Wu J, Wang L, Wang H. Incorporation of ascorbic acid in chitosan-based coating combined with plasma-activated water: A technology for quality preservation of red grapes after simulated transportation. Int J Biol Macromol 2024; 270:132366. [PMID: 38759852 DOI: 10.1016/j.ijbiomac.2024.132366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Red grapes possess multiple bioactivities but are highly susceptible to spoilage due to the lack of efficient preservation techniques. Plasma-activated water (PAW) treatment and the incorporation of antioxidants in bio-based coatings are promising methods for preserving produce. In this study, we tested a novel combination by incorporating ascorbic acid (AA) into a chitosan-based edible coating (CH) and combining it with plasma-activated water (PAW) treatment (CA-PAW) before simulating transport vibrations to extend the shelf-life of red grapes. The results from storage at 4 °C for 20 d indicated that the CA-PAW treatment reduced microbial counts by 2.62 log10 CFU/g for bacteria, 1.72 log10 CFU/g for yeasts and molds, and 1.1 log10 CFU/g for coliforms, in comparison to the control group treated with sterile deionized water. Total phenols and total flavonoid content were the highest observed, at 111.2 mg GAE/100 g and 262.67 mg RE/100 g, respectively. This treatment also inhibited water migration and erosion, and reduced damage to cell structure. Microstructural observations revealed that the CH coating on the surface of red grapes diminished the degradation of bioactive components. In conclusion, the CA-PAW treatment effectively inhibited the adverse physiological changes caused by vibration and mechanical damage to red grapes, maintained their nutritional and sensory qualities, and extended the shelf life by at least 8 d.
Collapse
Affiliation(s)
- Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Tharushi S Shinali
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanliang Zhong
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Junhua Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongying Wang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Little A, Mendonca A, Dickson J, Fortes-Da-Silva P, Boylston T, Lewis B, Coleman S, Thomas-Popo E. Acid Adaptation Enhances Tolerance of Escherichia coli O157:H7 to High Voltage Atmospheric Cold Plasma in Raw Pineapple Juice. Microorganisms 2024; 12:1131. [PMID: 38930513 PMCID: PMC11205674 DOI: 10.3390/microorganisms12061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogens that adapt to environmental stress can develop an increased tolerance to some physical or chemical antimicrobial treatments. The main objective of this study was to determine if acid adaptation increased the tolerance of Escherichia coli O157:H7 to high voltage atmospheric cold plasma (HVACP) in raw pineapple juice. Samples (10 mL) of juice were inoculated with non-acid-adapted (NAA) or acid-adapted (AA) E. coli to obtain a viable count of ~7.00 log10 CFU/mL. The samples were exposed to HVACP (70 kV) for 1-7 min, with inoculated non-HVACP-treated juice serving as a control. Juice samples were analyzed for survivors at 0.1 h and after 24 h of refrigeration (4 °C). Samples analyzed after 24 h exhibited significant decreases in viable NAA cells with sub-lethal injury detected in both NAA and AA survivors (p < 0.05). No NAA survivor in juice exposed to HVACP for 5 or 7 min was detected after 24 h. However, the number of AA survivors was 3.33 and 3.09 log10 CFU/mL in juice treated for 5 and 7 min, respectively (p < 0.05). These results indicate that acid adaptation increases the tolerance of E. coli to HVACP in pineapple juice. The potentially higher tolerance of AA E. coli O157:H7 to HVACP should be considered in developing safe juice processing parameters for this novel non-thermal technology.
Collapse
Affiliation(s)
- Allison Little
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| | - James Dickson
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Paulo Fortes-Da-Silva
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Terri Boylston
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Braden Lewis
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shannon Coleman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Emalie Thomas-Popo
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
7
|
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024; 13:1554. [PMID: 38790854 PMCID: PMC11120273 DOI: 10.3390/foods13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.
Collapse
Affiliation(s)
- Yuping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Kexin Yi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
8
|
Espinales C, Baldeón M, Bravo C, Toledo H, Carballo J, Romero-Peña M, Cáceres PJ. Strategies for Healthier Meat Foods: An Overview. Prev Nutr Food Sci 2024; 29:18-30. [PMID: 38576885 PMCID: PMC10987382 DOI: 10.3746/pnf.2024.29.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024] Open
Abstract
Functional food products remain the focus of current market trends toward healthier nutrition. The consumption of meat-based functional foods has been a topic of interest in food innovation since some of these products generate controversy due to their possible adverse effects on health. However, studies have demonstrated that meat-based functional products are considered an opportunity to improve the nutritional profile of meat products through the addition of biologically valuable components and to meet the specific needs of consumers. In this sense, some strategies and techniques are applied for processing and developing functional meat products, such as modifying carcass composition through feeding, reformulating meat products, and processing conditions. This review focuses on presenting developed and evaluated strategies that allow the production of healthy and functional meat foods, which application has successfully achieved the sensory, nutritional, and technological parameters mainly affected by such application.
Collapse
Affiliation(s)
- Cindy Espinales
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - María Baldeón
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Cinthya Bravo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Howard Toledo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - José Carballo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid 28040, Spain
| | - María Romero-Peña
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
- Saskatchewan Food Industry Development Centre (SFIDC), Saskatoon S7M 5V1, Canada
| | - Patricio J. Cáceres
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| |
Collapse
|
9
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
10
|
Usman I, Afzaal M, Imran A, Saeed F, Afzal A, Ashfaq I, Shah YA, Islam F, Azam I, Tariq I, Ateeq H, Asghar A, Farooq R, Rasheed A, Asif Shah M. Recent updates and perspectives of plasma in food processing: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2171052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ifrah Usman
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Atka Afzal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Ashfaq
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Azam
- Department of Food Sciences, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ifra Tariq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aasma Asghar
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rimsha Farooq
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Amara Rasheed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohd Asif Shah
- Department of Economics, College of Business and Economics, Kebri Dehar, University, Kebri Dehar, Ethiopia
- Adjunct Faculty, University Centre for Research & Development, Chandigarh University, Mohali, India
| |
Collapse
|
11
|
Xu H, Zhu Y, Yu B, Du M, Feng J, Zhuang J, Ma R, Jiao Z. Comparative analysis of helium and air surface micro-discharge plasma treatment on the microbial reduction and quality attributes of beef slices. Meat Sci 2023; 204:109259. [PMID: 37352783 DOI: 10.1016/j.meatsci.2023.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
This work aimed to compare the effects of helium and air surface micro-discharge (SMD) plasma on the microbial safety and quality of beef tissues. For the beef tissue model, the concentration and diffusion depth of hydroxyl radical and ozone have different change patterns over plasma treatment time and distance in helium and air SMD plasma. The inactivation efficiency of helium plasma depended on the plasma treatment time and distance, while the inactivation efficiency of air plasma only depended on the treatment time. For the fresh beef slices, air SMD plasma treatment exhibited a higher antimicrobial activity against S. aureus and E. coli than helium SMD plasma treatment (1.5 versus 0.9; 0.9 versus 0.28 log CFU/g at 10 min). However, air SMD plasma treatment caused more adverse effects on beef quality, leading to a smooth surface, extensive lipid oxidation, protein structure damage, low pH and discoloration compared to helium SMD plasma treatment. This work provides valuable guidelines for the working gas choice in the practical application of plasma to meat decontamination.
Collapse
Affiliation(s)
- Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, People's Republic of China; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Yupan Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Bo Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Mengru Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, People's Republic of China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Junxia Feng
- Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou 510800, People's Republic of China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, People's Republic of China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, People's Republic of China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
12
|
Sahraeian S, Rashidinejad A, Niakousari M. Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. Int J Biol Macromol 2023; 249:126098. [PMID: 37543265 DOI: 10.1016/j.ijbiomac.2023.126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Hydrocolloids are important ingredients in food formulations and their modification can lead to novel ingredients with unique functionalities beyond their nutritional value. Cold plasma is a promising technology for the modification of food biopolymers due to its non-toxic and eco-friendly nature. This review discusses the recent published studies on the effects of cold plasma treatment on non-starch hydrocolloids and their derivatives. It covers the common phenomena that occur during plasma treatment, including ionization, etching effect, surface modification, and ashing effect, and how they contribute to various changes in food biopolymers. The effects of plasma treatment on important properties such as color, crystallinity, chemical structure, rheological behavior, and thermal properties of non-starch hydrocolloids and their derivatives are also discussed. In addition, this review highlights the potential of cold plasma treatment to enhance the functionality of food biopolymers and improve the quality of food products. The mechanisms underlying the effects of plasma treatment on food biopolymers, which can be useful for future research in this area, are also discussed. Overall, this review paper presents a comprehensive overview of the current knowledge in the field of cold plasma treatment of non-starch hydrocolloids and their derivatives and highlights the areas that require further investigation.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Bak KH, Paulsen P. Changes in Flavor and Volatile Composition of Meat and Meat Products Observed after Exposure to Atmospheric Pressure Cold Plasma (ACP). Foods 2023; 12:3295. [PMID: 37685227 PMCID: PMC10486556 DOI: 10.3390/foods12173295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Studies on the atmospheric pressure cold plasma (ACP) exposure of meat and meat products mainly determine microbial inactivation, lipid oxidation, and meat color. Some studies include sensory evaluation, but only a few determine the changes in volatile composition due to ACP treatment. The results of sensory evaluation are inconclusive and range from "improvement" to "off-odor". This could be due to differences in the food matrix, especially in processed foods, or different experimental settings, including inadvertent effects such as sample heating. The few studies analyzing volatile composition report changes in alcohols, esters, aldehydes, and other compounds, but not necessarily changes that are novel for meat and meat products. Most studies do not actually measure the formation of reactive species, although this is needed to determine the exact reactions taking place in the meat during ACP treatment. This is a prerequisite for an adjustment of the plasma conditions to achieve antimicrobial effects without compromising sensory quality. Likewise, such knowledge is necessary to clarify if ACP-exposed meat and products thereof require regulatory approval.
Collapse
Affiliation(s)
- Kathrine H. Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | | |
Collapse
|
14
|
Kim HT, Jung CM, Kim SH, Lee SY. Review of Plasma Processing for Polymers and Bio-Materials Using a Commercial Frequency (50/60 Hz)-Generated Discharge. Polymers (Basel) 2023; 15:2850. [PMID: 37447496 DOI: 10.3390/polym15132850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
This manuscript introduces the properties and diverse applications of plasma generated using commercial frequencies of 50/60 Hz. Commercial frequency (CF) derived plasma exhibits characteristics similar to DC discharge but with an electrical polarity and a non-continuous discharge. Due to the low-frequency nature, the reactor configurations usually are capacitively coupled plasma type. The advantages of this method include its simple power structure, low-reaction temperature, and low substrate damage. The electrical polarity can prevent charge buildup on the substrates and deposited films, thereby reducing substrate damage. The simple, low-cost, and easy-to-operate power structure makes it suitable for laboratory-scale usage. Additionally, the various applications, including plasma-enhanced vapor deposition, sputtering, dielectric barrier discharge, and surface modification, and their outcomes in the CF-derived plasma processes are summarized. The conclusion drawn is that the CF-derived plasma process is useful for laboratory-scale utilization due to its simplicity, and the results of the plasma process are also outstanding.
Collapse
Affiliation(s)
- Hong Tak Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Cheol Min Jung
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Hyun Kim
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Youp Lee
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Yadav B, Roopesh MS. In-Package Atmospheric Cold Plasma Treatment and Storage Effects on Membrane Integrity, Oxidative Stress, and Esterase Activity of Listeria monocytogenes. Microorganisms 2023; 11:microorganisms11030682. [PMID: 36985254 PMCID: PMC10057520 DOI: 10.3390/microorganisms11030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Atmospheric cold plasma (ACP) treatment can reduce bacterial pathogens in foods. Additional reduction in bacterial cells during storage after ACP treatment was previously reported. The underlying mechanisms of bacterial inactivation during ACP treatment and post-treatment storage need to be understood. This study investigated the changes in the morpho-physiological status of Listeria monocytogenes on ham surfaces after post-ACP-treatment storage of 1 h, 24 h, and 7 days at 4 °C. The membrane integrity, intracellular oxidative stress, and esterase activity of L. monocytogenes were evaluated by flow cytometry. L. monocytogenes cells were under high oxidative stress conditions with slightly permeabilized membranes after 1 h of post-ACP-treatment storage according to the flow cytometry data. During the extended storage of 24 h, the percentage of cells with a slightly permeabilized membrane increased; subsequently, the percentage of cells with intact membranes decreased. The percentage of L. monocytogenes cells with intact membranes decreased to <5% with a treatment time of 10 min and after 7 days of post-treatment storage. In addition, the percentage of L. monocytogenes cells under oxidation stress decreased to <1%, whereas the percentage of cells with completely permeabilized membranes increased to more than 90% for samples treated with ACP for 10 min and 7 days of post-treatment storage. With increased ACP treatment time, for 1 h stored samples, the percentage of cells with active esterase and slightly permeabilized membranes increased. However, during the extended post-treatment storage of 7 days, the percentage of cells with active esterase and slightly permeabilized membranes decreased to below 1%. At the same time, the percentage of cells with permeabilized membrane increased to more than 92% with an increase in ACP treatment time of 10 min. In conclusion, the higher inactivation after 24 h and 7 days post-ACP-treatment storage compared to 1 h stored samples correlated with the loss of esterase activity and membrane integrity of L. monocytogenes cells.
Collapse
Affiliation(s)
- Barun Yadav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
16
|
EFFECTS OF COLD PLASMA ON CHLOROPHYLLS, CAROTENOIDS, ANTHOCYANINS, AND BETALAINS. Food Res Int 2023; 167:112593. [PMID: 37087222 DOI: 10.1016/j.foodres.2023.112593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Plasma is considered by several researchers to be the fourth state of matter. Cold plasma has been highlighted as an alternative to thermal treatments because heat induces less degradation of thermolabile bioactive compounds, such as natural pigments. In this review, we provide a compilation of the current information about the effects of cold plasma on natural pigments, such as the changes caused by plasma to the molecules of chlorophylls, carotenoids, anthocyanins, and betalains. As a result of the literature review, it is noted that can degrade cell membrane and promote damage to pigment storage sites; thereby releasing pigments and increasing their content in the extracellular space. However, the reactive species contained in the cold plasma can cause degradation of the pigments. Cold plasma is a promising technology for extracting pigments; however, case-by-case optimization of the extraction process is required.
Collapse
|
17
|
Subrahmanyam K, Gul K, Sehrawat R, Allai FM. Impact of in-package cold plasma treatment on the physicochemical properties and shelf life of button mushrooms (Agaricus bisporus). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Han I, Mumtaz S, Choi EH. Nonthermal Biocompatible Plasma Inactivation of Coronavirus SARS-CoV-2: Prospects for Future Antiviral Applications. Viruses 2022; 14:2685. [PMID: 36560689 PMCID: PMC9785490 DOI: 10.3390/v14122685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in an ecologically friendly way as well as activate animal and plant viruses in a number of matrices. The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection techniques provide an interesting solution to many of the problems since they are simply deployable and do not require the resource-constrained consumables and reagents required for traditional decontamination treatments. Scientists are developing NBP technology solutions to assist the medical community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most promising strategy for battling COVID-19 and other viruses in the future.
Collapse
Affiliation(s)
- Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
19
|
Paulsen P, Csadek I, Bauer A, Bak KH, Weidinger P, Schwaiger K, Nowotny N, Walsh J, Martines E, Smulders FJM. Treatment of Fresh Meat, Fish and Products Thereof with Cold Atmospheric Plasma to Inactivate Microbial Pathogens and Extend Shelf Life. Foods 2022; 11:3865. [PMID: 36496672 PMCID: PMC9740106 DOI: 10.3390/foods11233865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Assuring the safety of muscle foods and seafood is based on prerequisites and specific measures targeted against defined hazards. This concept is augmented by 'interventions', which are chemical or physical treatments, not genuinely part of the production process, but rather implemented in the framework of a safety assurance system. The present paper focuses on 'Cold Atmospheric pressure Plasma' (CAP) as an emerging non-thermal intervention for microbial decontamination. Over the past decade, a vast number of studies have explored the antimicrobial potential of different CAP systems against a plethora of different foodborne microorganisms. This contribution aims at providing a comprehensive reference and appraisal of the latest literature in the area, with a specific focus on the use of CAP for the treatment of fresh meat, fish and associated products to inactivate microbial pathogens and extend shelf life. Aspects such as changes to organoleptic and nutritional value alongside other matrix effects are considered, so as to provide the reader with a clear insight into the advantages and disadvantages of CAP-based decontamination strategies.
Collapse
Affiliation(s)
- Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Isabella Csadek
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | | | - Kathrine H. Bak
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - James Walsh
- Centre for Plasma Microbiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Emilio Martines
- Department of Physics “G. Occhialini”, University of Milano—Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Frans J. M. Smulders
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
20
|
Gabrić D, Kurek M, Ščetar M, Brnčić M, Galić K. Effect of Non-Thermal Food Processing Techniques on Selected Packaging Materials. Polymers (Basel) 2022; 14:polym14235069. [PMID: 36501462 PMCID: PMC9741052 DOI: 10.3390/polym14235069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
In the last decade both scientific and industrial community focuses on food with the highest nutritional and organoleptic quality, together with appropriate safety. Accordingly, strong efforts have been made in finding appropriate emerging technologies for food processing and packaging. Parallel to this, an enormous effort is also made to decrease the negative impact of synthetic polymers not only on food products (migration issues) but on the entire environment (pollution). The science of packaging is also subjected to changes, resulting in development of novel biomaterials, biodegradable or not, with active, smart, edible and intelligent properties. Combining non-thermal processing with new materials opens completely new interdisciplinary area of interest for both food and material scientists. The aim of this review article is to give an insight in the latest research data about synergies between non-thermal processing technologies and selected packaging materials/concepts.
Collapse
|
21
|
Jiang H, Lin Q, Shi W, Yu X, Wang S. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Front Nutr 2022; 9:1015980. [PMID: 36466425 PMCID: PMC9709125 DOI: 10.3389/fnut.2022.1015980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Cold plasma (CP) can be defined as partially or wholly ionized gas carrying myriads of highly reactive products, such as electrons, negative ions, positive ions, free radicals, excited or non-excited atoms, and photons at ambient temperature. It is generated at 30-60°C under atmospheric or reduced pressure (vacuum). In contrast to thermal plasma, it requires less power, exhibits electron temperatures much higher than the corresponding gas (macroscopic temperature), and does not present a local thermodynamic equilibrium. Dielectric barrier discharges (DBD) are one of the most convenient and efficient methods to produce CP. SCOPE AND APPROACH Cold plasma technology has the potential to replace traditional agri-food processing purification methods because of its low energy requirements and flexible system design. CP technology works by reducing bacteria levels and removing pests and mycotoxins from your produce at harvest. It can also catalyze physiological and biochemical reactions and modify materials. It can meet microbial food safety standards, improve the physical, nutritional, and sensory characteristics of the products, preserve unstable bioactive compounds, and modulate enzyme activities. This manuscript also discusses the quality characteristics of food components before/after CP treatment. KEY FINDINGS AND CONCLUSION In the past decade, CP treatments of food products have experienced increased popularity due to their potential contributions to non-thermal food processing. There is no doubt that CP treatment is a flexible approach with demonstrated efficacy for controlling many risks across food and agricultural sustainability sectors. In addition, CP technologies also can be applied in food-related areas, including modification of chemical structures and desensitization treatments. There is a need to fully assess the benefits and risks of stand-alone CP unit processes or their integration as a processing chain as soon as the economic, ecological, and consumer benefits and acceptability are considered.
Collapse
Affiliation(s)
- Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Wenqing Shi
- Shanxi Rural Science and Technology Development Centre, Xi’an, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
22
|
Moula Ali AM, Sant'Ana AS, Bavisetty SCB. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
24
|
Hozák P, Jirešová J, Khun J, Scholtz V, Julák J. Shelf life prolongation of fresh strawberries by nonthermal plasma treatment. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. Hozák
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - J. Jirešová
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - J. Khun
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - V. Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - J. Julák
- Institute of Immunology and Microbiology First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czech Republic
| |
Collapse
|
25
|
Wang J, Fu T, Wang Y, Zhang J. Effects of High-Voltage Atmospheric Cold Plasma Treatment on Microbiological and Quality Characters of Tilapia Fillets. Foods 2022; 11:2398. [PMID: 36010396 PMCID: PMC9407128 DOI: 10.3390/foods11162398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cold plasma (CP) has become an alternative to conventional thermal processing of food products. In this study, the effect of cold plasma treatment time on the inactivation and quality of tilapia fillets was investigated. The surfaces of tilapia fillets were inoculated with Salmonella enteritis (S. enteritis), Listeria monocytogenes (L. monocytogenes), and a mixture of both before being treated with cold plasma at 70 kV for 0, 60, 120, 180, 240, and 300 s. With the extension of treatment time, the number of colonies on the surface of the fillets decreased gradually; after 300 s of cold plasma treatment, S. enteritis and L. monocytogenes populations were reduced by 2.34 log CFU/g and 1.69 log CFU/g, respectively, and the a* value and immobile water content decreased significantly (p < 0.05), while the free water content increased significantly (p < 0.05). TBARS value increased significantly (p < 0.05) to 1.83 mg MDA/kg for 300 s treatment. The carbonyl value and sulfhydryl value of sarcoplasmic protein significantly (p < 0.05) increased and decreased, respectively, as treatment time extension, while no significant changes were found in myofibrillar protein. No significant differences were observed in pH, b* value, elasticity, chewiness, thiol value, and TVB-N value. The results showed that cold plasma had an inactivation effect on tilapia fillets and could preserve their original safety indicators. It was concluded that CP treatment could be used as an effective non-thermal method to maintain the quality of tilapia fillets and extend their shelf-life.
Collapse
Affiliation(s)
- Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tengfei Fu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Emerging Trends for Nonthermal Decontamination of Raw and Processed Meat: Ozonation, High-Hydrostatic Pressure and Cold Plasma. Foods 2022; 11:foods11152173. [PMID: 35892759 PMCID: PMC9330470 DOI: 10.3390/foods11152173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Meat may contain natural, spoilage, and pathogenic microorganisms based on the origin and characteristics of its dietary matrix. Several decontamination substances are used during or after meat processing, which include chlorine, organic acids, inorganic phosphates, benzoates, propionates, bacteriocins, or oxidizers. Unfortunately, traditional decontamination methods are often problematic because of their adverse impact on the quality of the raw carcass or processed meat. The extended shelf-life of foods is a response to the pandemic trend, whereby consumers are more likely to choose durable products that can be stored for a longer period between visits to food stores. This includes changing purchasing habits from “just in time” products “for now” to “just in case” products, a trend that will not fade away with the end of the pandemic. To address these concerns, novel carcass-decontamination technologies, such as ozone, high-pressure processing and cold atmospheric plasma, together with active and clean label ingredients, have been investigated for their potential applications in the meat industry. Processing parameters, such as exposure time and processing intensity have been evaluated for each type of matrix to achieve the maximum reduction of spoilage microorganism counts without affecting the physicochemical, organoleptic, and functional characteristics of the meat products. Furthermore, combined impact (hurdle concept) was evaluated to enhance the understanding of decontamination efficiency without undesirable changes in the meat products. Most of these technologies are beneficial as they are cost-effective, chemical-free, eco-friendly, easy to use, and can treat foods in sealed packages, preventing the product from post-process contamination. Interestingly, their synergistic combination with other hurdle approaches can help to substitute the use of chemical food preservatives, which is an aspect that is currently quite desirable in the majority of consumers. Nonetheless, some of these techniques are difficult to store, requiring a large capital investment for their installation, while a lack of certification for industrial utilization is also problematic. In addition, most of them suffer from a lack of sufficient data regarding their mode of action for inactivating microorganisms and extending shelf-life stability, necessitating a need for further research in this area.
Collapse
|
27
|
de Melo TF, Rocha LC, Silva RP, Pessoa RS, Negreiros AMP, Sales Júnior R, Tavares MB, Alves Junior C. Plasma–Saline Water Interaction: A Systematic Review. MATERIALS 2022; 15:ma15144854. [PMID: 35888319 PMCID: PMC9324451 DOI: 10.3390/ma15144854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Plasma–liquid interaction research has developed substantially in recent years due, mostly, to the numerous applications of cold atmospheric plasma (CAP). Plasma–liquid interactions are influenced by the concentrations of the ionic species present in the liquid environment, and few studies have paid attention to saline water, which generally mediates the reactions in many plasma applications. Therefore, the present review aims to explore the main results and the influence of variables on the modification of properties of saline water by CAP sources following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The searches were carried out in the Scopus, Science Direct, and Web of Science databases, resulting in the inclusion of 37 studies. The main effects of the interaction between CAP and saline water are (i) the production of reactive oxygen and nitrogen species (RONS); (ii) the increase in conductivity and decrease in pH, directly proportional to the increase in discharge voltage; (iii) and the effective area of interaction and the shortest distance between electrode and solution. Other effects are the localized evaporation and crystallization of salts, which make the interaction between plasma and saline water a promising field in the development of technologies for desalination and improvement of liquid properties.
Collapse
Affiliation(s)
- Tatiane Fonseca de Melo
- Laboratorio de Plasma Aplicação na Agricultura, Departamento de Ciências Exatas e Naturais, Saúde e Meio Ambiente—Labplasma, Universidade Federal Rural do Semiárido, Mossoró 59625-900, Brazil; (L.C.R.); (R.P.S.); (C.A.J.)
- Correspondence:
| | - Lucas Cabral Rocha
- Laboratorio de Plasma Aplicação na Agricultura, Departamento de Ciências Exatas e Naturais, Saúde e Meio Ambiente—Labplasma, Universidade Federal Rural do Semiárido, Mossoró 59625-900, Brazil; (L.C.R.); (R.P.S.); (C.A.J.)
| | - Rútilo Pereira Silva
- Laboratorio de Plasma Aplicação na Agricultura, Departamento de Ciências Exatas e Naturais, Saúde e Meio Ambiente—Labplasma, Universidade Federal Rural do Semiárido, Mossoró 59625-900, Brazil; (L.C.R.); (R.P.S.); (C.A.J.)
| | - Rodrigo Sávio Pessoa
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, Brazil;
| | - Andreia Mitsa Paiva Negreiros
- Departamento de Ciências Agronômicas e Florestais, Universidade Federal Rural do Semi-Árido, Mossoro 59625-900, Brazil; (A.M.P.N.); (R.S.J.); (M.B.T.)
| | - Rui Sales Júnior
- Departamento de Ciências Agronômicas e Florestais, Universidade Federal Rural do Semi-Árido, Mossoro 59625-900, Brazil; (A.M.P.N.); (R.S.J.); (M.B.T.)
| | - Moisés Bento Tavares
- Departamento de Ciências Agronômicas e Florestais, Universidade Federal Rural do Semi-Árido, Mossoro 59625-900, Brazil; (A.M.P.N.); (R.S.J.); (M.B.T.)
| | - Clodomiro Alves Junior
- Laboratorio de Plasma Aplicação na Agricultura, Departamento de Ciências Exatas e Naturais, Saúde e Meio Ambiente—Labplasma, Universidade Federal Rural do Semiárido, Mossoró 59625-900, Brazil; (L.C.R.); (R.P.S.); (C.A.J.)
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
28
|
Janík R, Kohutiar M, Dubec A, Eckert M, Moricová K, Pajtášová M, Ondrušová D, Krbata M. DMA Analysis of Plasma Modified PVC Films and the Nature of Initiated Surface Changes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4658. [PMID: 35806782 PMCID: PMC9267775 DOI: 10.3390/ma15134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022]
Abstract
The application of DCSBD (Diffuse Coplanar Surface Barrier Discharge) plasma is referred to as the surface modification/activation of materials. The exposure of material surfaces to DCSBD plasma is initiated by changes in their chemical composition, surface wettability and roughness. The given study presents the mentioned plasma application in the context of the modification of the material viscoelastic properties, namely the PVC polymer film. The measurement of viscoelastic properties changes of PVC was primarily examined by a sensitive thermal method of dynamic-mechanical analysis. This analysis allows identifying changes in the glass transition temperature of PVC, before and after DCSBD plasma application, Tangens Delta, supported by glass transition temperatures of Elastic and Loss modulus. The results of the present study prove that DCSBD plasma applied on both sides to PVC surfaces causes changes in its viscoelastic properties. In addition, these changes are presented depending on the variability of the material position, with respect to the winding of the electrodes in the ceramic dielectric generating the DCSBD plasma during modification. The variability of the PVC position holds an important role, as it determines the proportion of filamentous and diffuse components of the plasma that will interact with the material surface during modification. The application of DCSBD plasma must, therefore, be considered a complex modification of the material, and as a result, non-surface changes must also be considered.
Collapse
Affiliation(s)
- Róbert Janík
- Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, Ivana Krasku 491/30, 020 01 Púchov, Slovakia; (A.D.); (K.M.); (M.P.); (D.O.)
| | - Marcel Kohutiar
- Faculty of Special Technology, Alexander Dubcek University of Trenčín, Ku Kyselke 469, 911 06 Trenčín, Slovakia; (M.K.); (M.E.); (M.K.)
| | - Andrej Dubec
- Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, Ivana Krasku 491/30, 020 01 Púchov, Slovakia; (A.D.); (K.M.); (M.P.); (D.O.)
| | - Maroš Eckert
- Faculty of Special Technology, Alexander Dubcek University of Trenčín, Ku Kyselke 469, 911 06 Trenčín, Slovakia; (M.K.); (M.E.); (M.K.)
| | - Katarína Moricová
- Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, Ivana Krasku 491/30, 020 01 Púchov, Slovakia; (A.D.); (K.M.); (M.P.); (D.O.)
| | - Mariana Pajtášová
- Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, Ivana Krasku 491/30, 020 01 Púchov, Slovakia; (A.D.); (K.M.); (M.P.); (D.O.)
| | - Darina Ondrušová
- Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, Ivana Krasku 491/30, 020 01 Púchov, Slovakia; (A.D.); (K.M.); (M.P.); (D.O.)
| | - Michal Krbata
- Faculty of Special Technology, Alexander Dubcek University of Trenčín, Ku Kyselke 469, 911 06 Trenčín, Slovakia; (M.K.); (M.E.); (M.K.)
| |
Collapse
|
29
|
Wang Q, Pal RK, Yen HW, Naik SP, Orzeszko MK, Mazzeo A, Salvi D. Cold plasma from flexible and conformable paper-based electrodes for fresh produce sanitation: Evaluation of microbial inactivation and quality changes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Alleviating Heavy Metal Toxicity in Milk and Water through a Synergistic Approach of Absorption Technique and High Voltage Atmospheric Cold Plasma and Probable Rheological Changes. Biomolecules 2022; 12:biom12070913. [PMID: 35883469 PMCID: PMC9312926 DOI: 10.3390/biom12070913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we combined atmospheric pressure cold plasma, a novel treatment technology, with an absorption technique with soybean husk to remove Pb and Cd from milk. Different combinations of treatment duration, voltage, and post treatment retention time were used to determine the effectiveness of cold plasma. Soybean husk was used for metal extraction, and it was observed that when the milk samples were plasma treated with a discharge voltage of 50 kV for 2 min and held for 24 h, the highest mean elimination of about 27.37% for Pb and 14.89% for Cd was obtained. Reactive oxygen and nitrogen species produced from plasma treatment were identified using Optical Emission Spectra analysis. A high voltage of 50 kV plasma for a 2 min duration could produce 500 ± 100 ppm of ozone concentration inside the treated package. The value of ΔE, which indicates overall color difference measurement, was significantly (p < 0.05) higher in all the treated samples than control samples. However, in the frequency range from 0.01 to 100 Hz, there was not much difference between the control and treated sample in the frequency sweep test. The identified functional groups at different wavenumbers (cm−1) in the treated samples were found to be similar compared to the control samples.
Collapse
|
31
|
Recent Advances in Cold Plasma Technology for Food Processing. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Croteau A, White A, Cornell KA, Browning J. Cold Atmospheric Pressure Plasma Device Exhibits Etching Effects on Bacterial Biofilms. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:619-625. [PMID: 36338575 PMCID: PMC9629775 DOI: 10.1109/trpms.2021.3133183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cold atmospheric pressure plasma (CAP) treatment has been shown to kill bacteria and remove bacterial biofilms from surfaces. Here we report the etch capacity of a linear discharge CAP device on Pseudomonas fluorescens biofilms. A 21 kHz, 1.4 kV RMS AC voltage applied to the CAP electrodes generated a hydrated Ar plasma between the plates, with the gas flow directing the plasma species toward the biological sample, causing both bacterial killing and etching of the biofilm. Typical discharge currents for a 2.4 cm long, 0.6 mm wide linear discharge device were 1-4.4 mA. Hydrated Ar flow gas was critical for removal of biofilm from a stainless steel substrate, while both hydrated and dry Ar + O2, Ar + air, O2 only, and air only flow gas mixtures did not cause etching at equivalent or greater discharge current intensities. A biofilm etch rate of > 2 μm/min was achieved, provided the plasma discharge was within 1-2 mm of the substrate surface and used a hydrated Ar gas flow of at least 5 LPM.
Collapse
Affiliation(s)
- Adam Croteau
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, USA
| | - Amanda White
- Department of Mechanical Engineering, Boise State University, Boise, ID, USA
| | - Kenneth A. Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, USA
| | - Jim Browning
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, USA
| |
Collapse
|
33
|
Cold plasmas combined with Ar-based MAP for meatball products: Influence on microbiological shelflife and quality attributes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Reduction of E. coli O157: H7 and Bacillus cereus levels in red pepper powder using dielectric barrier discharge (DBD) plasma for enhanced quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Zhou R, Rezaeimotlagh A, Zhou R, Zhang T, Wang P, Hong J, Soltani B, Mai-Prochnow A, Liao X, Ding T, Shao T, Thompson EW, Ostrikov K(K, Cullen PJ. In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Katsigiannis AS, Bayliss DL, Walsh JL. Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2022; 21:1086-1124. [DOI: 10.1111/1541-4337.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Danny L. Bayliss
- Processing & Production Research Department Campden BRI Gloucestershire UK
| | - James L. Walsh
- Department of Electrical Engineering & Electronics University of Liverpool Liverpool UK
| |
Collapse
|
37
|
Balumuru C, Stanford J, Raja K, Sabharwall P, Utgikar V. Investigations into Plasma-Mediated Decomposition of Organoiodide Species as a Pretreatment for Mitigation of Radioiodine Emissions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chaithanya Balumuru
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho 83844, United States
| | - John Stanford
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho 83844, United States
| | - Krishnan Raja
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho 83844, United States
| | | | - Vivek Utgikar
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho 83844, United States
| |
Collapse
|
38
|
Corona Discharge Power of Plasma Treatment Influence on the Physicochemical and Microbial Quality of Enoki Mushroom (Flammulina velutipes). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.
Collapse
|
39
|
|
40
|
MARTINEZ-CENICEROS M, FERNANDEZ-MONREAL K, DOMÍNGUEZ-ORDAZ LE, AYALA-SOTO JG, CHAVEZ-FLORES D, RUIZ-ANCHONDO T, SANDOVAL-SALAS F, NEDER-SUAREZ D, HERNANDEZ-OCHOA L. The effect of cooking with retort pouch system on lipid and phaseolin composition of Pinto Saltillo beans (Phaseolus vulgaris). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.94721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Hood C, Rios de Souza V, Keener K, Marangoni AG, Pensini E. Effect of metal salts on high‐voltage atmospheric cold plasma‐induced polymerization of acrylamide. J Appl Polym Sci 2021. [DOI: 10.1002/app.52072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christine Hood
- School of Engineering University of Guelph Guelph Canada
| | | | - Kevin Keener
- School of Engineering University of Guelph Guelph Canada
| | | | - Erica Pensini
- School of Engineering University of Guelph Guelph Canada
| |
Collapse
|
42
|
Kim YE, Min SC. Inactivation of Salmonella in ready-to-eat cabbage slices packaged in a plastic container using an integrated in-package treatment of hydrogen peroxide and cold plasma. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Kang JH, Jeon YJ, Min SC. Effects of packaging parameters on the microbial decontamination of Korean steamed rice cakes using in-package atmospheric cold plasma treatment. Food Sci Biotechnol 2021; 30:1535-1542. [PMID: 34868702 PMCID: PMC8595375 DOI: 10.1007/s10068-021-00978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
The effects of packaging materials, package shape, and secondary packaging on the inactivation of indigenous mesophilic aerobic bacteria in Korean steamed rice cakes using in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment were investigated. Inactivation of indigenous mesophilic aerobic bacteria by ADCP treatment (21 kV, 3 min) was significantly increased by 0.6 and 0.8 log CFU/g (p < 0.05) from 0.7 ± 0.1 and 0.5 ± 0.1 CFU/g, respectively, when polypropylene (PP) and low-density polyethylene (LDPE) were laminated with nylon, respectively. Secondary packaging lowered the inactivation level by 0.7-0.8 log CFU/g from 1.1 to 1.3 log CFU/g. In-package ADCP treatment did not alter the water vapor permeability, oxygen transmission rate, and tensile properties of PP, LDPE, nylon/PP, and nylon/LDPE. Thus, the results demonstrated that lamination of PP or LDPE with nylon and treatment before secondary packaging may be effective strategies for microbial inactivation by in-package ADCP treatment.
Collapse
Affiliation(s)
- Joo Hyun Kang
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Ye Jeong Jeon
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Sea Cheol Min
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| |
Collapse
|
44
|
Xu L, Hou H, Farkas B, Keener KM, Garner AL, Tao B. High voltage atmospheric cold plasma modification of bovine serum albumin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Effects of Pre-Treatment Using Plasma on the Antibacterial Activity of Mushroom Surfaces. Foods 2021; 10:foods10081888. [PMID: 34441665 PMCID: PMC8394274 DOI: 10.3390/foods10081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Although non-thermal atmospheric pressure plasma is an efficient tool for preventing post-harvest microbial contamination, many studies have focused on the post-treatment of infected or contaminated foods. In this study, we examined the antimicrobial quality of mushrooms pre-treated with a non-thermal atmospheric pressure plasma jet (NTAPPJ) or plasma-treated water (PTW). The CFU (Colony Forming Unit) number of Escherichia coli inoculated on surfaces of mushrooms pre-treated with NTAPPJ or PTW was significantly reduced (about 60-75% for NTAPPJ and about 35-85% for PTW), and the reduction rate was proportional to the treatment time. Bacterial attachment and viability of the attached bacteria were decreased on NTAPPJ-treated mushroom surfaces. This may be caused by the increased hydrophilicity and oxidizing capacity observed on NTAPPJ-treated mushroom surfaces. In PTW-treated mushrooms, bacterial attachment was not significantly changed, but death and lipid peroxidation of the attached bacteria were significantly increased. Analysis of mushroom quality showed that loss of water content was greater in mushrooms treated with NTAPPJ compared to that in those with no treatment (control) and PTW treatment during storage. Our results suggest that pre-treatment with NTAPPJ or PTW can improve the antibacterial quality of mushroom surfaces by decreasing bacterial attachment (for NTAPPJ) and increasing bacterial lipid peroxidation (for both NTAPPJ and PTW).
Collapse
|
46
|
Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. J Fungi (Basel) 2021; 7:jof7080650. [PMID: 34436189 PMCID: PMC8401644 DOI: 10.3390/jof7080650] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
In view of the ever-growing human population and global environmental crisis, new technologies are emerging in all fields of our life. In the last two decades, the development of cold plasma (CP) technology has offered a promising and environmentally friendly solution for addressing global food security problems. Besides many positive effects, such as promoting seed germination, plant growth, and development, CP can also serve as a surface sterilizing agent. It can be considered a method for decontamination of microorganisms on the seed surface alternative to the traditional use of fungicides. This review covers basics of CP technology and its application in seed decontamination. As this is a relatively young field of research, the data are scarce and hard to compare due to various plasma setups and parameters. On the other hand, the rapidly growing research field offers opportunities for novel findings and applications.
Collapse
|
47
|
Ikmal Misnal MF, Redzuan N, Firdaus Zainal MN, Raja Ibrahim RK, Ahmad N, Agun L. Emerging cold plasma treatment on rice grains: A mini review. CHEMOSPHERE 2021; 274:129972. [PMID: 33979941 DOI: 10.1016/j.chemosphere.2021.129972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Future demand of rice is projected to increase with the increase of global population. However, the presence of bacteria, insects, and fungi has resulted in various changes in the physical and chemical characteristics of rice grain. To make it worse, the overuse of post-harvest chemicals (fungicide and pesticide) has caused possible risks to human health through either occupational or non-occupational exposure. For the last few years, cold plasma has been developed as an alternative non-thermal emerging technology for rice grains treatment due to its ability to inactivate or decontaminate pathogens without causing thermal damage and free of any harmful residues. Therefore, this review describes the operational mechanism of cold plasma treatment technology on rice grains, existing reactor system designs, and parameters influenced by the treatment technology (reactor design parameters and treatment process parameters). Possible advanced investigation on future reactor design modification as well as standard operating range of influenced parameters were suggested for improved efficiency and effectiveness of cold plasma treatment.
Collapse
Affiliation(s)
- Mohd Fadthul Ikmal Misnal
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Norizah Redzuan
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Muhamad Nor Firdaus Zainal
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | | | - Norhayati Ahmad
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Linda Agun
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
48
|
Wan Z, Misra N, Li G, Keener KM. High voltage atmospheric cold plasma treatment of Listeria innocua and Escherichia coli K-12 on Queso Fresco (fresh cheese). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Kaur Sidhu P, Nehra K. Bacteriocins of Lactic Acid Bacteria as Potent Antimicrobial Peptides against Food Pathogens. Biomimetics (Basel) 2021. [DOI: 10.5772/intechopen.95747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An ever-growing demand for food products with minimal chemical additives has generated a necessity for exploring new alternatives for food preservation. In this context, more recently, bacteriocins, the peptides having antimicrobial property, synthesized ribosomally by numerous bacteria have been attracting a lot of attention. They are known to possess the potential to restrict the growth of microorganisms causing food spoilage without causing any harm to the bacteria themselves owing to the presence of self-defensive proteins. In particular, the bacteriocins of lactic acid bacteria have been considered harmless and safe for consumption and are indicated to evade the development of unwanted bacteria. Use of bacteriocins as biopreservatives has been studied in various food industries, and they have been established to elevate the shelf life of minimally processed food items by exerting killing mechanism. They restrict the growth of undesirable bacteria by breaking the target cell membrane and finally resulting into pore formation. The current article provides an insight on bacteriocins of lactic acid bacteria, their biosynthesis, mechanism of action, and promising applications of these antimicrobial peptides in the food sector.
Collapse
|
50
|
Wu X, Zhao W, Zeng X, Zhang QA, Gao G, Song S. Effects of cold plasma treatment on cherry quality during storage. FOOD SCI TECHNOL INT 2021; 27:441-455. [PMID: 34056939 DOI: 10.1177/1082013220957134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cherry samples were treated with cold plasma under different voltages (40, 60, 80 kV) and different treatment durations (60, 80, 100, 140 s), then stored in a refrigerator at 0 ℃. Data on the decay rate, respiration rate, and physiological properties of the cherries and their correlational relationships after different treatments of cold plasma were collected under the conditions of ambient temperature and dry air. The decay rate, respiration rate, total soluble solids, total phenol, flavonoids, anthocyanin, VC, titratable acidity, firmness, and a* value were investigated at regular intervals to analyze the quality of the cherries under different treatment conditions. Additionally, the total colony number was estimated at the end of storage. The results indicated that cold plasma treatment under moderate conditions was effective for prolonging cherry storage, inactivating microorganisms, decreasing the decay rate, and inhibiting respiration with either no compromise on the cherry quality or only a slightly noticeable influence. A significant positive correlation was found between the decay rate and respiration rate, as well as between the VC content and titratable acidity. Antioxidant contents and firmness were found to be negatively correlated with the a* value. In conclusion, this study demonstrated that cold plasma has potential applications in the storage and preservation of cherries.
Collapse
Affiliation(s)
- Xinru Wu
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, China
| | - Wuqi Zhao
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiangyuan Zeng
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, China
| | - Qing-An Zhang
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, China
| | - Guitian Gao
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, China
| | - Shujie Song
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|